
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The main purpose of this paper is to construct some difference sequence
spaces over the geometric complex numbers for an infinite matrix and Museilak-Orlicz
function. We also make an effort to study some inclusion relations, topological and
geometric properties of these spaces. An endeavor has been made to prove that these
are Banach spaces. Furthermore, we compute the α-, β-, γ-dual of these spaces.
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1. Introduction and Preliminaries

In the period from 1967 to 1972, Grossman and Katz [17] introduced the non-
Newtonian calculus consisting of the branches of geometric, bigeometric, quadratic,
biquadratic calculus and so forth. Also, Grossman in [18] extended this notion to
other fields. All these calculi can be described simultaneously within the framework
of general theory. We prefer to use the name non-Newtonian to indicate any of the
calculi other than the classical calculus. Every property in classical calculus has
an analogue in non-Newtonian calculus which is a methodology that allows one to
have a different look at problems which can be investigated via calculus. In some
cases, for example, for wage-rate (in dollars, euro, etc.) related problems, the use
of bigeometric calculus which is a kind of non-Newtonian calculus is advocated in-
stead of the traditional Newtonian one. Bashirov et al. [3] have recently focused
on non-Newtonian calculus and gave the results with applications corresponding to
the well-known properties of derivatives and integrals in classical calculus. Some
authors have also worked on classical sequence spaces and related topics by using
non-Newtonian calculus ([6], [29]).
Geometric calculus is an alternative to the usual calculus by Newton and Leibniz.
It provides differentiation and integration tools based on multiplication instead of
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addition. Every property in Newtonian calculus has an analog in multiplicative
calculus.
Kórus [11] studied some recent results concerning Λ2-strong convergence of numer-
ical sequences. He gave a new appropriate definition for the Λ2-strong convergence.
Moreover, Kórus [12] generalized the results on the L1-convergence of Fourier se-
ries. In [13], he also studied the uniform convergence of mearurable functions by
extended results of Móricz and gave examples for appropriate functions. Recently,
Raj and Sharma [26] used the idea of Kórus [11] and study some applications of
strongly convergent sequences to Fourier series by means of modulus function.
Let w, l∞, c and c0 be the classical sequence spaces of all, bounded, convergent
and null sequences respectively, normed by ‖x‖∞ = sup

k

|xk| and C(G) be the set of

geometric complex numbers [30].

The notion of difference sequence spaces was introduced by Kızmaz [19], who stud-
ied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further
generalized by Et and Çolak [16] by introducing the spaces l∞(∆m), c(∆m) and
c0(∆

m). Later the concept have been studied by Bektaş et al. [3] and Et et al. [15].
Another type of generalization of the difference sequence spaces is due to Tripathy
and Esi [32] who studied the spaces l∞(∆n), c(∆n) and c0(∆n). Recently, Esi et
al. [8] and Tripathy et al. [31] have introduced a new type of generalized difference
operators and unified those as follows.
Let n, m be non-negative integers, then for Z a given sequence space, we have

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z}

for Z = c, c0 and l∞ where ∆m
n x = (∆mnkxk) = (∆m

n xk) = (∆m−1
n xk−∆m−1

n xk+1)
and (∆0

nxk) = (nkxk) = (xk) for all k ∈ N, which is equivalent to the following
binomial representation

∆m
n xk =

m
∑

v=0

(−1)v
(

m
v

)

xk+nv .

Taking n = 1, we get the spaces l∞(∆m), c(∆m) and c0(∆
m) studied by Et and

Çolak [16]. Taking m = n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) introduced
and studied by Kızmaz [19].

Türkmen and Başar [30] defined the geometric complex numbers C(G) as follows:

C(G) = {ez : z ∈ C} = C \ {0}.

Then (C(G),⊕,⊙) is a field with geometric zero 1 and geometric identity exponential
e. They have also proved w(G) = {(xk) : xk ∈ C(G) for all k ∈ N} is a vector space
over C(G) with the algebric operations ⊕ addition and ⊙ multiplication

⊕ : w(G) × w(G) → w(G)

(x, y) → x⊕ y = (xk)⊕ (yk) = (xkyk)
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⊙ : C(G)× w(G) → w(G)

(α, y) → α⊙ y = α⊙ (yk) = (αln yk),

where x = (xk), y = (yk) ∈ w(G) and α ∈ C(G). Further, these results have been
generalized and studied by K. Boruah and et.al [5].

Lemma 1.1. [30] (Triangle inequality) Let x, y ∈ C(G). Then

|x⊕ y|G ≤ |x|G ⊕ |y|G.(1.1)

Lemma 1.2. [30] (Minkowski’s inequality) Let p ≥ 1 and ak, bk ∈ C(G) with
ak = eck , bk = edk for k ∈ {1, 2, ..., n}. Then

(1.2) p

√

√

√

√

G

n
∑

k=1

|ak ⊕ bk|
pG

G

G

≤ p

√

√

√

√

G

n
∑

k=1

|ak|
pG

G

G

⊕ p

√

√

√

√

G

n
∑

k=1

|bk|
pG

G

G

.

Let A = (ank) be an infinite matrix of real numbers and x = (xk) ∈ ω be an infinite
sequence. Then we obtain the sequence (Ax)n, denoted by A-transform of x, as

Ax =

















a11 a12 ... a1k ...
a21 a22 ... a2k ...
...

... ...
... ...

an1 an2 ... ank ...
...

... ...
...

...

































x1

x2

...
xk

...

















=

















a11x1 + a12x2 + a13x3 + ...
a21x1 + a22x2 + a23x3 + ...

...
an1x1 + an2x2 + an3x3 + ...

...

































(Ax)1
(Ax)2

...
(Ax)n

...

















In this case, we transform the sequence x into the sequence Ax = {(Ax)n} with

(1.3) (Ax)n =

∞
∑

k=1

ankxk (n ∈ N)

provided the series on the right hand side of (1.3) converges for each n.
Let X and Y be any two sequence spaces. If Ax exists and is in Y for every sequence
x = (xk) ∈ X , then we say that A defines a matrix transformation from X into Y ,
that is, A : X → Y . By (X : Y ), we denote the class of all matrices A from X into
Y .
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Definition 1.1. An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-
decreasing and convex such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞
as x −→ ∞. If convexity of Orlicz function is replaced by M(x+y) ≤ M(x)+M(y),
then this function is called modulus function. Lindenstrauss and Tzafriri [10] used
the idea of Orlicz function to define the following sequence space,

ℓM =
{

x = (xk) ∈ w :

∞
∑

k=1

M
( |xk|

ρ

)

< ∞, for some ρ > 0
}

is known as an Orlicz sequence space. The space ℓM is a Banach space with the
norm

||x|| = inf
{

ρ > 0 :

∞
∑

k=1

M
( |xk|

ρ

)

≤ 1
}

.

Also it was shown in [10] that every Orlicz sequence space ℓM contains a subspace
isomorphic to ℓp(p ≥ 1). An Orlicz function M can always be represented in the
following integral form

M(x) =

∫ x

0

η(t)dt,

where η is known as the kernel of M, is a right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞. For more details (see [7],
[22], [23], [25], [27], [28]) and references therein.

Definition 1.2. A sequence M = (Mk) of Orlicz functions is said to be Musielak-
Orlicz function (see [20, 24]). A Musielak-Orlicz function M = (Mk) is said to
satisfy ∆2-condition if there exist constants a, K > 0 and a sequence c = (ck)

∞
k=1 ∈

l1+ (the positive cone of l1) such that the inequality

Mk(2u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+, whenever Mk(u) ≤ a.

Definition 1.3. Let X be a linear space. A function p : X → R is called para-
norm, if
(PN1) p(x) ≥ 0 for all x ∈ X ,
(PN2) p(−x) = p(x) for all x ∈ X ,
(PN3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X ,
(PN4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a se-
quence of vectors with p(xn−x) → 0 as n → ∞, then p(λnxn−λx) → 0 as n → ∞.
A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space. It is well known that the metric of any lin-
ear metric space is given by some total paranorm (see [33] Theorem 10.4.2, pp. 183).

Let w(G) denote the set of all sequences over the geometric complex field C(G).
Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a sequence of strictly
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positive real numbers and p = (pk) be a bounded sequence of positive real numbers.
In present paper we define the following classes of sequences:

l∞[G,G∆
m
n , A,M, p, u] =

{

x = (xk) ∈ w(G) : sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

< ∞, for some ρ > 0
}

,

c[G,G∆
m
n , A,M, p, u] =

{

x=(xk) ∈ w(G) : G lim
k→∞

ank

[

Mk

( |ukG∆
m
n xk ⊖ l|G
ρ

)]pk

=1, for some l and ρ > 0
}

,

c0[G,G∆
m
n , A,M, p, u] =

{

x=(xk) ∈ w(G) : G lim
k→∞

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

=1, for some ρ > 0
}

,

where m,n ∈ N and

G∆
0
nx = (G∆

0
nxk) = (xk)

G∆nx = (G∆nxk) = (xk ⊖ xk+1)

G∆
2
nx = (G∆

2
nxk) = (G∆nxk ⊖ G∆nxk+1)

= (xk ⊖ xk+1 ⊖ xk+1 ⊕ xk+2)

= (xk ⊖ e2 ⊙ xk+1 ⊕ xk+2)

G∆
3
nx = (G∆

3
nxk) = (G∆

2
nxk ⊖ G∆

2
nxk+1)

= (xk ⊖ e3 ⊙ xk+1 ⊕ e3 ⊙ xk+2 ⊖ xk+3)

....... ...................................................................

G∆
m
n x = (G∆

m
n xk) = (G∆

m−1
n xk ⊖ G∆

m−1
n xk+1)

=
(

G

m
∑

v=0

(⊖e)vG ⊙ e(
m
v ) ⊙ xk+nv

)

, with (⊖e)0G = e.

IfM = Mk(x) = x for all k ∈ N, then above sequence spaces reduces to l∞[G,G∆
m
n , A, p, u],

c[G,G∆
m
n , A, p, u] and c0[G,G∆

m
n , A, p, u].

By taking p = (pk) = 1, for all k then we get the sequence spaces l∞[G,G∆
m
n , A,M, u],

c[G,G∆
m
n , A,M, u] and c0[G,G∆

m
n , A,M, u].

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H ,
K = max(1, 2H−1) then

(1.4) |ak ⊕ bk|
pk

G ≤ K{|ak|
pk

G ⊕ |bk|
pk

G }

for all k and ak, bk ∈ C(G). Also |a|pk

G ≤ max(1, |a|HG ) for all a ∈ C(G).
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In this paper, we first give a description of some new difference sequence spaces
for an infinite matrix and Musielak-Orlicz function over the geometric complex
field which forms a Banach space with the norm defined on it. We investigate some
topological properties of these sequence spaces and establish some inclusion rela-
tions concerning these spaces. Furthermore, we devote the final section of the paper
to compute their algebraic duals such as the α−, β−, γ-duals.

2. Main Results

In this section we study some topological properties and some inclusion relations
between the sequence spaces which we have defined above.

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a
sequence of strictly positive real numbers and p = (pk) be a bounded sequence
of positive real numbers. Then l∞[G,G∆

m
n , A,M, p, u], c[G,G∆

m
n , A,M, p, u] and

c0[G,G∆
m
n , A,M, p, u] are linear spaces over the field C(G) of geometric complex

numbers.

Proof. We shall prove the assertion for l∞[G,G∆
m
n , A,M, p, u] only and the others

can be proved similarly. Let x = (xk) and y = (yk) ∈ l∞[G,G∆
m
n , A,M, p, u] and

α, β ∈ C(G). Then there exist positive numbers ρ1 and ρ2 such that

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

< ∞, for some ρ1 > 0

and

sup
k∈N

ank

[

Mk

( |ukG∆
m
n yk|G

ρ2

)]pk

< ∞, for some ρ2 > 0.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mk) is a non-decreasing and convex so
by using inequality (1.4), we have

sup
k∈N

ank

[

Mk

( |ukG∆
m
n (αxk ⊕ βyk)|G

ρ3

)]pk

= sup
k∈N

ank

[

Mk

( |ukG∆
m
n αxk|G
ρ3

)

⊕Mk

( |ukG∆
m
n βyk|G
ρ3

)]pk

≤ K sup
k∈N

1

2pk
ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

⊕K sup
k∈N

1

2pk
ank

[

Mk

( |ukG∆
m
n yk|G

ρ2

)]pk

≤ K sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

⊕K sup
k∈N

ank

[

Mk

( |ukG∆
m
n yk|G

ρ2

)]pk

< ∞.

Therefore, (αx ⊕ βy) ∈ l∞[G,G∆
m
n , A,M, p, u]. This proves that

l∞[G,G∆
m
n , A,M, p, u] is a linear space. Similarly, we can prove that

c[G,G∆
m
n , A,M, p, u] and c0[G,G∆

m
n , A,M, p, u] are linear spaces.
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Theorem 2.2. Let M = (Mk) be a Musielak-Orlicz function, u = (uk) be a
sequence of strictly positive real numbers and p = (pk) be a bounded sequence of
positive real numbers. Then l∞[G,G∆

m
n , A,M, p, u] is a paranormed space with

paranormed defined by

g(x)=inf

{

(ρ)(pk⊘M)G :
(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
)(1⊘M)G

≤ 1, for some ρ>0

}

,

where 0 < pk ≤ sup pk = H < ∞ and M = max(1, H).

Proof. (i) Clearly g(x) ≥ 0 for x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u]. SinceMk(0) = 0,

we get g(0) = 0.
(ii) g(−x) = g(x).
(iii) Let x = (xk) and y = (yk) ∈ l∞[G,G∆

m
n , A,M, p, u], then there exist positive

numbers ρ1 and ρ2 such that

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

≤ 1

and

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ2

)]pk

≤ 1.

Let ρ = ρ1 + ρ2. Then by using Minkowski’s inequality (1.2), we have

sup
k∈N

ank

[

Mk

( |ukG∆
m
n (xk ⊕ yk)|G

ρ

)]pk

= sup
k∈N

ank

[

Mk

( |ukG∆
m
n (xk ⊕ yk)|G
ρ1 + ρ2

)]pk

≤ sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1 + ρ2

)]pk

⊕ sup
k∈N

ank

[

Mk

( |ukG∆
m
n yk|G

ρ1 + ρ2

)]pk

≤
( ρ1
ρ1 + ρ2

)

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

⊕
( ρ2
ρ1 + ρ2

)

sup
k∈N

ank

[

Mk

( |ukG∆
m
n yk|G

ρ2

)]pk

≤ 1

and thus,

g(x⊕ y) = inf
{

(ρ)(pk⊘M)G :
(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n (xk ⊕ yk)|G

ρ

)]pk
)(1⊘M)G

≤ 1
}

≤ inf
{

(ρ1)
(pk⊘M)G :

(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk
)(1⊘M)G

≤ 1
}

⊕ inf
{

(ρ2)
(pk⊘M)G :

(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n yk|G

ρ2

)]pk
)(1⊘M)G

≤ 1
}

.
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Therefore, g(x ⊕ y) ≤ g(x) ⊕ g(y). Finally, we prove that the scalar multiplication
is continuous. Let λ be any geometric complex number. By definition,

g(λ⊙ x) = inf
{

(ρ)(pk⊘M)G :
(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n (λ⊙ xk)|G
ρ

)]pk
)(1⊘M)G

≤ 1
}

= inf
{

(|λ|t)(pk⊘M)G :
(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
)(1⊘M)G

≤ 1
}

where t = ρ
|λ|G

> 0. Since |λ|pk

G ≤ max(1, |λ|sup pk

G ), we have

g(λ⊙x) ≤ max(1, |λ|sup pk

G ) inf
{

t(pk⊘M)G :
(

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
)(1⊘M)G

≤ 1
}

.

So, the fact that the scalar multiplication is continuous follows from the above
inequality. This completes the proof of the theorem.

Theorem 2.3. If 0 < pk < qk < ∞ for each k, then we have l∞[G,G∆
m
n , A,M, p, u] ⊂

l∞[G,G∆
m
n , A,M, q, u].

Proof. Let x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u]. Then there exists ρ > 0 such that

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

< ∞,

This implies that ank

[

Mk

(

|ukG∆m
n xk|G
ρ

)]pk

< 1 for sufficiently large values of k.

Since Mk is non-decreasing, we get

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]qk
≤ sup

k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

< ∞.

Thus, x = (xk) ∈ l∞[G,G∆
m
n , A,M, q, u]. This completes the proof.

Theorem 2.4. Suppose M = (Mk) be a Musielak-Orlicz function, u = (uk) be
a sequence of strictly positive real numbers and p = (pk) be a bounded sequence of
positive real numbers. Then the following inclusions hold:
(i) If 0 < inf pk ≤ pk ≤ 1 then l∞[G,G∆

m
n , A,M, p, u] ⊂ l∞[G,G∆

m
n , A,M, u],

(ii) If 1 < pk ≤ sup pk < ∞ then l∞[G,G∆
m
n , A,M, u] ⊂ l∞[G,G∆

m
n , A,M, p, u].

Proof. (i) Let x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u]. Since 0 < inf pk ≤ pk ≤ 1, we

obtain the following

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]

≤ sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G)

ρ

)]pk

< ∞,

and hence, x = (xk) ∈ l∞[G,G∆
m
n , A,M, u].

(ii) Let pk ≥ 1 for each k and sup pk < ∞. Let x = (xk) ∈ l∞[G,G∆
m
n , A,M, u].

Then for each 0 < ǫ < 1 there exists a positive integer N such that

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]

≤ ǫ < 1 for all k ∈ N.
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This implies that

sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

≤ sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]

< ∞.

Therefore, x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u] . This completes the proof.

Theorem 2.5. If 0 < h = inf pk ≤ pk ≤ sup pk = H < ∞. Let M = (Mk) and
M′ = (M ′

k) be two Musielak-Orlicz functions satisfying ∆2-condition, then we have

l∞(G,G∆
m
n , A,M′, p, u) ⊂ l∞(G,G∆

m
n , A,MoM′, p, u).

Proof. Let x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u]. Then we have,

sup
k∈N

ank

[

M ′
k

( |ukG∆
m
n xk|G
ρ

)]pk

< ∞, for some ρ > 0

Let ǫ > 0 and choose δ > 0 with 0 < δ < 1 such that Mk(t) < ǫ for 0 ≤ t ≤ δ. Then

Let yk = ank

[

M ′
k

(

|ukG∆m
n xk|G
ρ

)]

for all k ∈ N and consider

G

∑

k

[Mk(yk)]
pk =

G

∑

1

[Mk(yk)]
pk +

G

∑

2

[Mk(yk)]
pk ,

where the first summation is over yk ≤ δ and second summation is over yk > δ.
Since M = (Mk) continuous, so we have

(2.1)
G

∑

1

[Mk(yk)]
pk < ǫH

and for yk > δ, we use the fact that yk < yk

δ
≤ 1 + yk

δ
.

By the definition, we have for yk > δ

Mk(yk) < 2Mk(1)
yk
δ

Hence

(2.2)
G

∑

2

[Mk(yk)]
pk ≤ max(1, (2Mk(1)δ

−1))
G

∑

k

[yk]
pk .

From equation (2.1) and (2.2), we have

l∞[G,G∆
m
n , A,M′, p, u, ] ⊂ l∞[G,G∆

m
n , A,MoM′, p, u].

Theorem 2.6. Let M = (Mk) be a Musielak-Orlicz function and β = lim
t→∞

Mk(t)

t
>

0. Then l∞[G,G∆
m
n , A,M, p, u] = l∞[G,G∆

m
n , A, p, u].
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Proof. In order to prove that l∞[G,G∆
m
n , A,M, p, u] = l∞[G,G∆

m
n , A, p, u]. It

is sufficient to show that l∞[G,G∆
m
n , A,M, p, u] ⊆ l∞[G,G∆

m
n , A, p, u]. Now, let

β > 0. By definition of β, we have Mk(t) ≥ βt for all t ≥ 0. Since β > 0, we have
t ≤ 1

β
Mk(t) for all t ≥ 0.

Let x = (xk) ∈ l∞[G,G∆
m
n , A,M, p, u]. Then, we have

sup
k∈N

ank

[( |ukG∆
m
n xk|G
ρ

)]pk

≤
1

β
sup
k∈N

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk

< ∞.

which implies that x = (xk) ∈ l∞[G,G∆
m
n , A, p, u]. This completes the proof.

Theorem 2.7. For a Musielak-Orlicz function M = (Mk), p = (pk) be any
bounded sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers. Then
(i) c0[G,G∆

m
n , A,M, p, u] ⊂ l∞[G,G∆

m
n , A,M, p, u],

(ii) c[G,G∆
m
n , A,M, p, u] ⊂ l∞[G,G∆

m
n , A,M, p, u].

Proof. The proof is easy so we omit it.

Theorem 2.8. Let M′ = (M ′
k) and M′′ = (M ′′

k ) are two Musielak-Orlicz func-
tions,

l∞[G,G∆
m
n , A,M′, p, u]∩l∞[G,G∆

m
n , A,M′′, p, u] ⊂ l∞[G,G∆

m
n , A,M′+M′′, p, u].

Proof. Let x = (xk) ∈ l∞[G,G∆
m
n , A,M′, p, u] ∩ l∞[G,G∆

m
n , A,M′′, p, u]. Then

sup
k∈N

ank

[

M ′
k

( |ukG∆
m
n xk|G

ρ1

)]pk

< ∞, for some ρ1 > 0

and

sup
k∈N

ank

[

M ′′
k

( |ukG∆
m
n xk|G

ρ2

)]pk

< ∞, for some ρ2 > 0.

Let ρ = max{ρ1, ρ2}. The result follows from the inequality,

sup
k∈N

ank

[

(M ′
k +M ′′

k )
( |ukG∆

m
n xk|G
ρ

)]pk

= sup
k∈N

ank

[

M ′
k

( |ukG∆
m
n xk|G

ρ1

)]pk

+ sup
k∈N

ank

[

M ′′
k

( |ukG∆
m
n xk|G

ρ2

)]pk

≤ K sup
k∈N

ank

[

M ′
k

( |ukG∆
m
n xk|G

ρ1

)]pk

+K sup
k∈N

ank

[

M ′′
k

( |ukG∆
m
n xk|G

ρ2

)]pk

< ∞.

Thus, sup
k∈N

ank

[

(M ′
k +M ′′

k )
( |ukG∆

m
n xk|G
ρ

)]pk

< ∞. Therefore,

x = (xk) ∈ l∞[G,G∆
m
n , A,M′ +M′′, p, u]. This completes the proof.
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Theorem 2.9. Let M = (Mk) be a Musielak-Orlicz functions. Then
(i) X [G,G∆

m
n ,M, p, u] ⊂ X [G,G∆

m+1
n , A,M, p, u] and the inclusion is strict, for

X = l∞, c and c0.
(ii) c0[G,G∆

m
n , A,M, p, u] ⊂ c[G,G∆

m
n , A,M, p, u] ⊂ l∞[G,G∆

m
n , A,M, p, u].

Proof. (i) We give the proof for X = l∞ only. Let x ∈ l∞[G,G∆
m
n , A,M, p, u].

Since

ank

[

Mk

( |ukG∆
m+1
n xk|G
ρ

)]pk

≤ ank

[

Mk

( |ukG(∆
m
n xk ⊖∆m

n xk+1)|G
ρ

)]pk

≤ ank

[

Mk

( |ukG∆
m
n xk|G

ρ1

)]pk

⊕ ank

[

Mk

( |ukG∆
m
n xk+1|G
ρ

)]pk

we obtain x ∈ l∞[G,G∆
m+1
n , A,M, p, u]. For A = (C, 1), Mk(x) = x, pk = 1,

uk = 1 for all k ∈ N, this inclusion is strict since the sequence x = (ek
m

) belongs
to l∞[G,G∆

m+1
n , A,M, p, u] but does not belong to l∞[G,G∆

m
n , A,M, p, u], where

n = (ek).
(ii) The proof is trivial.

Theorem 2.10. The spaces l∞[G,G∆
m
n , A,M, p, u], c0[G,G∆

m
n , A,M, p, u] and

c[G,G∆
m
n ,

A,M, p, u] are normed linear spaces with norm

‖x‖G∆m
n ,A,M,p,u

G =
G

m
∑

i=1

|xi|G ⊕
∥

∥

∥ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

.

Proof. It can be easily proved so we omit it.

Theorem 2.11. The spaces l∞[G,G∆
m
n , A,M, p, u], c0[G,G∆

m
n , A,M, p, u] and

c[G,G∆
m
n ,

A,M, p, u] are Banach spaces with norm

‖x‖G∆m
n ,A,M,p,u

G =
G

m
∑

i=1

|xi|G ⊕
∥

∥

∥
ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

.

Proof. Since the proof is similar for the space c[G,G∆
m
n , A,M, p, u] and

c0[G,G∆
m
n , A,M, p, u], we prove the theorem only for l∞[G,G∆

m
n , A,M, p, u]. Let

(xj) be a Cauchy sequences in l∞[G,G∆
m
n , A,M, p, u], where

xj = (x
(j)
i ) = (x

(j)
1 , x

(j)
2 , x

(j)
3 , ...) for j ∈ N and x

(j)
k is the kth coordinate of xj . Then

(2.3)

‖xj⊖xl‖
G∆m

n ,A,M,p,u

G =
G

m
∑

i=1

|x
(j)
i ⊖x

(l)
i |G⊕

∥

∥

∥ank

[

Mk

( |ukG∆
m
n (xj ⊖ xl)|G

ρ

)]pk
∥

∥

∥

G∞
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=
G

m
∑

i=1

|x
(j)
i ⊖ x

(l)
i |G ⊕ sup

k∈N

{

ank

[

Mk

( |ukG∆
m
n (xj ⊖ xl)|G

ρ

)]pk
}

→ 1 as l, j → ∞.

This implies that |x
(j)
k ⊖ x

(l)
k |G → 1 as l, j → ∞ for each k ∈ N. Therefore, (x

(j)
k ) =

(x
(1)
k , x

(2)
k , x

(3)
k , ...) is a Cauchy sequence in C(G). Then by completeness of C(G),

(x
(j)
k ) is convergent. Let us suppose G lim

n→∞
x
(j)
k = xk, for each k ∈ N. Since (xj)

is a Cauchy sequence, for each ǫ > 1, there exists N = N(ǫ) such that ‖xj ⊖

xl‖
G∆m

n ,A,M,p,u

G < ǫ for all j, l ≥ N. Hence, from equation (2.3) we have

G

m
∑

i=1

|x
(j)
i ⊖ x

(l)
i |G < ǫ

and

ank

[

Mk

(

|ukG

∑m
v=0(⊖e)vG ⊙ e(

m
v ) ⊙ (x

(j)
k+nv ⊖ x

(l)
k+nv)|G

ρ

)]pk

< ǫ

for all k ∈ N and j, l ≥ N we have

G lim
l→∞G

m
∑

i=1

|x
(j)
i ⊖ x

(l)
i |G =

G

m
∑

i=1

|x
(j)
i ⊖ xi|G < ǫ and

G lim
l→∞

ank

[

Mk

( |ukG∆
m
n (x

(j)
k ⊖ x

(l)
k )|G

ρ

)]pk

= ank

[

Mk

( |ukG∆
m
n (x

(j)
k ⊖ xk)|G
ρ

)]pk

<

ǫ for all n ≥ N. This implies ‖xj⊖x‖G∆m
n ,M,A,p,u

G < ǫ2 for all n ≥ N , that is xj
G
−→ x

as j → ∞, where x = (xk). Now we must show that x ∈ l∞[G,G∆
m
n , A,M, p, u].

We have

ank

[

Mk

(

|ukG∆m
n xk|G
ρ

)]pk

= ank

[

Mk

(

|ukG

∑m
v=0(⊖e)vG ⊙ e(

m
v ) ⊙ xk+nv |G

ρ

)]pk

= ank

[

Mk

(

|ukG

∑m
v=0(⊖e)vG ⊙ e(

m
v ) ⊙ (xk+nv ⊖ xN

k+nv ⊕ xN
k+nv)|G

ρ

)]pk

≤ ank

[

Mk

(

|ukG

∑m
v=0(⊖e)vG ⊙ e(

m
v ) ⊙ (xN

k+nv ⊖ xk+nv)|G

ρ

)]pk

⊕ ank

[

Mk

(

|ukG

∑m
v=0(⊖e)vG ⊙ e(

m
v ) ⊙ xN

k+nv |G

ρ

)]pk

≤ ‖xN ⊖ x‖G∆m
n ,A,M,p,u

G ⊕ ank

[

Mk

( |ukG∆
m
n xN

k |G
ρ

)]pk

= O(e).
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Therefore, x ∈ l∞[G,G∆
m
n , A,M, p, u]. Hence l∞[G,G∆

m
n , A,M, p, u] is a Banach

space.

Furthermore, since l∞[G,G∆
m
n , A,M, p, u], c0[G,G∆

m
n , A,M, p, u] and

c[G,G∆
m
n , A,M, p, u] are Banach spaces with continuous coordinates, i.e.,

‖xj ⊖ x‖G∆m
n ,A,M,p,u

G → 1 implies |x
(j)
k ⊖ xk|G → 1 for each k ∈ N as n → ∞, these

are also BK-spaces.

Let us define the operator

D : X [G,G∆
m
n , A,M, p, u] → X [G,G∆

m
n , A,M, p, u] by

Dx = (1, 1..., xm+1, xm+2, ...),, where x = (x1, x2, ..., xm, ...). It is trivial that D is a
bounded linear operator on X [G,G∆

m
n ,M, A, p, u], X = l∞, c and c0. Furthermore,

the set

D
[

X [G,G∆
m
n , A,M, p, u]

]

= DX [G,G∆
m
n , A,M, p, u]

= {x = (xk) : x ∈ X [G,G∆
m
n , A,M, p, u], x1 = x2 = ... = xm = 1}

is a subspace of X [G,G∆
m
n , A,M, p, u] and normed by

‖x‖G∆m
n ,A,M,p,u

G = |x1|G ⊕ |x2|G ⊕ ...⊕ |xm|G ⊕
∥

∥

∥
ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

= 1⊕ 1⊕ ...⊕ 1⊕
∥

∥

∥ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

=
∥

∥

∥ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

=
∥

∥

∥ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
∥

∥

∥

G∞

∈ DX [G,G∆
m
n , A,M, p, u].

DX [G,G∆
m
n , A,M, p, u] and X [G,A,M, p, u] are equivalent as topological spaces

[21] since

G∆
m
n : DX [G,G∆

m
n , A,M, p, u] → X [G,A,M, p, u] defined by

G∆
m
n x = y = (G∆

m
n xk) = (G∆

m−1
n xk ⊖ G∆

m−1
n xk+1),

is a linear homomorphism.

3. The α−, β− and γ− duals of the spaces l∞[G,G∆
m
n ,M, p, u],

c[G,G∆
m
n ,M, p, u] and c0[G,G∆

m
n ,M, p, u]

The aim here lies in this section is to determine the Köthe-Toeplitz duals of the
classical sequence spaces.
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Definition 3.1. ([9], [14], [21]) Let X be a sequence space and one can define

Xα =
{

b = (bk) :

∞
∑

k=1

|bkxk| < ∞, for each x ∈ X
}

,

Xβ =
{

b = (bk) :

∞
∑

k=1

bkxk is convergent, for each x ∈ X
}

,

Xγ =
{

b = (bk) : sup
n

∣

∣

∣

n
∑

k=1

bkxk

∣

∣

∣ < ∞, for each x ∈ X
}

.

Then Xα, Xβ and Xγ are called α−dual (or Köthe-Toeplitz dual), β−dual and
γ−dual spaces of X, respectively. Then Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y , then Y η ⊂ Xη

for η = α, β or γ. It is clear that X = Xαα then X is called an α-space. In
particular, an α-space is a Köthe space or perfect sequence space.

Lemma 3.1. Let M = (Mk) be a Musielak-Orlicz functions, u = (uk) be a se-
quence of strictly positive real numbers and p = (pk) be a bounded sequence of
positive real numbers. Then the following conditions are equivalent

(i) sup
k∈N

{

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ G∆

m−1
n xk+1)|G

ρ

)]pk
}

< ∞ for some ρ > 0,

(ii)(a) sup
k∈N

{

ank

[

Mk

( |uk(e
k−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk
}

< ∞ for some ρ > 0,

(b) sup
k∈N

{

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ ek(k+1)−1

⊙ G∆
m−1
n xk+1)|G

ρ

)]pk
}

< ∞.

Proof. Let (i) be true, that is, sup
k∈N

{

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ G∆

m−1
n xk+1)|G

ρ

)]pk
}

<

∞.

Now, ank

[

Mk

(

|uk(G∆m−1
n x1⊖G∆m−1

n xk+1)|G
ρ

)]pk

= ank

[

Mk

( |uk

∑k
l=1(G∆

m−1
n xl ⊖ G∆

m−1
n xl+1)|G

ρ

)]pk

= ank

[

Mk

( |uk

∑k
l=1 G∆

m
n xl|G

ρ

)]pk

≤
k
∑

l=1

ank

[

Mk

( |ukG∆
m
n xl|G
ρ

)]pk

= O(ek)

and
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ank

[

Mk

(

|ukG∆m−1
n xk|G
ρ

)]pk

= ank

[

Mk

( |uk(G∆m−1
n x1 ⊖ G∆m−1

n x1 ⊕ G∆m−1
n xk+1 ⊕ G∆m−1

n xk ⊖ G∆m−1
n xk+1)|G

ρ

)]pk

≤ ank

[

Mk

( |ukG∆m−1
n x1|G

ρ

)]pk
⊕ ank

[

Mk

( |uk(G∆m−1
n x1 ⊖ G∆m−1

n xk+1)|G

ρ

)]pk

⊕ ank

[

Mk

( |uk(G∆m−1
n xk ⊖ G∆m−1

n xk+1)|G

ρ

)]pk
= O(ek).

Therefore, sup
k∈N

{

ank

[

Mk

( |uk(e
k−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk
}

< ∞. This completes the

proof of (ii)(a).
Again, we have

sup
k∈N

{

ank

[

Mk

( |uk(G∆m−1
n xk ⊖ ek(k+1)−1

⊙ G∆m−1
n xk+1)|G

ρ

)]pk
}

= ank

[

Mk

( |uk({e
(k+1) ⊙ e(k+1)−1

} ⊙ G∆m−1
n xk ⊖ ek(k+1)−1

⊙ G∆m−1
n xk+1)|G

ρ

)]pk

= ank

[

Mk

( |uk({(e
k ⊕ e)⊙ e(k+1)−1

} ⊙ G∆m−1
n xk ⊖ ek(k+1)−1

⊙ G∆m−1
n xk+1)|G

ρ

)]pk

= ank

[

Mk

( |uk({e
k(k+1)−1

⊙ G∆m−1
n xk ⊕ e(k+1)−1

⊙ G∆m−1
n xk} ⊖ ek(k+1)−1

⊙ G∆m−1
n xk+1)|G

ρ

)]pk

= ank

[

Mk

( |uk({e
k(k+1)−1

⊙ (G∆m−1
n xk ⊖ G∆m−1

n xk+1)} ⊕ {e(k+1)−1
⊙ G∆m−1

n xk})|G

ρ

)]pk

≤ ank

[

Mk

( |uk{e
k(k+1)−1

⊙ (G∆m−1
n xk ⊖ G∆m−1

n xk+1)}|G

ρ

)]pk

⊕ ank

[

Mk

( |uk(e
(k+1)−1

⊙ G∆m−1
n xk)|G

ρ

)]pk

= O(e).

Therefore, sup
k∈N

{

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ ek(k+1)−1

⊙ G∆
m−1
n xk+1)|G

ρ

)]pk
}

< ∞.

This completes the proof of (ii)(b).
Conversely, let (ii) be true. Then

ank

[

Mk

(

|uk(G∆m−1
n xk⊖ek(k+1)−1

⊙G∆m−1
n xk+1)|G

ρ

)]pk

= ank

[

Mk

( |uk(e
(k+1)(k+1)−1

⊙ G∆
m−1
n xk ⊖ ek(k+1)−1

⊙ G∆
m−1
n xk+1)|G

ρ

)]pk

≥ ank

[

Mk

( |uk{e
k(k+1)−1

⊙ (G∆
m−1
n xk ⊖ G∆

m−1
n xk+1)}|G

ρ

)]pk

⊖ ank

[

Mk

( |uk(e
(k+1)−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk

,

we can write
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ank

[

Mk

(

|uk{e
k(k+1)−1

⊙(G∆m−1
n xk⊖G∆m−1

n xk+1)}|G
ρ

)]pk

≤ ank

[

Mk

( |uk(e
(k+1)−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk

⊕ ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ ek(k+1)−1

⊙ G∆
m−1
n xk+1)|G

ρ

)]pk

.

Thus, sup
k∈N

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ G∆

m−1
n xk+1)|G

ρ

)]pk

< ∞. as both (ii)(a) and

(ii)(b) holds.

Lemma 3.2. Let M = (Mk) be a Musielak-Orlicz function. Then

sup
k∈N

{

ank

[

Mk

( |uk(e
k−i

⊙ G∆
m−i
n xk)|G

ρ

)]pk
}

< ∞ implies

sup
k∈N

{

ank

[

Mk

( |uk(e
k−(i+1)

⊙ G∆
m−(i+1)
n xk)|G

ρ

)]pk
}

< ∞, for all i ∈ N and ρ > 0.

Proof. For i = 1 in Lemma (3.2), the proof is obvious. Let the result is true for

i = r, we have sup
k∈N

{

ank

[

Mk

( |uk(e
k−r

⊙ G∆
m−r
n xk)|G

ρ

)]pk
}

< ∞. Then

ank

[

Mk

(

|uk(G∆m−(r+1)
n xk⊖G∆m−(r+1)

n xk+1)|G
ρ

)]pk

= ank

[

Mk

( |uk

∑k
v=1 G∆

m−r
n xv|G

ρ

)]pk

≤

k
∑

v=1

[

Mk

( |ukG∆
m−r
n xv|G
ρ

)]pk

= O
(

(ek
r

)k
)

= O
(

ek
(r+1)

)

, as sup
k∈N

{

ank

[

Mk

( |uk(e
k−r

⊙ G∆
m−r
n xv)|G

ρ

)]pk
}

< ∞ and

ank

[

Mk

( |ukG∆
m−(r+1)
n xk|G

ρ

)]pk

=ank

[

Mk

( |uk(G∆
m−(r+1)
n xk⊕G∆

m−(r+1)
n x1⊖G∆

m−(r+1)
n x1⊕G∆

m−(r+1)
n xk+1⊖G∆

m−(r+1)
n xk+1)|G

ρ

)]pk

≤ ank

[

Mk

( |ukG∆
m−(r+1)
n x1|G

ρ

)]pk
⊕ ank

[

Mk

( |uk(G∆
m−(r+1)
n x1 ⊖ G∆

m−(r+1)
n xk+1)|G

ρ

)]pk

⊕ ank

[

Mk

( |uk(G∆
m−(r+1)
n xk ⊖ G∆

m−(r+1)
n xk+1)|G

ρ

)]pk
= O

(

ek
(r+1)

)

.

From this, we have sup
k∈N

{

ank

[

Mk

( |uk(e
k−(r+1)

⊙ G∆
m−(r+1)
n xk)|G

ρ

)]pk
}

< ∞.

Thus,
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sup
k∈N

{

ank

[

Mk

( |uk(e
k−(i+1)

⊙ G∆
m−(i+1)
n xk)|G

ρ

)]pk
}

< ∞, for all i ∈ N and ρ >

0.

Lemma 3.3. If sup
k∈N

{

ank

[

Mk

( |uk(e
k−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk
}

< ∞ then

sup
k∈N

{

ank

[

Mk

( |uk(e
k−m

⊙ nkxk)|G
ρ

)]pk
}

< ∞, for all i ∈ N and ρ > 0.

Proof. For i = 1 in Lemma (3.3), we obtain

sup
k∈N

{

ank

[

Mk

( |uk(e
k−1

⊙ G∆
m−1
n xk)|G

ρ

)]pk
}

< ∞

⇒ sup
k∈N

{

ank

[

Mk

( |uk(e
k−2

⊙ G∆
m−2
n xk)|G

ρ

)]pk
}

< ∞.

Again for i = 2 in Lemma (3.3), we obtain

sup
k∈N

{

ank

[

Mk

( |uk(e
k−2

⊙ G∆
m−2
n xk)|G

ρ

)]pk
}

< ∞

⇒ sup
k∈N

{

ank

[

Mk

( |uk(e
k−3

⊙ G∆
m−3
n xk)|G

ρ

)]pk
}

< ∞.

Continuing this procedure for i = m− 1, we arrive

sup
k∈N

{

ank

[

Mk

( |uk(e
k−(m−1)

⊙ G∆nxk)|G
ρ

)]pk
}

< ∞

⇒ sup
k∈N

{

ank

[

Mk

( |uk(e
k−m

⊙ nkxk)|G
ρ

)]pk
}

< ∞.

Lemma 3.4. If x ∈ l∞[G,G∆
m
n , A,M, p, u], then

sup
k∈N

{

ank

[

Mk

( |uk(e
k−m

⊙ nkxk)|G
ρ

)]pk
}

< ∞.

Proof. Let x ∈ l∞[G,G∆
m
n , A,M, p, u]

⇒ sup
k∈N

{

ank

[

Mk

( |ukG∆
m
n xk|G
ρ

)]pk
}

< ∞

⇒ sup
k∈N

{

ank

[

Mk

( |uk(G∆
m−1
n xk ⊖ G∆

m−1
n xk+1)|G

ρ

)]pk
}

< ∞

⇒ sup
k∈N

{

ank

[

Mk

( |uk(e
k−1

⊙ G∆
m
n xk)|G

ρ

)]pk
}

< ∞ by Lemma (3.1)

⇒ sup
k∈N

{

ank

[

Mk

( |uk(e
k−m

⊙ nkxk)|G
ρ

)]pk
}

< ∞ by Lemma (3.3).
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Theorem 3.1. Let M = (Mk) be a Musielak-Orlicz function. Then

(i)
[

c0[G,G∆
m
n , A,M, p, u]

]α

=
[

c[G,G∆
m
n , A,M, p, u]

]α

=
[

l∞[G,G∆
m
n , A,M, p, u]

]α

= D1,

(ii) Dα
1 = D2, where

D1 =
{

b = (bk) :
G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k bk)|G

ρ

)]pk

< ∞
}

,

D2 =
{

b = (bk) : sup
k∈N

ank

[

Mk

( |uk(e
k−m

⊙ nkbk)|G
ρ

)]pk

< ∞
}

.

Proof. (i) First we suppose that b ∈ D1, then

G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k xk)|G

ρ

)]pk

< ∞.

Now, for any x ∈ l∞[G,G∆
m
n , A,M, p, u], we have

sup
k∈N

ank

[

Mk

( |uk(e
k−m

⊙ nkxk)|G
ρ

)]pk

< ∞.

Then we have

G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

=
G

∞
∑

k=1

ank

[

Mk

( |uk({e
k−m

⊙ nkxk} ⊙ {ek
m

⊙ n−1
k bk})|G

ρ

)]pk

≤
G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k bk)|G

ρ

)]pk

< ∞.

Hence, b ∈
[

l∞[G,G∆
m
n , A,M, p, u]

]α

.

Conversely, let b ∈
[

X [G,G∆
m
n , A,M, p, u]

]α

for X = c and l∞. Then,

G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

< ∞ for each x ∈ X [G,G∆
m
n , A,M, p, u]. So we

take
xk = ek

m

⊙ n−1
k , k ≥ 1. Then,

G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k bk)|G

ρ

)]pk

=
G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

< ∞.
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This implies that b ∈ D1.

Again suppose that b ∈
[

c0[G,G∆
m
n , A,M, p, u]

]α

and b /∈ D1. Then there exists a

strictly increasing sequence (vi) of positive integers vi with v1 < v2 < ... such that

G

vi+1
∑

k=vi+1

ank

[

Mk

( |uk(e
km

⊙ n−1
k bk)|G

ρ

)]pk

> i.

Now we define a sequence x = (xk) by

xk =

{

1, 1 ≤ k ≤ vi,
ek

m
⊙n

−1
k

i
, vi + 1 < k ≤ vi+1, i = 1, 2, ...

Then it is easy to verify that x ∈ c0[G,G∆
m
n , A,M, p, u]. But

G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

=
G

v2
∑

k=v1+1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

+ ...

+
G

vi+1
∑

k=vi+1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

+ ...

=
G

v2
∑

k=v1+1

ank

[

Mk

( |uk(e
km

⊙ n−1bk)|G
ρ

)]pk

+ ...

+
1

i G

vi+1
∑

k=vi+1

ank

[

Mk

( |uk(e
km

⊙ n−1bk)|G
ρ

)]pk

+ ...

≥
G

∞
∑

i=1

1 = ∞,

where A = (C, 1), Mk(x) = x, pk = 1, uk = 1 for all k ∈ N. Hence, b /∈
[

c0[G,G∆
m
n , A,M, p, u]

]α

which contradicts our assumption and b ∈ D1. This

completes the proof.
(ii) The proof is similar to that of part (i).

Theorem 3.2. Let X stand for l∞ or c then
[

X [G,G∆
m
n , A,M, p, u]

]αα

= D2.

where D2 =
{

b = (bk) : sup
k∈N

ank

[

Mk

( |uk(e
k−m

⊙ nkbk)|G
ρ

)]pk

< ∞
}

,

Proof. Let b ∈ D2 and x ∈
[

X [G,G∆
m
n , A,M, p, u]

]α

, then we have



546 K. Raj and C. Sharma

G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

=
G

∞
∑

k=1

ank

[

Mk

( |uk({e
km

⊙ n−1
k xk} ⊙ {ek

−m

⊙ nkbk})|G
ρ

)]pk

≤
G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k xk)|G

ρ

)]pk

⊙ sup
k∈N

ank

[

Mk

( |uk(e
k−m

⊙ nkbk)|G
ρ

)]pk

< ∞.

Hence, b ∈
[

X [G,G∆
m
n , A,M, p, u]

]αα

.

Conversely, let b ∈
[

X [G,G∆
m
n , A,M, p, u]

]αα

and b /∈ D2. Then we must have

sup
k∈N

ank

[

Mk

( |uk(e
k−m

⊙ nkbk)|G
ρ

)]pk

= ∞.

Therefore, there exists a strictly increasing sequence (ek(i)) of geometric integers
[30], where k(i) is a strictly increasing sequence of positive integers such that

ank

[

Mk

( |uk(e
[k(i)−m] ⊙ nk(i)bk(i))|G

ρ

)]pk

> ei
m

.

Let us define the sequence x = (xk) by

xk =

{

(|nk(i)bk(i)|G)
−1G , k = k(i),

1, k 6= k(i),

where (|nk(i)bk(i)|G)
−1G is a geometric inverse of |nk(i)bk(i)|G so that

|nk(i)bk(i)|G ⊙ (|nk(i)bk(i)|G)
−1G = e. Then we have

G

∞
∑

k=1

ank

[

Mk

( |uk(e
km

⊙ n−1
k xk)|G

ρ

)]pk

=
G

∞
∑

k=1

ank

[

Mk

( |uk(e
[k(i)m] ⊙ nk(i)bk(i))|G

ρ

)]pk

≤ ei
−m

< ∞.

Hence, x ∈
[

X [G,G∆
m
n , A,M, p, u]

]α

and
G

∞
∑

k=1

ank

[

Mk

( |uk(bk ⊙ xk)|G
ρ

)]pk

=

G

∑

e = ∞, where A = (C, 1), Mk(x) = x, pk = 1, uk = 1 for all k ∈ N. This is a

contradiction as b ∈
[

X [G,G∆
m
n , A,M, p, u]

]αα

. Therefore, b ∈ D2.
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Corollary 3.1. Let X stand for l∞ or c, we have

[

X [G,G∆
2
n, A,M, p, u]

]αα

=

{

b = (bk) : sup
k∈N

ank

[

Mk

( |uk(e
k−2

⊙ nkbk)|G
ρ

)]pk

< ∞
}

.

Proof. By putting m = 2 in Theorem (3.2),we obtain the result.

Corollary 3.2. The sequence spaces l∞[G,G∆
m
n , A,M, p, u], c[G,G∆

m
n , A,M, p, u]

and c0[G,G∆
m
n , A,M, p, u] are not perfect.
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