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LOCAL EXISTENCE AND SUFFICIENT CONDITIONS OF THE
NON-GLOBAL SOLUTION FOR WEIGHTED DAMPED WAVE

EQUATIONS ∗

Hadj Kaddour Tayeb and Ali Hakem

Abstract. In this paper we study the following Cauchy problem of the weighted
damped wave equation with nonlinear memory

utt −∆u+ g(x) |u|m−1
ut =

∫ t

0

(t− τ )−γ |u (τ, .)|p dτ

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
N
,

in the multi-dimensional real space R
n. where, m > 1, p > 1, 0 < γ < 1 and ∆ is

the usual Laplace operator and g is a positive smooth function which will be specified
later. Firstly, we will prove the existence and uniqueness of the local solution theorem
and, secondly, the nonexistence of the global solutions theorem is established.

Keywords: Damped wave equation; weak solution; test function; fractional derivative

1. Introduction

In 2008, Cazenave and al [6] generalized some results obtained by Fujita [5] in 1966
when they studied the following equation

(1.1) ∂tu(t, x)−∆u(t, x) =

∫ t

0

(t− τ)−γ |u|
p−1

u(τ, x)dτ

where 0 ≤ γ < 1 and u0 ∈ C0(R
N ). Their results are the following. Let

pγ =1 +
4− 2γ

(N − 2 + 2γ)+
and p∗ = max

(

pγ ,
1

γ

)

with (N − 2 + 2γ)+ = max (N − 2 + 2γ, 0) ,

then
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1. If γ 6= 0, p ≤ p∗ and u0 > 0, then the solution u of (1.1) blows up in finite
time.

2. If γ 6= 0, p > p∗ and u0 ∈ Lq∗(R
N ) where q∗ = (p−1)N

4−2γ with ‖u0‖Lq∗
small

enough, then u exists globally.

In particular, they proved that the critical exponent in Fujita’s sense p∗ is
not the one predicted by scaling. But this is not a surprising result since it
is well known that scaling is efficient only for parabolic equations and not for
pseudo-parabolic ones. To show this, it is sufficient to note that, formally,
equation (1.1) is equivalent to

Dα
0|tut −Dα

0|t∆u = Γ(α)|u|p−1u,

where α = 1 − γ and Dα
0|t is the fractional derivative operator of order α

(α ∈ ]0, 1[) of Riemann-Liouville defined by

Dα
0|tu =

d

dt
I1−α
0|t u.

3. In the case of γ = 0, Souplet [21] has showed that a non-zero positive solution
blows up in finite time.

After that, precisely in 2013, M. Berbiche and A. Hakem [8] thought about gener-
alizing the above results for problems more difficult than those they addressed in
the study of the following problem

(1.2) ∂2t u(t, x)−∆u(t, x) + |u|
m−1

∂tu(t, x) =

∫ t

0

(t− τ)−γ |u (τ, x)|
p
dτ,

which describes a damped wave equation with nonlinear memory and the damping
is not linear, either. Specifically, they proved that if p > m > 1 and the initial
datum satisfies

∫

RN

u0(x)dx > 0,

∫

RN

|u0|
m−1

u0(x)dx > 0,

∫

RN

u1(x)dx > 0,

and if

N ≤





2 (m+ (1− γ) p)

(p− 1 + (1− γ) (m− 1))
,

2 (1 + (2− γ) p)
(

(p−1)(2−γ)
p−m + γ − 1

)

(p− 1)



 or p ≤
1

γ
,

then the solution of the equation (1.2) with such initial data u0 and u1 does not
exist globally in time.

In this paper we would like to obtain similar results for a problem that is more
general than (1.2), namely, a weighted damped wave equation with nonlinear mem-
ory, which reads

(1.3)







∂2t u(t, x)−∆u(t, x) + g(x) |u|
m−1

∂tu(t, x) =

∫ t

0

(t− τ)−γ |u (τ, x)|
p
dτ,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
N ,
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where the weight g(x) is stationary (independent of time).

Firstly, our purpose in this paper is to explore the local existence and uniqueness
of the solution for the equation (1.3) by using the fixed point theorem. Secondly,
we shall make full use of the test function method considered by Fino [7], Berbiche
and Hakem [8], Pohozaev and Tesei [15], Mitidieri and Pohozaev ([16], [17]) and by
Zhang [12] to prove blow-up results of the solution to the equation (1.3).

Remark 1.1. Throughout this paper, the constants will be denoted C and are different
from one place to another.

2. Notations and Preliminary results

For a multi-index α = (α1, α1, ..., αN ) ∈ N
N we denote by

1. |α| = α1 + α2 + ...+ αN the length of the multi-index α.

2. α! for the factorial of α: α! = α1!α2!...αN !

3. For all β = (β1, ..., βN ) ∈ N
N , x = (x1, x2, ..., xN ) ∈ R

N , we define

Dβ
xϕ =

∂
|β|
x ϕ

∂β1

x1
...∂βN

xN

, ∀ϕ ∈ D(Ω).

where D(Ω) is the set of C∞ functions with compact supports included in Ω.

We denote by Hs(RN ) the Sobolev space defined by

Hs(RN ) =

{

u ∈ L2(RN ),
∂u

∂xi
∈ L2(RN ), i = 1, 2, ..., N

}

,

where the derivation is considered in the distribution sense. We also need some
results as Sobolev’s embedding theorems. We need the following Lemmas.

Lemma 2.1. ( [4]) If s > N/2 then one has

Hs(RN ) ⊂ C(RN ) ∩ L∞(RN ),

where the inclusion is continuous. Indeed, there exists a constant C > 0 such that

∀u ∈ Hs(RN ), ‖u‖L∞(RN ) ≤ C ‖u‖Hs(RN ) .

Lemma 2.2. ([8]) Assume that s1, s2 ≥ s > N/2, then for all u ∈ Hs1(RN ) and
v ∈ Hs2(RN ) there exists a positive constant C independent of u and v such that

‖uv‖Hs(RN ) ≤ C ‖u‖Hs1 (RN ) ‖v‖Hs2 (RN ) .

Lemma 2.3. ([8]) Let s,N ≥ 1 such that N ≥ s − 1, then for all nonnegative
functions u belonging to L∞(RN ) ∩Hs−1(RN ) and n ∈ N

∗ we have
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1. un ∈ Hs−1(RN ).

2. There exists a constant C > 0 such that

‖un‖Hs−1(RN ) ≤ C ‖u‖n−1
L∞(RN ) ‖u‖Hs−1(RN ) .

The next lemma is an immediate consequence of (proposition 3.7 pp. 11 in [4]).
Invoking the fact that f is bounded with all its derivatives as it is mentioned in
Lemma 2.4 and by using the below Leibnitz formula (see formula 3.23 p.11 in [4]),

(2.1) Dα(fu) =
∑

β+γ=α

Cβ
α(D

βf)(Dγu), where Cβ
α =

α!

β!(α − β)!

Lemma 2.4. Let s ∈ N
∗, u ∈ Hs−1(RN ) and f be a real valued bounded function

with all its derivatives, then one has

1. fu ∈ Hs−1(RN ).

2. Denoting Cf = sup
x∈RN

(

sup
|α|≤s−1

|Dα
xf(x)|

)

then ‖fu‖Hs−1(RN ) ≤ Cf ‖u‖Hs−1(RN ) .

3. Well-posedness of the problem

3.1. Introduction and statement of our problem

In this section we will prove the theorem of the existence and uniqueness of solutions
to the following Cauchy problem, which described a weighted damped wave equation
with nonlinear memory

(P )















utt −∆u + g(x)|u|m−1ut =

∫ t

0

(t− τ)−γ |u|pdτ

u(0, x) = u0(x), x ∈ R
n

ut(0, x) = u1(x), x ∈ R
n,

with m > 1, p > 1, 0 < γ < 1, ∆ is the usual Laplace operator and g is a function
which will be specified later.

3.2. Main result

Now we are able to state the main result and its proof concerning the local existence
and uniqueness of the solution to problem (P).
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Theorem 3.1. Let N ≥ 1, s > N
2 , m, p ∈ (1,∞) such that m, p > s− 1. Assume

that g ∈ Cs(RN ) such that g is positive and satisfies

∀β = (β1, ..., βN ) ∈ N
N , |β| ≤ s such that: Dβ

xg =
∂|β|g

∂β1

x1
...∂βN

xN

= O(1),

uniformly with respect to x ∈ R
N , then for any (u0, u1) ∈ Hs(RN )×Hs−1(RN ), the

problem (P ) admits a unique solution

u ∈ C([0, T ] , Hs(RN )) ∩ C1([0, T ] , Hs−1(RN )).

Where T depends only on ‖u0‖Hs(RN ) + ‖u1‖Hs−1(RN ) .

The main tool for the proof of Theorem 3.1 is the fixed point theorem. For this
reason, we need a suitable functional space and a contraction mapping. To do this,
we define for some T > 0 and M > 0 the following functional spaces.

XT = C([0, T ] , Hs(RN )) ∩ C1([0, T ] , Hs−1(RN )),

ET = L∞([0, T ] , Hs(RN )) ∩W 1,∞([0, T ] , Hs−1(RN )),

ET,M =

{

u ∈ ET ; sup
t∈[0,T ]

(

‖u‖Hs(RN ) + ‖ut‖Hs−1(RN )

)

≤M

}

,

and we put by definition

XT,M := XT ∩ ET,M .

Remark 3.1. It is easy to remark that one has XT ⊂ ET and XT,M ⊂ ET,M for all
T > 0 and M > 0.

Still denoting

Pα(g, ∂t)u = −g(x)|u|m−1ut +

∫ t

0

(t− τ)−γ |u(τ, .)|pdτ

= −g(x)|u|m−1ut + Γ (α) Iα0|t (|u|
p
) ,(3.1)

where α = 1 − γ and Iα0|t is the Riemann-Liouville fractional integral of order α

(α ∈ ]0, 1[) defined by (See [18])

(3.2) Iα0|tu(t) =
1

Γ(α)

∫ t

0

u(τ)

(t− τ)
1−α dτ,

and Γ is the usual Euler’s Gamma function. First of all, we will state some results
to prove Theorem 3.1.
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Lemma 3.1. Let Pα(g, ∂t) be the operator defined by (3.1), then for all t ∈ [0, T ]
and u ∈ ET one has

∫ t

0

Pα(g, ∂t)u(τ, .)dτ =
g(x)

m

(

|u(0, .)|
m−1

u(0, .)− |u(t, .)|
m−1

u(t, .)
)

+
1

α

∫ t

0

(t− τ)
α
|u (τ, .)|

p
dτ.

Proof. We have

(3.3)

∫ t

0

Pα(g, ∂t)u(τ, .)dτ = −g(x)

∫ t

0

|u(τ, .)|m−1 ut(τ, .)dτ

+

∫ t

0

∫ τ

0

(τ − s)α−1 |u(s, .)|p dsdτ = −g(x)I + J.

For I, it is enough to note that for all u ∈ ET , we have

(3.4) ∂t(|u(t, .)|
m−1

u(t, .)) = m |u(t, .)|
m−1

ut(t, .),

and for J we just use Fubini’s theorem (Theorem 1.1.7, pp. 8 in [3]) to calculate
the integral with respect to τ and find

J =
1

α

∫ t

0

(t− s)α |u(s, .)|p ds.(3.5)

Combining (3.4) and (3.5) into (3.3) we get

∫ t

0

Pα(g, ∂t)u(τ, .)dτ = −
1

m
g(.)

(

|u(t, .)|m−1 u(t, .)− |u(0, .)|m−1 u(0, .)
)

+
1

α

∫ t

0

(t− τ)α |u(τ, .)|p dτ.

This completes the proof of Lemma 3.1.

Thanks to Lemma 3.1 for estimating the norm in Hs−1(RN ) of Pα(g, ∂t)u for
all u ∈ ET,M as in the following.

Lemma 3.2. Let Pα be the operator defined by (3.1) and

M = C
(

‖u0‖Hs(RN ) + ‖u1‖Hs−1(RN )

)

.

Then there exist two positive constants C1 and C2 depending only on T and M such
that for all u ∈ ET,M one has

∫ t

0

‖Pα(g, ∂t)u(τ, .)‖Hs−1(RN )dτ ≤ C1M
m + C2T

α+1Mp.
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Proof. Since

‖u‖Hs−1(RN ) =
∑

|β|≤s−1

‖Dβ
xu‖L2(RN ),

then, using Lemma 3.1, we get for all β ∈ N
N such that |β| ≤ s− 1 and x ∈ R

N

Dβ
x

∫ t

0

Pα(g, ∂t)u(τ, x)dτ =
1

m
Dβ

x

[

g(x)|u(0, x)|m−1u(0, x)
]

−
1

m
Dβ

x

(

g(x)|u(t, x)|m−1u(t, x)
)

+
1

α
Dβ

x

∫ t

0

(t− τ)
α
|u (τ, x) |pdτ.

Applying Lebesgue’s dominated convergence theorem (Theorem 1.1.4, pp. 3 in [3])
and Leibnitz’s formula (2.1) we obtain

∫ t

0

‖Pα(g, ∂t)u(τ, .)‖Hs−1(RN ) dτ ≤
∥

∥

∥g |u(0, .)|
m−1

u(0, .)
∥

∥

∥

Hs−1(RN )

+
∥

∥

∥
g |u(t, .)|m−1 u(t, .)

∥

∥

∥

Hs−1(RN )

+

∫ t

0

(t− τ)
α
‖|u (τ, .)|

p
‖Hs−1(RN ) dτ.

By Sobolev’s embedding theorem (Lemma 2.1) and Lemma 2.4 we find

∫ t

0

‖Pα(g, ∂t)u(τ, .)‖Hs−1(RN ) dτ ≤ C
∥

∥

∥g |u(0, .)|
m−1

u(0, .)
∥

∥

∥

Hs−1(RN )

+ C
∥

∥

∥
g |u(t, .)|m−1 u(t, .)

∥

∥

∥

Hs−1(RN )

+ C

∫ t

0

(t− τ)α ‖|u (τ, .)|p‖Hs−1(RN ) dτ

≤ C ‖u‖
m
Hs(RN ) + C sup

0≤t≤T
‖u (t, .)‖

m
Hs(RN )

+ sup
0≤t≤T

‖u (t, .)‖pHs(RN ) sup
0≤t≤T

∫ t

0

(t− τ)α dτ

≤ C1M
m + C2T

α+1Mp.

Hence the proof is completed.

Remark 3.2. Let T > 0. Suppose that u ∈ XT is a solution of the following Cauchy
problem

(P2)







utt(t, x)−∆u(t, x) = Pα(g, ∂t)v(t, x), t > 0, x ∈ R
n

u(0, x) = u0(x), x ∈ R
n

ut(0, x) = u1(x), x ∈ R
n.

Then for all v ∈ ET the mapping Φ defined by Φ(v) = u is well defined.
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Proof. Note that since g is bounded then for any v ∈ ET we have by Sobolev’s
embedding theorem that Pα(g, ∂t)v ∈ L∞

(

[0, T ] ;Hs
(

R
N
))

which implies the exis-
tence and uniqueness of such u in ET by the theory of mixed Cauchy problems for
linear wave equations.

Now using Theorem 3.1 and Lemma 3.2 we obtain the following results.

Proposition 3.1. If v ∈ ET,M then Φ(v) = u ∈ XT,M .

Proof. Assume that v ∈ ET,M and by choosing

M = C0

(

‖u0‖Hs(RN ) + ‖ut‖Hs−1(RN )

)

, C0 > 0,

it follows by using Lemma 3.2 and the theory of linear wave equations

sup
0≤t≤T

(‖u(t, .)‖Hs + ‖ut(t, .)‖Hs−1) ≤ C(1 + T ) (‖u0‖Hs + ‖u1‖Hs−1)

+C(1 + T )

(∫ t

0

‖Pα(g, ∂t)v(τ, .)‖Hs−1dτ

)

≤ C(T,M)M,

where

C(T,M) = C(1 + T )

(

1

C0
+ CMm−1 + CTα+1Mp−1

)

.

Since we can find T1 > 0 such that ∀T ∈ [0, T1] , C(T,M) ≤ 1, we deduce that

sup
0≤t≤T

(

‖u‖Hs(RN ) + ‖ut‖Hs−1(RN )

)

≤M.

This ends the proof.

Proposition 3.2. The mapping Φ is a contraction from XT,M into XT,M .

Proof. Since the function (x, y) 7→ |x|m−1 y is not Lipschitz continuous with respect
to (x, y) ∈ R

2 for 1 < m < 2, we cannot apply the mean value theorem directly.
To overcome this obstacle, we will use the linearity and we modify the technique as
it has been done by Berbiche and Hakem [8], Katayama [13], MD. Abu Naim [14]
and by Lions and Strauss [19]. Let v1, v2 ∈ ET,M such that v1(0, x) = v2(0, x) =
u0(x), x ∈ R

N and let w, ν be solutions for the following problems, respectively

(P.1.1)















wtt(t, x) −∆w(t, x) =

∫ t

0

(t− s)
α−1

|v1(s, x)|
p
ds, t > 0, x ∈ R

n

w(0, x) = u0(x) x ∈ R
n

wt(0, x) = u1(x) +
g(x)
m |u0|

m−1
u0 x ∈ R

n,
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and

(P.1.2)















νtt(t, x)−∆ν(t, x) =

∫ t

0

(t− s)
α−1

|v2(s, x)|
p
ds, t > 0, x ∈ R

n

ν(0, x) = u0(x) x ∈ R
n

νt(0, x) = u1(x) +
g(x)
m |u0|

m−1
u0 x ∈ R

n.

Denote also by w̃ and ν̃ the solutions of the following problems, respectively

(P.2.1)







w̃tt(t, x) −∆w̃(t, x) = − g(x)
m |v1(t, x)|

m−1 v1(t, x), t > 0, x ∈ R
n

w̃(0, x) = 0 x ∈ R
n

w̃t(0, x) = 0 x ∈ R
n,

and

(P.2.2)







ν̃tt(t, x)−∆ν̃(t, x) = − g(x)
m |v2(t, x)|

m−1
v2(t, x), t > 0, x ∈ R

n

ν̃(0, x) = 0 x ∈ R
n

ν̃t(0, x) = 0 x ∈ R
n.

Remark 3.3. The fact that g is bounded with all its derivatives and vi ∈ ET,M implies
that for i = 1, 2 we have

∫ t

0

(t− s)α−1 |vi(s, x)|
p
ds,

g(x)

m
|vi(t, x)|

m−1
vi(t, x) and

g(x)

m
|vi(t, x)|

m−1
∂tvi(t, x) ∈ L

∞

(

[0, T ] ;Hs−1(RN)
)

,

consequently, by Sobolev’s embedding theorem, we deduce that

w, ν ∈ ET,M

and

w̃, ν̃ ∈ C
(

[0, T ] ;Hs+1(RN)
)

∩ C
1
(

[0, T ] ;Hs(RN )
)

∩ C
2
(

[0, T ] ;Hs−1(RN)
)

.

Then we have the following results:

Proposition 3.3. Denoting w̄ = w + w̃t, then w̄ is solution for the problem

(P̄1)







w̄tt(t, x)−∆w̄(t, x) = Pα(g, ∂t)v1(t, x), t > 0, x ∈ R
n

w̄(0, x) = u0(x) x ∈ R
n

w̄t(0, x) = u1(x) x ∈ R
n.

Proof. One can remark that

for all v1 ∈ ET and t ∈ [0, T ] , ∂t

(

|v1|
m−1

v1

)

= m |v1|
m−1

∂tv1,
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hence a simple computation shows that

∂2t w̄ −∆w̄ = ∂2t (w + w̃t)−∆(w + w̃t)

= wtt(t, x) −∆w(t, x) − ∂t (w̃tt(t, x) −∆w̃(t, x))

=

∫ t

0

(t− s)α−1|v1(t, x)|
pds− g(x) |v1(t, x)|

m−1
v1(t, x)

= Pα(g, ∂t)v1(t, x).

It is easy to see that the initial conditions are satisfied too as follows. We have
firstly

w̄(0, x) = w(0, x) + w̃t(0, x) = u0(x) for all x ∈ R
N .

Secondly, we have

w̃tt(t, x)−∆w̃(t, x) = −
g(x)

m
|v1(t, x)|

m−1
v1(t, x), t ≥ 0, x ∈ R

N ,

then for t = 0, we get

(3.6) w̃tt(0, x)−∆w̃(0, x) = −
g(x)

m
|v1(0, x)|

m−1
v1(0, x),

and since ∆w̃(0, x) = 0 because w̃(0, x) = 0 and v1(0, x) = u0(x), we obtain from
(3.6)

(3.7) w̃tt(0, x) = −
g(x)

m
|u0(x)|

m−1 u0(x).

Now, using the formula (3.7) we find

w̄t(0, x) = wt(0, x) + w̃tt(0, x)

= u1(x) +
g(x)

m
|u0(x)|

m−1
u0(x) −

g(x)

m
|u0(x)|

m−1
u0(x)

= u1(x).

This completes the proof of Proposition 3.3.

Lemma 3.3. Denoting ν̄ = ν + ν̃t, then ν̄ is solution for the following problem

(P̄2)







ν̄tt(t, x)−∆ν̄(t, x) = Pα(g, ∂t)v2(t, x), t > 0, x ∈ R
n

ν̄(0, x) = u0(x), x ∈ R
n

ν̄t(0, x) = u1(x), x ∈ R
n.

Proof. The proof is similar to the proof of Proposition 3.3.

Now by Proposition 3.3, Lemma 3.3 and the definition of Φ, we have the following
corollary:
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Corollary 3.1. One has Φ(v1) = w + w̃t and Φ(v2) = ν + ν̃t.

Proof. An immediate consequence of the definition of Φ, Proposition 3.3, Lemma
3.3 and the uniqueness of the solution to linear wave equations.

In order to prove that Φ is a contraction mapping into ET,M , we also need the
following.

Proposition 3.4. Denoting w∗ = w − ν, then there exists a constant C > 0 such
that

‖w∗ (t, .)‖Hs + ‖w∗
t (t, .)‖Hs−1 ≤ C (1 + T )Tα+1Mp−1 sup

0≤t≤T
‖v1 (t, .)− v2 (t, .)‖Hs .

Proof. First of all, we show that w∗ is a solution for the following homogenous
Cauchy problem:







∂2tw
∗ −∆w∗ =

∫ t

0

(t− s)
−γ

(|v1 (s, .)|
p
− |v2 (s, .)|

p
) ds

w∗(0, x) = w∗
t (0, x) = 0.

To do this, it is enough to note that firstly

∂2tw
∗ −∆w∗ = wtt −∆w − (νtt −∆ν)

=

∫ t

0

(t− s)−γ |v1(s, x)|
p ds−

∫ t

0

(t− s)−γ |v2(s, x)|
p ds

=

∫ t

0

(t− s)−γ (|v1 (s, .)|
p − |v2 (s, .)|

p) ds,

and secondly

w∗(0, x) = w(0, x) − ν(0, x) = u0(0, x)− u0(0, x) = 0.

In the same way, we prove that w∗
t (0, x) = 0, hence, by the theory of linear wave

equations, we get

‖w∗(t, .)‖Hs+‖w∗
t (t, .)‖Hs−1 ≤ C(1+T )

∫ t

0

∫ τ

0

(τ−s)−γ‖|v1(s, .)|
p−|v2(s, .)|

p‖Hs−1dsdτ.

Applying Fubini’s theorem, we arrive at

‖w∗(t, .)‖Hs + ‖w∗
t (t, .)‖Hs−1

≤ C(1 + T )

∫ t

0

(∫ t

s

(τ − s)−γdτ

)

‖|v1(s, .)|
p − |v2(s, .)|

p‖Hs−1ds

≤ C(1− γ)−1(1 + T )

∫ t

0

(t− s)1−γ‖|v1(s, .)|
p − |v2(s, .)|

p‖Hs−1ds.
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By the mean value theorem and Sobolev’s embedding theorem, we obtain

‖w∗ (t, .)‖Hs + ‖w∗
t (t, .)‖Hs−1

≤ C(1 − γ)−1 (1 + T ) sup
0≤t≤T

(

‖v1 (t, .)‖
p−1
Hs + ‖v2 (t, .)‖

p−1
Hs

)

× sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs sup
0≤t≤T

∫ t

0

(t− s)
1−γ

ds

≤ C (1 + T )T−γMp−1 sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs .

This ends the proof.

Proposition 3.5. Denoting w̃∗ = w̃ − ν̃, then there exists a constant C > 0 such
that, for all t ∈ [0, T ] we have

‖w̃∗(t, .)‖Hs + ‖w̃∗
t (t, .)‖Hs−1 ≤ C(1 + T )TMm−1 sup

0≤t≤T
‖v1(t, .)− v2(t, .)‖Hs .

Proof. It is easy to show that w̃∗ is a solution to the following Cauchy problem
{

∂2t w̃
∗ −∆w̃∗ = − g

m

(

|v1(s, .)|
m−1v1 − |v2(s, .)|

m−1v2
)

w̃∗(0, x) = w̃∗
t (0, x) = 0,

hence, by the theory of linear wave equations, we find

‖w̃∗(t, .)‖Hs + ‖w̃∗
t (t, .)‖Hs−1

≤ C (1 + T )

∫ t

0

∥

∥

∥

g

m
|v1 (s, .)|

m−1
v1 −

g

m
|v2 (s, .)|

m−1
v2

∥

∥

∥

Hs−1

ds,

by using Lemma.2.4, we arrive at

‖w̃∗ (t, .)‖Hs + ‖w̃∗
t (t, .)‖Hs−1

≤ C (1 + T )

∫ t

0

∥

∥

∥|v1 (s, .)|
m−1 v1 − |v2 (s, .)|

m−1 v2

∥

∥

∥

Hs−1

ds.

Taking into account the mean value theorem, we get

(3.8)

‖w̃∗ (t, .)‖Hs + ‖w̃∗
t (t, .)‖Hs−1 ≤

C (1 + T )

∫ t

0

(

‖v1 (s, .)‖
m−1
Hs + ‖v2 (s, .)‖

m−1
Hs

)

‖v1 (s, .)− v2 (s, .)‖Hs ds

≤ C (1 + T ) sup
0≤t≤T

(

‖v1 (t, .)‖
m−1
Hs + ‖v2 (t, .)‖

m−1
Hs

)

× sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs sup
0≤t≤T

∫ t

0

ds

≤ C (1 + T )TMm−1 sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs .

This completes the proof.
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Now we are able to estimate the Hs−norm of the quantity Φ(v1)−Φ(v2) and show
that Φ is a contraction mapping as follows. For all v1, v2 ∈ ET,M and t ∈ [0, T ] ,
we have

‖Φ (v1)− Φ (v2)‖Hs = ‖w (t, .) + w̃t (t, .)− ν (t, .)− ν̃t (t, .)‖Hs

≤ ‖w − ν‖Hs + ‖w̃t − ν̃t‖Hs

≤ ‖w∗ (t, .)‖Hs+‖w∗
t (t, .)‖Hs−1+‖w̃∗ (t, .)‖Hs + ‖w̃∗

t (t, .)‖Hs−1

≤ C (1 + T )Tα+1Mp−1 sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs

+ C (1 + T )TMm−1 sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs

≤ C (1+T )
[

Tα+1Mp−1+ TMm−1
]

sup
0≤t≤T

‖v1 (t, .)−v2 (t, .)‖Hs ,

hence

(3.9)

sup
0≤t≤T

‖Φ(v1)− Φ(v2)‖Hs ≤

C (1 + T )
[

Tα+1Mp−1 + TMm−1
]

sup
0≤t≤T

‖v1(t, .)− v2(t, .)‖Hs .

Since it is possible to find T1 > 0 satisfying

C (1 + T )
[

Tα+1Mp−1 + TMm−1
]

< 1, ∀T ∈ [0, T1] ,

we deduce from (3.9) that

(3.10) sup
0≤t≤T

‖Φ (v1)− Φ (v2)‖Hs ≤ k sup
0≤t≤T

‖v1 (t, .)− v2 (t, .)‖Hs , k ∈ ]0, 1[ .

Now, using Remark 3.1 and Proposition 3.1, we easily show that

Φ(XT,M ) ⊂ XT,M .

Finally, define a sequence (u(n))n as follows

(3.11)

{

u(0)(t, x) = u(0, x) = u0(x),

u(n)(t, x) = Φ(u(n−1))(t, x).

By (3.10), for all T > 0 there exists some ū ∈ C ([0, T ], Hs) such that u(n) → ū in
C ([0, T ], Hs) as n → ∞. The aim now is to show that this ū belongs to XT and

is a solution to problem (1.3). Since u(n) ∈ XT,M , then
(

u(n)
)

n
and

(

u
(n)
t

)

n
has

a weak convergent subsequence
(

u(nk)
)

k
(resp. (u

(nk)
t )k) in L∞ ([0, T ];Hs) (resp.

in L∞
(

[0, T ];Hs−1
)

). Since
(

u(n)
)

n
converges to ū in C ([0, T ], Hs), the above

subsequence converges weakly to ū in L∞ ([0, T ];Hs) (resp. in L∞
(

[0, T ];Hs−1
)

),
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as a consequence, we see that ū ∈ L∞ ([0, T ];Hs) and ūt ∈ L∞
(

[0, T ];Hs−1
)

, this
means that ū ∈ ET,M and then Φ(ū) ∈ XT,M . Applying (3.10) we get for k ∈ ]0, 1[

(3.12) sup
0≤t≤T

∥

∥

∥Φ
(

u(n)
)

− Φ (ū)
∥

∥

∥

Hs
≤ k sup

0≤t≤T

∥

∥

∥u(n) (t, .)− ū (t, .)
∥

∥

∥

Hs
.

Since the right-hand side of (3.12) goes to 0 as n→ +∞, then Φ
(

u(n)
)

converges

to Φ (ū) in C ([0, T ], Hs). Passing to the limit in u(n) = Φ
(

u(n−1)
)

as n→ +∞ and

using the fact that u
(n)
n → ū in C ([0, T ], Hs), we obtain

Φ(ū) = ū ∈ XT,M .

This ū is apparently the desired solution. The uniqueness of such a solution in XT,M

follows immediately from the formula (3.10). This achieves the proof of Theorem
3.1.

4. Blow-up results of solutions for problem (1.3)

In this section, we will investigate the blow-up results of problem (1.3).

4.1. Notations and definitions

Definition 4.1. Let u0 ∈ L1
loc

(

R
N
)

∩Lm
loc

(

R
N
)

and u1 ∈ L1
loc

(

R
N
)

be given. We

say that u is a weak solution to the problem (1.3) if u ∈ Lp
(

(0, T ), Lp
loc

(

R
N
))

∩

Lm
(

(0, T ), Lm
loc

(

R
N
))

and satisfies the following formula

(4.1)

Γ(α)

∫ T

0

∫

Rn

Iα0|t(|u|
p)ϕ(t, x)dtdx +

∫

Rn

u1(x)ϕ(0, x)dx

−

∫

Rn

u0(x)ϕt(0, x)dx+
1

m

∫

R n

g(x) |u0|
m−1 (x)u0(x)ϕ(0, x)dx

=

∫ T

0

∫

Rn

u(t, x)ϕtt(t, x)dtdx −

∫ T

0

∫

Rn

u(t, x)∆ϕ(t, x)dtdx,

−
1

m

∫ T

0

∫

Rn

g(x)
(

|u|m−1 u
)

(t, x)ϕt(t, x)dtdx

for all non-negative test functions ϕ ∈ C2([0, T ]×R
N) such that ϕt (T, .) = ϕ (T, .) =

0 and α = 1− γ.

The main result of this section is the following theorem.

Theorem 4.1. Let 0 < γ < 1 and p,m ∈ R such that p > m > 1. Assume that

(4.2)

∫

Rn

u0(x)dx > 0,

∫

Rn

g(x) |u0(x)|
m
dx > 0,

∫

Rn

u1(x)dx > 0.

Then the solution of the Cauchy problem (1.3) does not exist globally in time if one
of the following conditions is fulfilled:
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1.

N ≤ min





2 ((1− γ)p+m)

(1− γ) (m− 1) + (p− 1)
,−

2p(2− γ) + 2
(

(2−γ)(p−1)
m−p + (1− γ)

)

(p− 1)





2. p < 1
γ or p = 1

γ and moreover N−2
N < γ < 1.

Proof. The theorem (4.1) will be proved by absurd, so we suppose that u is a global
non-trivial weak solution to the problem (1.3). To prove Theorem 4.1 we also need
some results that we will give in the following section.

4.2. Preliminary results

Since the principle of the method is the right choice of the test function, we choose
it as follows

(4.3) ϕ(t, x) = Dα
t|Tψ(t, x) = ϕr

1(x)D
α
t|Tϕ2(t), (t, x) ∈ R+ × R

N ,

where Dα
t|T is the right fractional derivative operator in the sense of Riemann-

Liouville defined by

(4.4) Dα
t|T v(t) = −

1

Γ(1− α)

∂

∂t

∫ T

t

v(s)

(s− t)
α ds,

and the functions ϕ1 and ϕ2 are given by

(4.5) ϕ1(x) = φ

(

x2

T θ

)

and ϕ2(t) = sup

{

0,

(

1−
t

T

)β
}

,

with β ∈ R
∗
+, θ is a nonnegative parameter which will be specified later and φ is a

cut-off non-increasing function satisfying

(4.6) φ(s) =

{

1 if 0 ≤ s ≤ 1
0 if s ≥ 2

, 0 ≤ φ ≤ 1 everywhere and φ′(s) ≤
C

s
.

We will also use the fractional version of the integration by parts (See [18])

(4.7)

∫ t

0

f(t)Dα
t|T g(t)dt =

∫ t

0

(

Dα
0|tf(t)

)

g(t)dt,

for all f, g ∈ C([0, T ]) such that Dα
0|t (f(t)) and Dα

t|T g(t) exist and are continuous,
and the following identity

(4.8)
(

Dα
0|t ◦ I

α
0|t

)

(u) = u for all u ∈ Lq ([0, T ])
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and also the bellow identity (see [18])

(4.9) (−1)n∂nt D
α
t|Tu(t) = Dα+n

t|T u(t), n ∈ N, α ∈ ]0, 1[

which occurs for all u ∈ Cn [0, T ] ;T > 0, where ∂nt is the n−times ordinary deriva-
tive with respect to t that will be useful in this paper.

A simple and immediate computation leads to

Proposition 4.1. Given β > 0. Let ϕ2 be the function defined by

ϕ2(t) =

(

1−
t

T

)β

+

,

then, for all α ∈ ]0, 1[ , we have

Dα
t|Tϕ2(t) =

Γ(β + 1)

Γ(β − α+ 1)
T−β(T − t)β−α

+

=
Γ(β + 1)

Γ(β − α+ 1)
T−α

(

1−
t

T

)β−α

+

Dα+1
t|T ϕ2(t) =

Γ(β + 1)

Γ(β − α)
T−β(T − t)β−α−1

+

=
Γ(β + 1)

Γ(β − α)
T−α−1

(

1−
t

T

)β−α−1

+

Dα+2
t|T ϕ2(t) =

Γ(β + 1)

Γ(β − α− 1)
T−β(T − t)β−α−2

+

=
Γ(β + 1)

Γ(β − α− 1)
T−α−2

(

1−
t

T

)β−α−2

+

Proof. The proof of Proposition 4.1 is a simple and immediate verification. We get
from the formula (4.4)

Dα
t|Tϕ2(t) = −

1

Γ(1− α)

∂

∂t

∫ T

t

ϕ2(s)

(s− t)
α ds.

Using Euler’s change of the variable

s 7→ y =
s− t

T − t
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1. We have firstly

Dα
t|Tϕ2(t) =

1

Γ(1− α)

∂

∂t

∫ T

t

(1− s
T )

β

(s− t)α
ds

=
T−β

Γ (1− α)

∂

∂t

(

T − t)β−α+1

∫ 1

0

y−α(1 − y)βdy

)

=
(β − α+ 1)B(1− α, β + 1)

Γ (1− α)
T−β (T − t)

β−α

=
Γ (β + 1)

Γ (β − α+ 1)
T−α (T − t)β−α ,

where B is the famous Béta function defined by

B(u, v) =

∫ 1

0

tu−1 (1− t)
v−1

dt.

2. We directly apply the formula (4.9) to show that

∀t ∈ [0, T ] : Dα+1
t|T ϕ2(t) = −∂tD

α
t|Tϕ2 (t) et Dα+2

t|T ϕ2(t) = ∂2tD
α
t|Tϕ2(t).

Hence the proof is completed.

4.3. Treatment of the weak formulation (4.1)

4.3.1. Treatment of the left-hand side

Using the parts integration formula (4.7) and the identity (4.8) we get

(4.10)

∫ T

0

∫

Rn

Iα0|t(|u|
p)ϕ(t, x)dtdx =

∫ T

0

∫

Rn

Iα0|t(|u|
p)Dα

0|Tψ(t, x)dtdx

=

∫ T

0

∫

Rn

Dα
0|T I

α
0|T (|u|

p
)ψ(t, x)dtdx =

∫ T

0

∫

Rn

|u|
p
ψ(t, x)dtdx.

For the 2nd term of the left-hand side of the equality (4.1), we use Proposition 4.1.
We easily obtain

∫

Rn

u1(x)ϕ(0, x)dx =

∫

Rn

u1(x)ϕ
r
1(x) D

α
t|Tϕ2(t)

∣

∣

∣

t=0
dx

= C1T
−α

∫

Rn

u1(x)ϕ
r
1(x)dx,(4.11)

since

Dα
t|Tϕ2(t)

∣

∣

∣

t=0
=

Γ(β + 1)

Γ(β − α+ 1)
T−α = C1T

−α.
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For the third term, noting that

ϕt (t, x) =
∂ϕ

∂t
(t, x) = ϕr

1(x)D
α+1
t|T ϕ2(t),

using therefore Proposition 4.1 we get the following estimate

(4.12)

∫

Rn

u0(x)ϕt(0, x)dx = C2T
−α−1

∫

Rn

u0(x)ϕ
r
1(x)dx,

since

Dα+1
0|T ϕ2(t)

∣

∣

∣

t=0
=

Γ(β + 1)

Γ(β − α)
T−α−1 = C2T

−α−1.

Hence by Proposition 4.1, the following estimate will be obtained for the 4th term
of the left-hand side of the weak formulation(4.1).

(4.13)

∫

Rn

g(x) |u0|
m−1

(x)u0(x)ϕ(0, x)dx

= C1T
−α

∫

Rn

g(x) |u0|
m−1

u0(x)(x)ϕ
r
1(x)dx.

4.3.2. Treatment of the right-hand side

Making use of (4.9), it can be seen that

ϕtt (t, x) = ϕr
1(x)∂

2
tD

α
t|Tϕ2(t) = ϕr

1(x)D
α+2
t|T ϕ2(t),

one can deduce that

(4.14)

∫ T

0

∫

Rn

u(t, x)ϕtt(t, x)dtdx =

∫ T

0

∫

Rn

u(t, x)ϕr
1(x)D

α+2
t|T ϕ2(t)dtdx.

Similarly, as

ϕt (t, x) = ϕr
1(x)∂tD

α
t|Tϕ2(t) = −ϕr

1(x)D
α+1
t|T ϕ2(t),

we get

(4.15)

∫ T

0

∫

Rn

g(x) |u|
m−1

u(t, x)ϕt(t, x)dtdx =

−

∫ T

0

∫

Rn

g(x) |u|
m−1

u(x)ϕr
1(x)D

α+1
t|T ϕ2(t)dtdx.

Finally, for the third term of the right-hand side of the formulation (4.1), we use
the following identity

∆(ϕr
1) = rϕr−1

1 ∆ϕ1 + r (r − 1)ϕr−2
1 |∇ϕ1|

2
,
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to obtain

(4.16)

∫ T

0

∫

Rn

u(t, x)∆ϕ(t, x)dtdx =

∫ T

0

∫

Rn

u(t, x)(rϕr−1
1 ∆ϕ+ r(r − 1)ϕr−2|∇ϕ1|

2)Dα
t|Tϕ2(t)dtdx.

Inserting the formulas (4.10), (4.11), (4.12), (4.13), (4.14), (4.15) et (4.16) in the
formula (4.1) we deduce

(4.17)

Γ(α)

∫ T

0

∫

Rn

|u|p ψ(t, x)dtdx + C1T
−α

∫

Rn

u1(x)ϕ
r
1(x)dx

+ C2T
−α−1

∫

Rn

u0(x)ϕ
r
1(x)dx +

C1

m
T−α

∫

Rn

g(x) |u0|
m−1

(x)ϕr
1(x)dx

=

∫ T

0

∫

Rn

u(t, x)ϕr
1(x)D

α+2
t|T ϕ2(t)dtdx

−

∫ T

0

∫

Rn

u(t, x)
[

rϕr−1
1 ∆ϕ1 + r(r − 1)ϕr−2

1 |∇ϕ1|
2
]

(x).Dα
t|Tϕ2(t)dtdx

+
1

m

∫ T

0

∫

Rn

g(x) |u|m (x)ϕr
1(x)D

α+1
t|T ϕ2(t)dtdx.

The fact that ϕr
1 ≤ 1 and

∣

∣

∣
rϕr−1

1 ∆ϕ1 + r (r − 1)ϕr−2
1 |∇ϕ1|

2
∣

∣

∣
≤ ϕr−2

1

(

|∆ϕ1|+ |∇ϕ1|
2
)

,

allow us to get from the formula (4.17) the following inequality

(4.18)

∫ T

0

∫

Rn

|u|p ψ(t, x)dtdx + CT−α

∫

Rn

u1(x)ϕ
r
1(x)dx

+ CT−α−1

∫

Rn

u0(x)ϕ
r
1(x)dx + CT−α

∫

Rn

g(x) |u0|
m
(x)ϕr

1(x)dx

≤ C

∫ T

0

∫

Rn

|u(t, x)|ϕr
1(x)

∣

∣

∣Dα+2
t|T ϕ2(t)

∣

∣

∣ dtdx

+ C

∫ T

0

∫

Rn

|u(t, x)|ϕr−2
1

[

|∆ϕ1|+ |∇ϕ1|
2
] ∣

∣

∣Dα
t|Tϕ2(t)

∣

∣

∣ dtdx

+ C

∫ T

0

∫

Rn

|u|m g(x)ϕr
1(x)

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣ dtdx,

for some constant C > 0. Applying ε−Young inequality

AB ≤ εAp + C(ε)Bq, pq = p+ q, p, q > 1,
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to terms of the right-hand side of the inequality (4.18), we find

(4.19)

∫ T

0

∫

Rn

|u(t, x)|ϕr
1(x)

∣

∣

∣Dα+2
t|T ϕ2(t)

∣

∣

∣ dtdx =

∫ T

0

∫

Rn

u(t, x)ψ
1

pψ− 1

pϕr
1(x)

∣

∣

∣Dα+2
t|T ϕ2(t)

∣

∣

∣ dtdx

≤ ε

∫ T

0

∫

Rn

|u|
p
ψdtdx + C(ε)

∫ T

0

∫

Rn

ϕr
1ϕ

− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dtdx.

Similarly, we have

(4.20)

∫ T

0

∫

Rn

|u|ϕr−2
1

(

|∆ϕ1|+ |∇ϕ1|
2
) ∣

∣

∣Dα
t|Tϕ2

∣

∣

∣ dtdx ≤

ε

∫ T

0

∫

Rn

|u|
p
ψdtdx + C(ε)

∫ T

0

∫

Rn

µ (ϕ1)ϕ
r−2q
1 ϕ

− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx,

with µ (ϕ1) = |∆ϕ1|
q + |∇ϕ1|

2q . For the third term of the right-hand side, we get

(4.21)

∫ T

0

∫

Rn

|g| |u|
m
ϕr
1(x)

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣ dtdx =

∫ T

0

∫

Rn

|u|
m
ψ

m
p ψ−m

p |g|ϕr
1(x)

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣ dtdx

≤ ε

∫ T

0

∫

Rn

|u|
p
ψdtdx

+ C(ε)

∫ T

0

∫

Rn

ϕr
1 |ϕ2|

− m
p−m |g|

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣

p

p−m

dtdx.

Using (4.2) and the fact that

(4.22)

∫

Rn

ui(x)ϕ
r
1(x)dx > 0, i = 0, 1 and

∫

Rn

g(x) |u0|
m
(x)ϕr

1(x)dx > 0,

we deduce from (4.18), (4.19), (4.20) and (4.21), for ε small enough

(4.23)

∫ T

0

∫

Rn

|u|
p
ψ(t, x)dtdx ≤ C

(

∫ T

0

∫

Rn

ϕr
1ϕ

− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dtdx

+

∫ T

0

∫

Rn

µ (ϕ1)ϕ
r−2q
1 ϕ

− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx

+

∫ T

0

∫

Rn

ϕr
1 |ϕ2|

m
p−m |g|

∣

∣

∣
Dα+1

t|T ϕ2(t)
∣

∣

∣

p

p−m

dtdx

)

≤ C (I1 + I2 + I3) ,
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for some positive constant C. Now, to estimate the integrals I1, I2 and I3, at this
stage we consider the scaled variables

(4.24) x = T
θ
2 y and t = Tτ,

where θ is the parameter which appears in the form of ϕ1 (page 643) and noting
that I1, I2 and I3 are null outside ΩT such that

ΩT :=
{

x ∈ R
N , |x|

2
≤ 2T θ

}

= suppϕ1.

By Fubini’s theorem (Theorem 1.1.7 pp. 8 in [3]), it is easy to see that

∫ T

0

∫

ΩT

ϕr
1ϕ

− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dtdx =

(∫

ΩT

ϕr
1dx

)

(

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dt

)

= J11J12.

We have

(4.25) J11 =

∫

ΩT

ϕr
1(x)dx = T

Nθ
2

∫ 2

0

φr(y2)dy = CT
Nθ
2 ,

then using Proposition 4.1, we get

(4.26) J12 =

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dt = CT 1−(α+2) p

p−1 .

Combining (4.25) and (4.26) into (4.25) we obtain

(4.27)

∫ T

0

∫

ΩT

ϕr
1ϕ

− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dtdx = CT−(α+2) p

p−1
+Nθ

2
+1.

In the same way we have

(4.28)

∫ T

0

∫

ΩT

µ (ϕ1)ϕ
r−2q
1 ϕ

− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx =

(∫

ΩT

µ (ϕ1)ϕ
r−2q
1 dx

)

(

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dt

)

= J21J22.

So, if we replace q by its value p
p−1 we get

(4.29) J21 =

∫

ΩT

(

|∆ϕ1|
p

p−1 + |∇ϕ1|
2 p

p−1

)

ϕ
r−2 p

p−1

1 dx = CT−θ p

p−1
+Nθ

2 ,

and

(4.30) J22 =

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣
Dα

t|Tϕ2

∣

∣

∣

p
p−1

dt = CT−α p
p−1

+1.
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Plugging (4.29) and (4.30) into (4.28) we find

(4.31)

∫ T

0

∫

ΩT

µ (ϕ1)ϕ
r−2q
1 ϕ

− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx = CT−(α+θ) p

p−1
+Nθ

2
+1.

For the third term we have

(4.32)

∫ T

0

∫

ΩT

ϕr
1 |ϕ2|

− m
p−m |g|

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣

p

p−m

dtdx =

(∫

ΩT

|g|ϕr
1dx

)

(

∫ T

0

|ϕ2|
− m

p−m

∣

∣

∣
Dα+1

t|T ϕ2(t)
∣

∣

∣

p

p−m

dt

)

= J31J32.

By the mean value theorem, we get for J31

J31 ≤ |g(ξ)|

∫

ΩT

ϕr
1dx for some ξ ∈ ΩT

= T
Nθ
2 |g(ξ)|

∫ 2

0

φr(y2)dy = CT
Nθ
2 .(4.33)

Since g is bounded, we have

(4.34) J32 =

∫ T

0

|ϕ2|
− m

p−m

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣

p

p−m

dt = CT−(α+1) p

p−m
+1.

Hence inserting (4.33) and (4.34) in 4.32 we obtain

(4.35)

∫ T

0

∫

ΩT

ϕr
1 |ϕ2|

− m
p−m |g|

∣

∣Dα+1
tT ϕ2(t)

∣

∣

p
p−m dtdx = CT−(α+1) p

p−m
+1+Nθ

2 .

Finally, we replace (4.27),(4.31) and (4.35) into (4.23) we get

(4.36)

∫ T

0

∫

ΩT

|u|
p
ψ(t, x)dtdx ≤

C
(

T−(α+2) p

p−1
+Nθ

2
+1 + T−(α+θ) p

p−1
+Nθ

2
+1 + T−(α+1) p

p−m
+1+Nθ

2

)

.

Now, since θ is arbitrary and it must only be nonnegative, we choose it as

(4.37) θ =
(p− 1) (α+ 1)

p−m
− α > 0 since p > m.

This choice of θ allows us to have

(4.38) −(α+ θ)
p

p− 1
+
Nθ

2
+ 1 = −(α+ 1)

p

p−m
+ 1 +

Nθ

2
.

Then by (4.38) we get from (4.36)

(4.39)

∫ T

0

∫

ΩT

|u|
p
ψ(t, x)dtdx ≤ CT σ,
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where

σ = max

(

−(α+ 2)
p

p− 1
+
Nθ

2
+ 1,−(α+ 1)

p

p−m
+ 1 +

Nθ

2

)

.

Then we distinguish two principal cases:

Case 1: If σ ≤ 0

This case itself is divided into two subcases as follows:

1. i. Subcase of σ < 0
In this case we have −(α+ 2) p

p−1 +
Nθ
2 +1 < 0 and −(α+1) p

p−m +1+ Nθ
2 < 0, so

the condition −(α+ 2) p
p−1 + Nθ

2 + 1 < 0 implies

N < −
2p(α+ 1) + 2

(

(α+1)(p−1)
m−p + α

)

(p− 1)
,

and the condition −(α+ 1) p
p−m + 1 + Nθ

2 < 0 implies

N <
2 (αp+m)

α (m− 1) + (p− 1)
,

where we have replaced θ by its value. This means that

(4.40) N < min





2 (αp+m)

α (m− 1) + (p− 1)
,−

2p(α+ 1) + 2
(

(α+1)(p−1)
m−p + α

)

(p− 1)



 .

If we come back and replace α by its value 1− γ in (4.40) we get

(4.41) N < min





2 ((1− γ)p+m)

(1 − γ) (m− 1) + (p− 1)
,−

2p(2− γ) + 2
(

(2−γ)(p−1)
m−p + (1 − γ)

)

(p− 1)



 .

Then if the condition (4.40) (or equivalently 4.41) is satisfied, we pass to the limit
as T → +∞ in the formula (4.39) and we get

lim
T→+∞

∫ T

0

∫

ΩT

|u|
p
ψ(t, x)dtdx = 0.

Using the dominated convergence theorem of Lebesgue (Theorem 1.1.4 page 3 in
[3]), the continuity of u with respect to t and x and the fact that

(4.42) lim
T→+∞

ψ(t, x) = 1,

we get
∫ +∞

0

∫

RN

|u|p dtdx = 0,
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which implies that u ≡ 0 and this is a contradiction.

1. ii. Subcase of σ = 0.
Firstly, taking the limit as T → ∞ in (4.39) with the consideration σ = 0,

we see that
∫ +∞

0

∫

RN

|u|p dtdx < +∞.

This means that u ∈ Lp
(

(0,+∞);Lp(RN )
)

and from which we get

(4.43) lim
R→∞

∫ +∞

0

∫

∆R

|u|p ψdtdx = 0,

where

∆R :=
{

x ∈ R
N : Rθ < |x|2 ≤ 2Rθ

}

and θ is defined by (4.37).

Now fixing arbitrarily R in ]0, T [ for some T > 0 and taking in this time

ϕ1(x) = φ

(

|x|
2

T
θ
2R− θ

2

)

,

where φ is the function defined by (4.6). Using Hölder’s inequality

∫

X

uvdµ ≤

(∫

X

updµ

)
1

p
(∫

X

vqdµ

)
1

q

; u ∈ Lp(X), v ∈ Lq(X), p, q > 1, pq = p+q,

instead of the Young’s one to estimate the integral I2 in (4.23) on the set

ΩTR−1 :=
{

x ∈ R
N : |x|

2
≤ 2T θR−θ

}

= suppϕ1,

and noting that ∆TR−1 ⊂ ΩTR−1 and the support of ∆ϕ1 is contained in ∆TR−1

where

∆TR−1 :=
{

x ∈ R
N : (TR−1)θ < |x|2 ≤ 2(TR−1)θ

}

,

and θ is always given by (4.37), we get

(4.44)

∫ T

0

∫

Ω
TR−1

|u|ϕr−2
1

[

|∆ϕ1|
2
+ |∇ϕ1|

2
] ∣

∣

∣Dα
t|Tϕ2

∣

∣

∣ dtdx ≤

(

∫ T

0

∫

∆
TR−1

|u|p ψdtdx

)
1

p

×

(

∫ T

0

∫

∆
TR−1

ψ
q

pϕr−2q
1

(

|∆ϕ1|
q + |∇ϕ1|

2q
) ∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx

)
1

q

.
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Recalling the integrals I1, I3 in page (648) and Ĩ2 such that

Ĩ2 :=

(

∫ T

0

∫

∆
TR−1

ψ
q

pϕr−2q
1

(

|∆ϕ1|
q
+ |∇ϕ1|

2q
) ∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx

)
1

q

.

To estimate them, we use the scaled variables x = T
θ
2R− θ

2 y, and t = Tτ on the set
ΩTR−1 . We get firstly

(4.45) I1 + I3 ≤ C
(

T 1−(α+2) p

p−1
+N θ

2 + T 1−(α+1) p

p−m
+N θ

2

)

R−Nθ,

and using the hypothesis σ = 0 we obtain from (4.45)

(4.46) I1 + I3 ≤ CR−Nθ/2.

Computing the integral Ĩ2 using the same scaled variables and the same form of
the function ϕ1 and using (4.46) we get from (4.23)

(4.47)

∫ T

0

∫

Ω
TR−1

|u|
p
ψdtdx ≤ CR−Nθ/2

+ CRθ−Nθ
2q

(

∫ T

0

∫

∆
TR−1

|u|p ψdtdx

)
1

p

.

Now taking the limit as T → +∞ in (4.47), using (4.43) and (4.42) we get

∫ ∞

0

∫

RN

|u|
p
dtdx ≤ CR−Nθ/2,

which means that necessarily R → +∞. This contradicts our hypothesis. Noting
that condition σ = 0 is equivalent to

(4.48)

N =
2 ((1 − γ)p+m)

(1 − γ) (m− 1) + (p− 1)
or

N = −
2p(2− γ) + 2

(

(2−γ)(p−1)
m−p + (1− γ)

)

(p− 1)
.

Then by (4.41) and (4.48) we have

N ≤ min





2 ((1− γ)p+m)

(1 − γ) (m− 1) + (p− 1)
,−

2p(2− γ) + 2
(

(2−γ)(p−1)
m−p + (1 − γ)

)

(p− 1)



 .

The second main case is

Case 2: if p ≤ 1
γ .
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Even this case is divided into two subcases as follows:

2. i. Subcase of p < 1
γ .

In this case we recall (4.23) and we take ϕ1(x) = φ
(

|x|2

Rθ

)

where φ is the function

defined by (4.6) and R is a fixed positive number. Trying to estimate the integrals
I1, I2 and I3 (page(648)) with respect to x on the set

ΣR =
{

x ∈ R
N : |x| ≤ 2Rθ/2

}

= suppϕ1.

Using the scaled variables x = R
θ
2 y, t = Tτ for the first integral we find

(4.49)

∫ T

0

∫

ΣR

ϕr
1ϕ

− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p
p−1

dtdx =

(∫

ΣR

ϕr
1dx

)

(

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣Dα+2
t|T ϕ2

∣

∣

∣

p

p−1

dt

)

=

(

RNθ/2

∫ 1

0

φr(y2)dy

)

×

(

T 1−(α+2) p

p−1

∫ T

0

(1− τ)
− β

p−1
+(β−α−2) p

p−1 dτ

)

= CR
Nθ
2 T 1−(α+2) p

p−1 .

In the same way, we have

(4.50)

∫ T

0

∫

ΣR

µ (ϕ1)ϕ
r−2q
1 ϕ

− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dtdx =

(∫

ΣT

µ (ϕ1)ϕ
r−2q
1 dx

)

(

∫ T

0

ϕ
− 1

p−1

2

∣

∣

∣Dα
t|Tϕ2

∣

∣

∣

q

dt

)

= CR
Nθ
2

−θ p

p−1 T 1−α p

p−1 .

We deduce by using the mean value theorem that

(4.51)

∫ T

0

∫

ΣR

ϕr
1 |ϕ2|

− m
p−m |g|

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣

p

p−m

dtdx =

(∫

ΣT

|g|ϕr
1dx

)

(

∫ T

0

|ϕ2|
− m

p−m

∣

∣

∣Dα+1
t|T ϕ2(t)

∣

∣

∣

p

p−m

dt

)

= CR
Nθ
2 T 1−(α+1) p

p−m .

Using the formulas (4.49), (4.50) and (4.51) we arrive at

(4.52)

∫ T

0

∫

ΣR

|u|
p
ψ(t, x)dtdx = CR

Nθ
2

(

T 1−(α+2) p

p−1 + T 1−(α+1) p

p−m

)

+ CR(
N
2
− p

p−1
)θT 1−α p

p−1 .
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Firstly, passing to the limit in (4.52) as T → +∞ and using the fact that lim
T→+∞

ψ(t, x) =

1, we get

(4.53)

∫ +∞

0

∫

ΣR

|u|
p
dtdx = 0,

Secondly, taking the limit in (4.53) as R → +∞ we obtain

∫ +∞

0

∫

RN

|u|
p
dtdx = 0, whereupon u ≡ 0.

which is a contradiction.

2. ii. Subcase of p = 1
γ

In this case we further assume that

(4.54)
N

2
−

p

p− 1
< 0,

which is equivalent to α < 2
N or N−2

N < γ < 1 since α = 1 − γ. Under this
assumption, we have

(4.55)

1− (α+ 2)
p

p− 1
= −

2

α
< 0; 1− α

p

p− 1
= 0;

1− (α+ 1)
p

p−m
=
mα−m− α

mα−m+ 1
< 0.

Hence, passing to the limit as T → ∞ in (4.52) and the fact that (4.55) and
(4.42) are fulfilled, we obtain

(4.56)

∫ ∞

0

∫

ΣR

|u|p dtdx = CR(
N
2
− p

p−1
)θ.

Finally, passing to the limit as R→ ∞ in (4.56), using the condition (4.54) and
the fact that θ > 0, we get

∫ ∞

0

∫

RN

|u|p dtdx = 0, whereupon u ≡ 0.

This is exactly the desired contradiction. The proof of Theorem 4.1 is achieved.
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