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Ser. Math. Inform. Vol. 32, No 3 (2017), 303–318

DOI:10.22190/FUMI1703303E

ON THE SPACES OF λm-BOUNDED AND λm-ABSOLUTELY
p-SUMMABLE SEQUENCES
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Abstract. In this paper, we give the notion of λm-boundedness and p-absolute conver-
gence of type λm and using these notions we define new sequence spaces. We examine
some topological and geometric properties of these spaces. We also establish some
inclusion relations concerning these spaces and characterize some matrix classes.
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1. Introduction

By w, we shall denote the space of all real or complex valued sequences. Any
vector subspace of w is called a sequence space. A sequence space X is called
an FK-space if it is a complete linear metric space with continuous coordinates
τk : X → C defined by τk(x) = xk for all x = (xn) ∈ X and every k ∈ N, where
C denotes the complex field and N = {0, 1, 2, ...}. An FK-space whose topology is
normable is called a BK-space. [5]

The space ℓ∞ is BK-space with ‖x‖
∞

= supk |xk|. Also by ℓp (0 < p < ∞), we
denote the set of p-absolutely convergent series. ℓp is a complete p-normed space
and BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞ with the usual p-norm and
ℓp-norm defined by

‖x‖ℓp =
∞
∑

k=0

|xk|
p ; 0 < p < 1

and

‖x‖ℓp =

(

∞
∑

k=0

|xk|
p

)1/p

; 1 ≤ p < ∞,
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respectively [24].

A sequence (bk) in a normed space X is called a Schauder basis for X if for
every x ∈ X there is a unique sequence (αk) of scalars such that

lim
n→∞

∥

∥

∥

∥

∥

x−
n
∑

k=0

αkbk

∥

∥

∥

∥

∥

= 0

then (bk) is called Schauder basis (or briefly basis) for X .

Let X , Y be any two sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N. Then A defines a matrix mapping from X
into Y and it is denoted by writing A : X → Y if for every sequence x = (xk) ∈ X ,
the sequence Ax = ((Ax)n), the A−transform of x, is in Y, where

(1.1) (Ax)n =
∞
∑

k=0

ankxk

for all n ∈ N.

(X : Y ) denotes the class of all matrices A such that A : X → Y . Thus
A ∈ (X : Y ) if and only if the right side of (1.1) converges for each n ∈ N and every
x ∈ X, and Ax ∈ Y for all x ∈ X.

The matrix domain XA of an infinite matrix A in a sequence space X is defined
by

(1.2) XA = {x ∈ w : Ax ∈ X}

which is a sequence space.

For the sequence spaces X , Y we define the set S (X,Y ) by

(1.3) S (X,Y ) = {z = (zk) ∈ w : xz = (xkzk) ∈ Y for all x = (xk) ∈ X} .

By the notation of (1.3), the α−, β− and γ− duals of a sequence space X, which
are respectively denoted by Xα, Xβ and Xγ are defined by

Xα = S (X, ℓ1) , Xβ = S (X, cs) and Xγ = S (X, bs) .

In this paper, the collection of all nonempty and finite subsets of N is denoted
by F .

Definition 1.1. ([26]) A normed X space is called uniformly convex if for any
ε ∈ (0, 2] there exists δ = δ (ε) > 0 such that if x, y ∈ X with ‖x‖ = 1, ‖y‖ = 1 and
‖x− y‖ ≥ ε, then

∥

∥

1
2 (x+ y)

∥

∥ ≤ 1− δ.

Definition 1.2. ([9]) A Banach space is super-reflexive if it is isomorphic to a
Banach space that is uniformly convex.

The idea of constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by many authors in
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many research papers. For instance, the idea of the difference sequence spaces was
introduced by Kızmaz [12] as follows,

X (∆) = {x = (xk) ∈ w : (xk − xk+1) ∈ X}

where X = {ℓ∞, c, c0}. The space bvp, containing sequences (xk) such that
(xk − xk−1) is in the sequence space ℓp, was introduced in the case 0 < p < 1 by
Altay and Başar [6].

Aydın and Başar introduced the difference sequence spaces ar0 (∆) and arc (∆)
in [8]. Polat and Altay introduced er∞ (∆), erc (∆) , er0 (∆) sequence spaces in [13].
Malkowsky and Parashar using difference operator of order m studied

X
(

∆(m)
)

=
{

x = (xk) ∈ w : ∆(m)x ∈ X
}

sequence spaces where X = {c, c0, ℓ∞} in [10]. Polat and Başar defined er∞
(

∆(m)
)

,

erc
(

∆(m)
)

, er0
(

∆(m)
)

sequence spaces in [14].

Mursaleen and Noman [20] examined the notion of λ-convergence and they de-
fined spaces of λ-bounded λ-convergent and λ-null sequences, respectively, that is,

ℓλ∞ =

{

x ∈ w : sup
n

|Λn (x)| < ∞

}

cλ =
{

x ∈ w : lim
n→∞

Λn (x) exists
}

cλ0 =
{

x ∈ w : lim
n→∞

Λn (x) = 0
}

where Λn (x) =
1
λn

n
∑

k=0

(λk − λk−1)xk for n ∈ N. They also introduced the sequence

space ℓλp (0 < p < ∞) in [18] as follow;

ℓλp =

{

x ∈ w :

∞
∑

n=0

|Λn (x)|
p
< ∞

}

, (0 < p < ∞) .

Ganie and Sheikh defined sequence spaces c
(

∆λ
u

)

and c0
(

∆λ
u

)

in [2]. Candan

introduced cλ0 (B̃) and cλ(B̃) sequence spaces and studied some properties of these
spaces in [15]. Duyar et. al. introduced cλ0 (B̂), cλ(B̂), ℓλ∞(B̂), ℓλp(B̂) sequence

spaces where 1 ≤ p < ∞ in [25]. Bişgin and Sönmez defined cλ0 (G
m) and cλ (Gm)

sequence spaces in [17]. Braha and Başar defined the Aλ (ℓ∞) , Aλ (c) and Aλ (c0)
sequence spaces as follows;

Aλ(ℓ∞) =

{

x ∈ w : sup
n

|(Aλx)n| < ∞

}

,

Aλ(c) =
{

x ∈ w : ∃l ∈ C ∋ lim
n

(Aλx)n = l
}

,

Aλ(c0) =
{

x ∈ w : lim
n

(Aλx)n = 0
}
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where (Aλx)n = 1
∆λn

n
∑

k=0

(

∆2λk

)

xk for n ∈ N in [22].

Some other authors have constructed new sequence spaces by using the matrix
domain of an infinite matrix and have studied some topological properties. (see [7],
[16], [19])

2. The notion of λm-boundedness and p-absolute convergence of
type λm

In this section we give the definition of λm-boundedness and p-absolute convergence
of type λm. Let us consider the strictly increasing sequence λ = (λk) of positive
reals tending to infinity, that is

(2.1) lim
k→∞

λk = ∞ and λk+1 ≥ mλk

for k,m ∈ N and m ≥ 2. ∆m denotes the difference operator of order m, that is,

∆mλk =

m
∑

v=0

(−1)v
(

m
v

)

λk−v

for all k ∈ N. It follows from (2.1) that ∆mλk ≥ 0. We assume that any term with

a negative subscript is equal to naught. e.g. λ−1 = λ−2 = ... = λ−m = 0.

We call x = (xk) ∈ w is λm-bounded if sup
n

|Λm
n (x)| < ∞, where

(2.2) Λm
n (x) =

1

∆m−1λn

n
∑

k=0

(∆mλk)xk

for n ∈ N. Further, we say that
∑

k

xk is p-absolutely convergent of type λm if
∑

n
|Λm

n (x)|
p
< ∞, where 0 < p < ∞.

Now, let x ∈ ℓ∞ and we have a constant K > 0 such that |xk| ≤ K for all k ∈ N.
Then, we derive that

|Λm
n (x)| ≤

1

∆m−1λn

n
∑

k=0

(∆mλk) |xk|

≤
K

∆m−1λn

n
∑

k=0

(∆mλk)

= K.

This means x is λm-bounded. Hence we can give the following result.



On the Spaces of λm-bounded and λm-absolutely p-summable Sequences 307

Lemma 2.1 Every bounded sequence is λm-bounded.

Lemma 2.2 If

(2.3)
∆m−2λn

∆m−1λn
∈ ℓ∞

for n ∈ N and m ≥ 2 then every λm−1-bounded sequence is λm-bounded.

Proof. Let take x ∈ w is a λm−1-bounded sequence. If (2.3) holds for all n ∈ N

and m ≥ 2, then we have that

|Λm
n (x)| ≤

∆m−2λn

∆m−1λn

∣

∣Λm−1
n (x)

∣

∣+
∆m−2λn−1

∆m−1λn

∣

∣Λm−1
n−1 (x)

∣

∣ .

This means that λm−1-bounded sequence is also λm-bounded. As a result of
this theorem we have the following property.

Remark 2.3. If (2.3) holds, every λr-bounded sequence is λm-bounded while
0 < r < m for m,n ∈ N.

3. The spaces ℓp(λ
m) (0 < p < ∞) and ℓ∞(λm) of non-absolute type

In this section, we introduce the sequence space ℓp(λ
m) and ℓ∞(λm), where

0 < p < ∞ . We give some topological properties. ℓp(λ
m) and ℓ∞(λm) sequence

spaces as the of all sequences such that their Λm-transform is in the space ℓp and
ℓ∞, where 0 < p < ∞, i.e.,

ℓp(λ
m) = {x = (xk) ∈ w :

∞
∑

n=0

|Λm
n (x)|

p
< ∞}

and

ℓ∞(λm) = {x = (xk) ∈ w : sup
n

|Λm
n (x)| < ∞}

where Λm
n (x) = 1

∆m−1λn

n
∑

k=0

(∆mλk)xk. We can rewrite these spaces with the nota-

tion (1.2)

(3.1) ℓp(λ
m) = (ℓp)Λm and ℓ∞(λm) = (ℓ∞)Λm .

It is obvious by (3.1) that ℓp(λ
m) is a sequence space consisting of all sequences

which are p-absolutely convergent of type λm, where 0 < p < ∞.

Now we give the following theorem with the essential in the text.
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Theorem 3.1 The following statements hold: (i) If 0 < p < 1, then ℓp(λ
m) is a

complete p-normed space with the p-norm

(3.2) ‖x‖ℓp(λm) = ‖Λm(x)‖ℓp =
∑

n

|Λm
n (x)|

p
; (0 < p < 1).

(ii) If 1 ≤ p ≤ ∞, then ℓp(λ
m) is a BK-space with the norm

(3.3) ‖x‖ℓp(λm) =

(

∑

n

|Λm
n (x)|

p

)
1
p

; (1 ≤ p < ∞)

and

(3.4) ‖x‖ℓ∞(λm) = sup
n

|Λm
n (x)| .

Proof. The proof is trivial from (3.1) because of Theorem 4.3.12 in [3].

It can be easily checked that the absolute property does not hold for the space
ℓp(λ

m), that is, ‖|x|‖ℓp(λm) 6= ‖x‖ℓp(λm) for at least one sequence x in the space

ℓp(λ
m), where 0 < p ≤ ∞.

Theorem 3.2 ℓp(λ
m) ∼= ℓp is isometrically isomorphic to the space ℓp, that is

ℓp(λ
m) ∼= ℓp for 0 < p ≤ ∞.

Proof. Let define the transformation as T : ℓp(λ
m) → ℓp, Tx = Λm(x) ∈ ℓp for

x ∈ ℓp(λ
m). The linearity of T is trivial. Also, x = 0 whenever Tx = 0 hence T is

injective. Now let y = (yk) ∈ ℓp and define x = (xk) by

(3.5) xk =

k
∑

j=k−1

(−1)k−j∆
m−1λj

∆mλk
yj

for k ∈ N. From (2.2), we have

Λm
n (x) =

1

∆m−1λn

n
∑

k=0

(∆mλk)xk

=
1

∆m−1λn

n
∑

k=0

(∆mλk)

[

∆m−1λk

∆mλk
yk −

∆m−1λk−1

∆mλk
yk−1

]

=
1

∆λn

n
∑

k=0

[

(∆m−1λk)yk − (∆m−1λk−1)yk−1

]

= yn

for n ∈ N. Λm(x) = y and since y ∈ ℓp, we have Λm(x) ∈ ℓp. Hence x ∈ ℓp(λ
m),

Tx = y and T is surjective. Also for every x ∈ ℓp(λ
m), by (3.2) and (3.3) we have

(3.6) ‖Tx‖ℓp = ‖Λm(x)‖ℓp = ‖x‖ℓp(λm) .
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This means T is p-norm and norm preserving in the cases of 0 < p < 1 and
1 ≤ p ≤ ∞, respectively. Consequently, T is isometry.

Theorem 3.3 With the exception of the case p = 2, the space ℓp(λ
m) is not an

inner product space, hence it is not a Hilbert space for 1 ≤ p < ∞.

Proof. We know ℓ2(λ
m) is a BK-space with the norm ‖x‖ℓ2(λm) = ‖Λm(x)‖ℓ2 .

This norm can be obtained from an inner product,

‖x‖ℓ2(λm) = 〈x, x〉
1
2 = 〈Λm(x),Λm(x)〉

1
2

2

holds for x ∈ ℓ2(λ
m). Hence ℓ2(λ

m) is a Hilbert space. 〈., .〉2 denotes the inner
product on ℓ2.

Now, let us define the sequences u = (uk) and v = (vk) as follows:

u = (1, 1,−
∆m−1λ1

∆mλ2
, 0, 0, ...)

v = (1,−
∆m−1(λ1 + λ0)

∆mλ1
,
∆m−1λ1

∆mλ2
, 0, 0, ...).

We have
Λm(u) = (1, 1, 0, 0, ...)

and
Λm(v) = (1,−1, 0, 0, ...).

We also have

‖u+ v‖
2
ℓp(λm)+‖u− v‖

2
ℓp(λm) = 8 6= 4(22/p) = 2

(

‖u‖
2
ℓp(λm) + ‖v‖

2
ℓp(λm)

)

; (p 6= 2).

Hence the norm of the space ℓp(λ
m) does not provide the parallelogram equality.

This norm cannot be obtained from an inner product. Consequently, ℓp(λ
m) with

p 6= 2 is a Banach space but it is not a Hilbert space where 1 ≤ p < ∞.

We have that the domain of XA of an infinite triangle matrix A = (ank) in a
sequence space X has a basis if and only if X has a basis from Theorem 2.3 in [4].
Hence we have the following result:

Corollary 3.4 Let 0 < p < ∞ and define the sequence e
(k)
λm ∈ ℓp(λ

m) for fixed
k, n ∈ N by

(

e
(k)
λm

)

=

{

(−1)n−k ∆m−1λk

∆mλn
; k ≤ n ≤ k + 1,

0; otherwise.
(

e
(k)
λm

)

is a basis for the space ℓp(λ
m) and x ∈ ℓp(λ

m) has a unique representation

of the form
x =

∑

k

Λm
k (x)e

(k)
λm .
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4. Some inclusion relations

Theorem 4.1 If 0 < p < q < ∞, then the inclusion ℓp(λ
m) ⊂ ℓq(λ

m) strictly holds.

Proof. Let 0 < p < q < ∞. The inclusion ℓp(λ
m) ⊂ ℓq(λ

m) derived by ℓp ⊂ ℓq. To
prove that inclusion is strict we must find a sequence which is in ℓq(λ

m) but not in
ℓp(λ

m). Consider the sequence y = (yk) in terms of the sequence x for k ∈ N as
follow:

yk =
(∆m−1λk)xk − (∆m−1λk−1)xk−1

∆mλk
.

We have that

Λm
n (y) =

1

∆m−1λn

n
∑

k,=0

[

(∆m−1λk)xk − (∆m−1λk−1)xk−1

]

= xn

for n ∈ N. This shows Λm(y) = x and Λm(y) ∈ ℓq\ℓp. Hence, the sequence
y ∈ ℓq(λ

m) and y /∈ ℓp(λ
m). The proof is completed.

Now, let x ∈ w and n ≥ 1. Then from (2.2) we have

xn − Λm
n (x) =

1

∆m−1λn

n
∑

i=0

∆mλi (xn − xi)

=
1

∆m−1λn

n−1
∑

i=0

∆mλi (xn − xi)

=
1

∆m−1λn

n−1
∑

i=0

(∆mλi)

n
∑

k=i+1

(xk − xk−1)

=
1

∆m−1λn

n
∑

k=1

(xk − xk−1)

k−1
∑

i=0

(∆mλi)

=
1

∆m−1λn

n
∑

k=1

∆m−1λk−1 (xk − xk−1) .

Hence we have that

(4.1) xn − Λm
n (x) = Sn (x)

for n ∈ N. Here the sequence S (x) = (Sn (x)) is defined by

(4.2) S0 (x) = 0 and Sn (x) =
1

∆m−1λn

n
∑

k=1

(

∆m−1λk−1

)

(xk − xk−1) ; (n ≥ 1) .

We have that

Sn (x) =
∆m−1λn−1

∆mλn

[

Λm
n (x)− Λm

n−1 (x)
]
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for n ∈ N.

Theorem 4.2 The inclusion ℓp(λ
m) ⊂ ℓp holds if and only if S(x) ∈ ℓp for x ∈

ℓp(λ
m), where 0 < p ≤ ∞.

Proof. Firstly, we suppose ℓp(λ
m) ⊂ ℓp holds, where 0 < p ≤ ∞. Let take any

x = (xk) ∈ ℓp(λ
m). By the hypothesis x ∈ ℓp. From the equality given by (4.1) we

have
‖S(x)‖ℓp ≤ ‖x‖ℓp + ‖Λm(x)‖ℓp = ‖x‖ℓp + ‖x‖ℓp(λm) < ∞.

This shows that S(x) ∈ ℓp.

Conversely, let x ∈ ℓp(λ
m) where 0 < p < ∞. By the hypothesis that S(x) ∈ ℓp.

By (4.1) we have that

‖x‖ℓp ≤ ‖S(x)‖ℓp + ‖Λm(x)‖ℓp = ‖S(x)‖ℓp + ‖x‖ℓp(λm) < ∞.

Hence x ∈ ℓp and the inclusion ℓp(λ
m) ⊂ ℓp holds.

Theorem 4.3

(i) ℓp ∩ ℓp(λ
m) 6= ∅.

(ii) If the inclusion ℓp ⊂ ℓp(λ
m) holds, then 1

∆m−1λ ∈ ℓp for 0 < p < ∞.

Proof.

(i) We can give an example. (λ1−mλ0,−λ0, 0, ...) ∈ ℓp∩ ℓp(λ
m) for 0 < p < ∞.

(ii)We assume that ℓp ⊂ ℓp(λ
m) holds where 0 < p < ∞. Let x = e(0) =

(1, 0, 0, ...) ∈ ℓp. Then x ∈ ℓp(λ
m) and Λm(x) ∈ ℓp. Hence, we derive that

(∆mλ0)
p
∑

n

(

1

∆m−1λn

)p

=
∑

n

|Λm
n (x)|

p
< ∞.

This means 1
∆m−1λ ∈ ℓp.

Theorem 4.4 If ∆m−2λn

∆m−1λn
∈ ℓp for n ∈ N and m ≥ 2, the inclusion

ℓp(λ
m−1) ⊂ ℓp(λ

m) holds, where 0 < p < ∞.

Proof. It can be seen by using Minkowski inequality, so we omitted it.

The following remark can be obtained from Theorem 4.4 and Lemma 2.2.

Remark 4.5. If ∆m−2λn

∆m−1λn
∈ ℓp, then ℓp(λ

r) ⊂ ℓp(λ
m) holds while 0 < r < m for

m,n ∈ N where 0 < p ≤ ∞.

5. α−, β− and γ−dual of ℓp (λ
m)

In this section, we give the theorems determining the α-, β- and γ-duals of the
space ℓp (λ

m) where 0 < p < ∞. We begin the lemmas given in [21], which are
needed in the proof of the theorems 5.4-5.6.
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Lemma 5.1.

(i) A ∈ (ℓp : ℓ1) if and only if

sup
F∈F

∑

n

∣

∣

∣

∣

∣

∑

k∈F

ank

∣

∣

∣

∣

∣

q

< ∞

where 1 < p < ∞ and 1
p + 1

q = 1.

(ii) A ∈ (ℓ1 : ℓ1) if and only if

sup
k

∑

n

|ank| < ∞.

Lemma 5.2.

(i) A ∈ (ℓp : c) if and only if

(5.1) lim
n→∞

ank exists

and

(5.2) sup
n

∑

k

|ank|
q
< ∞

for all k ∈ N, where 1 < p < ∞ and 1
p + 1

q = 1.

(ii) A ∈ (ℓ1 : c) if and only if (5.1) and

(5.3) sup
n,k

|ank| < ∞.

Lemma 5.3.

(i) A ∈ (ℓp : ℓ∞) if and only if (5.2), where 1 < p < ∞.

(ii) A ∈ (ℓp : ℓ∞) if and only if (5.3), where p = 1.

Theorem 5.4. Define the sets B (q) and C

B (q) =

{

a = (an) ∈ w :
∑

k

∣

∣

∣

∣

∆m−1λk

∆mλk
ak

∣

∣

∣

∣

q

< ∞

}

C =

{

a = (an) ∈ w : sup
k

∣

∣

∣

∣

∆m−1λk

∆mλk
ak

∣

∣

∣

∣

< ∞

}

.

Then {ℓp (λ
m)}

α
= B (q) and {ℓ1 (λ

m)}
α
= C.
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Proof. Let a = (an) ∈ w and 1 < p < ∞. We define the matrix B = (bnk) by

bnk =

{

(−1)
n−k ∆m−1λk

∆mλn
an; n− 1 ≤ k ≤ n

0; k < n− 1 or k > n

and from (3.5) we have

(5.4) anxn =

n
∑

k=n−1

(−1)
n−k ∆m−1λk

∆mλn
anyk = (By)n .

Thus, we observe by (5.4) that ax = (anxn) ∈ ℓ1 whenever x = (xk) ∈ ℓp (λ
m) if

and only if By ∈ ℓ1 whenever y = (yk) ∈ ℓp. This means that a = (ak) ∈ {ℓp (λ
m)}

α

if and only if B ∈ (ℓp : ℓ1). We obtain from Lemma 5.1 a ∈ {ℓp (λ
m)}

α
if and only

if

(5.5) sup
F∈F

∑

k

∣

∣

∣

∣

∣

∑

n∈F

bnk

∣

∣

∣

∣

∣

q

< ∞.

On the other hand, for F ∈ F we have that

∑

n∈F

bnk =























0; k /∈ F and k + 1 /∈ F
∆m−1λk

∆mλk
ak; k ∈ F and k + 1 /∈ F

−∆m−1λk

∆mλk+1
ak+1; k /∈ F and k + 1 ∈ F

(

ak

∆mλk
−

ak+1

∆mλk+1

)

(

∆m−1λk

)

; k ∈ F and k + 1 ∈ F

.

Hence, we deduce that (5.4) holds if and only if

∑

k

∣

∣

∣

∣

∆m−1λk

∆mλk

∣

∣

∣

∣

q

< ∞.

This leads us to the consequence that {ℓp (λ
m)}α = B (q), where 1 < p < ∞.

Similarly, we have from (5.5) that a = (ak) ∈ {ℓ1 (λ
m)}

α
if and only if

B ∈ (ℓ1 : ℓ1) which can equivalently be written as

(5.6) sup
k

∑

n

|bnk| < ∞.

Also we have that
∑

n

|bnk| =

k+1
∑

n=k

∣

∣

∣

∣

∆m−1λk

∆mλn
an

∣

∣

∣

∣

for k ∈ N. Thus, we conclude that (5.6) holds if and only if

sup
k

∣

∣

∣

∣

∆m−1λk

∆mλk
ak

∣

∣

∣

∣

< ∞.
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This shows that {ℓ1 (λ
m)}

α
= C and this completes the proof.

Theorem 5.5. Define the set

H (q) =

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

∆̄

(

ak
∆mλk

)

(

∆m−1λk

)

∣

∣

∣

∣

q

< ∞

}

where

∆̄

(

ak
∆mλk

)

=
ak

∆mλk
−

ak+1

∆mλk+1
.

Then {ℓp (λ
m)}

β
= C ∩H (q) for 1 < p < ∞ and {ℓ1 (λ

m)}
β
= C.

Proof. Let us consider the equation

n
∑

k=0

akxk =

n
∑

k=0

ak





k
∑

j=k−1

(−1)
k−j ∆

m−1λj

∆mλk
yj





=
n−1
∑

k=0

(

∆m−1λk

)

∆̄

(

ak
∆mλk

)

yk +
∆m−1λn

∆mλn
anyn

= (Ty)n

where n ∈ N and T = (tnk) is the matrix defined by

tnk =











∆̄
(

ak

∆mλk

)

(

∆m−1λk

)

, k < n

∆m−1λn

∆mλn
an, k = n

0, k > n.

It can clearly be seen that the columns of the matrix T belong to space c, since

lim
n

tnk = ∆̄

(

ak
∆mλk

)

(

∆m−1λk

)

for all k ∈ N. Hence we deduce from the first equality given above in the proof
with Lemma 5.2 that ax = (akxk) ∈ cs whenever x = (xk) ∈ ℓp (λ

m) if and only if

Ty ∈ c whenever y = (yk) ∈ ℓp. This yields that a = (ak) ∈ {ℓp (λ
m)}

β
if and only

if T ∈ (ℓp : c), where 1 ≤ p < ∞. Firstly, we prove for 1 < p < ∞. We have from
(5.2) that

∑

k

∣

∣

∣

∣

∆̄

(

ak
∆mλk

)

(

∆m−1λk

)

∣

∣

∣

∣

q

< ∞

and

(5.7) sup
n

∣

∣

∣

∣

∆m−1λn

∆mλn
an

∣

∣

∣

∣

< ∞.
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This leads us to the consequence that {ℓp (λ
m)}

β
= C ∩H (q).

Then for p = 1, from (5.3), we have that (5.7) and

(5.8) sup
k

∣

∣

∣

∣

∆̄

(

ak
∆mλk

)

∆m−1λk

∣

∣

∣

∣

< ∞

hold. But the condition (5.8) is redundant, since it is clearly seen from (5.7). Hence

{ℓ1 (λ
m)}

β
= C.

Theorem 5.6. {ℓ1 (λ
m)}

γ
= C and {ℓp (λ

m)}
γ
= C ∩H (q), where 1 < p < ∞.

Proof. This can be proved similarly to the proof of Theorem 5.5 with Lemma 5.3
instead of Lemma 5.2.

6. Some matrix mappings

In this section, we give some results which characterize various matrix trans-
formations between the sequence space ℓp (λ

m) and sequence spaces ℓ∞, c, c0, ℓp
where 1 ≤ p < ∞. For any infinite matrix A = (ank), we shall write for brevity
reasons that

ãnk =
(

∆m−1λk

)

∆̄

(

ank
∆mλk

)

=
(

∆m−1λk

)

(

ank
∆mλk

−
an,k+1

∆mλk+1

)

for all k, n ∈N. Further, let x, y ∈ w be connected by the relation y = Λm(x). Then,

we have by equality given in the proof of Theorem 5.5 that

l
∑

k=0

ankxk =

l−1
∑

k=0

ãnkyk +
∆m−1λl

∆mλl
anlyl

for l, n ∈ N. Now we consider the following conditions:

(6.1)

(

∆m−1λk

∆mλk
ank

)∞

k=0

∈ ℓ∞,

(6.2) sup
n,k

|ãnk| < ∞,

(6.3) sup
n

∑

k

|ãnk|
q
< ∞,

(6.4) lim
n

ãnk = αk for every k ∈ N,

(6.5) lim
n

ãnk = 0 for every k ∈ N,
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(6.6) sup
k

∑

n

|ãnk|
p
< ∞.

By Theorem 5.5 with the results by Stieglitz and Tietz [21], we get the following
result from the above conditions.

Teorem 6.1.

(i) A = (ank) ∈ (ℓ1 (λ
m) , ℓ∞) if and only if (6.1) and (6.2).

(ii) A = (ank) ∈ (ℓp (λ
m) , ℓ∞) if and only if (6.1) and (6.3), where

1 < p < ∞.

(iii) A = (ank) ∈ (ℓp (λ
m) , c) if and only if (6.1), (6.3) and (6.4), where

1 < p < ∞.

(iv) A = (ank) ∈ (ℓ1 (λ
m) , c) if and only if (6.1), (6.2) and (6.4).

(v) A = (ank) ∈ (ℓ1 (λ
m) , c0) if and only if (6.1), (6.2) and (6.5).

(vi) A = (ank) ∈ (ℓp (λ
m) , c0) if and only if (6.1), (6.3) and (6.5), where

1 < p < ∞.

(vii) A = (ank) ∈ (ℓ1 (λ
m) , ℓp) if and only if (6.1) and (6.6), where 1 ≤ p < ∞.

7. Some geometric properties

Theorem 7.1. ℓ1 (λ
m) is not uniformly convex.

Proof. Let take x, y ∈ ℓ1 (λ
m) and define such as

x =

(

1,
λ0

∆m−1 (λ0 − λ1)
, 0, ...

)

and

y =

(

0,
∆m−1λ1

∆m−1 (λ0 − λ1)
,
∆m−1λ1

∆mλ2
, 0, ...

)

.

Then ‖x‖ℓ1(λm) = ‖y‖ℓ1(λm) = 1, ‖x− y‖ℓ1(λm) = 2 > ε and
∥

∥

1
2 (x+ y)

∥

∥

ℓ1(λm)
= 1.

Hence ℓ1 (λ
m) is not uniformly convex.

Corollary 7.2. ℓ2 (λ
m) is uniformly convex and reflexive.

Proof. ℓ2 (λ
m) is a Hilbert space hence we have from Proposition 7.1.1 in [26] that

ℓ2 (λ
m) is uniformly convex and from Theorem 5.5.1 given in [26] it is reflexive.

Corollary 7.3. ℓp (λ
m) is super-reflexive, where 1 < p < ∞.

Proof. We have from Theorem 3.2 that ℓp (λ
m) is isomorphic to ℓp and it is well

known that ℓp is uniformly convex in [1], where 1 < p < ∞. Hence by Definition
1.2 we have the desired result.
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17. M. C. Bişgin, A. Sönmez, Two new sequence spaces generated by the composi-
tion of mth order generalized difference matrix, J. Inequal. Appl. 2014, 2014:274,
20 pp.

18. M. Mursaleen, A. K. Noman, On some new sequence spaces of non-absolute
type related to the spaces ℓp and ℓ∞ I, Filomat 25 (2011), no. 2, 33–51.

19. M. Mursaleen, A. K. Noman, On some new sequence spaces of non-absolute
type related to the spaces ℓp and ℓ∞ II, Math. Commun., 16 (2011), no. 2, 383–
398.



318 S. Ercan and Ç. A. Bektaş
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