FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 33, No 3 (2018), 451-465 https://doi.org/10.22190/FUMI1803451T

CONNECTEDNESS IN SOFT m-STRUCTURE *

Samajh Singh Thakur and Alpa Singh Rajput

Abstract. In the present paper, we introduce the concept of soft connectedness in a soft m-structure and study some of its properties and characterizations.

Keywords: Soft m-structure, Soft m-connectedness and Soft m-connectedness between soft sets.

1. Introduction

The concept of soft set is fundamentally important in almost every scientific field. Soft set theory is a new mathematical tool dealing with uncertainty and has been applied in several directions since its introduction by Molodtsov [19] in 1999. The operations on soft sets and soft structures have been studied in [1, 16, 23]. Maji et. al [15] gave the first practical application of soft sets in decision theory. In 2011 Shabir and Naz [22] initiated a study of soft topological spaces. In recent years, many soft topological concepts such as soft connectedness and their strong forms [8, 11, 17, 20, 24],soft separation axioms [14, 20, 22], weak and strong forms of soft open sets and soft continuity [17, 2, 3, 4, 5, 6, 9, 10, 12, 13, 25] have been introduced and studied. Recently, the authors of this paper [21] initiated a study of soft m-structures. In the present paper we introduce the concept of soft connectedness in soft m-structures and we study some of its properties and characterizations.

2. Preliminaries

Let U be an initial universe set, E be a set of parameters, P(U) denote the power set of U and $A \subseteq E$.

Definition 2.1. [19] A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$. In other words, a soft set over U is a parameterized family of subsets of the universe U. For all $e \in A$, F(e) may be considered a set of e-approximate elements of the soft set (F, A).

Received December 07, 2016; accepted June 11, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 54A40, 54D10; Secondary 06D72

^{*}The authors were supported in part by ...

Definition 2.2. [16] For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B), denoted by (F, A) \subseteq (G, B), if

- (a) $A \subseteq B$ and
- (b) F (e) \subseteq G (e) for all e \in E.

Definition 2.3. [16] Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal denoted by (F, A) = (G, B) if (F, A) \subseteq (G, B) and (G, B) \subseteq (F, A).

Definition 2.4. [7] The complement of a soft set (F, A), denoted by $(F, A)^c$, is defined by $(F, A)^c = (F^c, A)$, where $F^c : A \to P(U)$ is a mapping given by $F^c(e) = U - F(e)$, for all $e \in E$.

Definition 2.5. [16] Let a soft set (F, A) over U.

- (a) A null soft set denoted by ϕ if for all $e \in A$, F (e) = ϕ .
- (b) An absolute soft set denoted by \widetilde{U} , if for each $e \in A$, F(e) = U.

Clearly, $\widetilde{U}^c = \phi$ and $\phi^c = \widetilde{U}$.

Definition 2.6. [7] The union of two sets (F, A) and (G, B) over a common universe U is a soft set (H, C), where $C = A \cup B$ and for all $e \in C$,

$$H(e) = \begin{cases} F(e), & ife \in A - B\\ G(e), & ife \in B - A\\ F(e) \cup G(e), & if \ e \in A \cap B \end{cases}$$

Definition 2.7. [7] The intersection of two soft sets (F, A) and (G, B) over a common universe U is a soft set (H, C) where $C = A \cap B$ and $H(e) = F(e) \cap G(e)$ for each $e \in E$.

Let X and Y be initial universe sets and E and K be non-empty sets of the parameters, S(X, E) denotes the family of all soft sets over X, and S(Y, K) denotes the family of all soft sets over Y.

Definition 2.8. [12] Let S(X,E) and S(Y,K) be families of soft sets. Let u: $X \to Y$ and p: $E \to K$ be mappings. Then a mapping f_{pu} : $S(X, E) \to S(Y, K)$ is defined as:

(i)Let (F, A) be a soft set in S(X, E). The image of (F, A) under f_{pu} , written as f_{pu} (F, A) = ($f_{pu}(F)$, p(A)), is a soft set in S(Y,K) such that

$$f_{pu}(F)(k) = \begin{cases} \bigcup_{e \in p^{-1}(k) \cap A} u(F(e)), & p^{-1}(k) \cap A \neq \phi \\ \phi, & p^{-1}(k) \cap A = \phi \end{cases}$$

For all $k \in K$.

(ii) Let (G, B) be a soft set in S(Y, K). The inverse image of (G, B) under f_{pu} , written as $f_{pu}^{-1}(G,B) = (f_{pu}^{-1}(G), p^{-1}(B)))$, is a soft set in S(X,E) such that

$$f_{pu}^{-1}(G)(e) = \begin{cases} u^{-1}G(p(e)), & p(e) \in B \\ \phi, & p(e) \notin B \end{cases}$$

For all $e \in E$.

Definition 2.9. [25]Let $f_{pu} : S(X, E) \to S(Y, K)$ be a mapping and $u : X \to Y$ and $p : E \to K$ be mappings. Then f_{pu} is soft onto, if $u : X \to Y$ and $p : E \to K$ are onto and f_{pu} is soft one-one, if $u : X \to Y$ and $p : E \to K$ are one-one.

Definition 2.10. [22] A subfamily τ of S(X, E) is called a soft topology over X if:

- 1. $\tilde{\phi}$, \tilde{X} belong to τ .
- 2. The union of any number of soft sets in τ belongs to τ .
- 3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X. The members of τ are called soft open sets in X and their complements are called soft closed sets in X.

Definition 2.11. If (X, τ, E) is a soft topological space and a soft set (F, E) over X.

(a) The soft closure of (F, E) is denoted by Cl(F,E), and defined as the intersection of all soft closed super sets of (F,E) [22].

(b) The soft interior of (F, E) is denoted by Int(F,E), and defined as the soft union of all soft open subsets of (F, E) [25].

Definition 2.12. [25] The soft set $(F,E) \in S(X,E)$ is called a soft point if there exist $x \in X$ and $e \in E$ such that $F(e) = \{x\}$ and $F(e') = \phi$ for each $e' \in E - \{e\}$, and the soft point (F,E) is denoted by x_e .

Definition 2.13. A soft set (A, E) of a soft topological space (X, τ, E) is called :

- (a) Soft regular open (A, E) = Int(Cl(A, E)) [6];
- (b) Soft α -open if $(A, E) \subset Int(Cl(Int(A, E)))$ [3];
- (c) Soft semi-open if $(A, E) \subset Cl(Int(A, E))$ [17];
- (d) Soft preopen if $(A, E) \subset Int(Cl(A, E))$ [2];
- (e) Soft b-open if $(A, E) \subset Int(Cl(A, E)) \cup Cl(Int (A, E))$ [5].

(f) Soft β -open if (A, E) \subset Cl(Int(Cl(A, E))) [4]

The family of all soft regular open (resp. soft α -open, soft semi-open, soft preopen, soft β -open, soft b-open) sets of X will be denoted by SRO(X,E) (resp. $S\alpha O(X,E)$, SSO(X,E), SPO(X,E), S $\beta O(X,E)$, SbO(X,E)).

Definition 2.14. Let (A,E) be a soft subset of a soft topological space (X,τ,E) . Then:

- (a) The intersection of all soft semi-open sets containing (A, E) is called semiclosure of (A,E). It is denoted by sCl(A,E) [17].
- (b) The intersection of all soft preopen sets containing (A, E) is called preclosure of (A,E). It is denoted by pCl(A,E)[2].
- (c) The intersection of all soft α open sets containing (A,E) is called α-closure of (A,E). It is denoted by αCl(A,E)[3].
- (d) The intersection of all soft b-open sets containing (A,E) is called b-closure of (A,E). It is denoted by bCl(A,E)[5].
- (e) The intersection of all soft β-open sets containing (A,E) is called β-closure of (A,E). It is denoted by βCl(A,E)[4].

Definition 2.15. A soft mapping $f_{pu} : (X, \tau, E) \rightarrow (X, \sigma, K)$ is said to be :

- (a) Soft continuous if $f_{pu}^{-1}(\mathbf{U},\mathbf{K}) \in \tau$ for every soft set $(\mathbf{U},\mathbf{K}) \in \sigma$ [25].
- (b) Soft α -continuous if $f_{pu}^{-1}(U, K) \in S\alpha O(X, E)$ for every soft set $(U, K) \in \sigma$ [3].
- (c) Soft semi-continuous if f_{pu}^{-1} (U, K) \in SSO(X, E) for every soft set (U, K) $\in \sigma$ [17].
- (d) Soft precontinuous if f_{pu}^{-1} (U, K) \in SPO(X, E) for every soft set (U, K) $\in \sigma$ [2].
- (e) Soft b-continuous if f_{pu}^{-1} (U, K) \in SbO(X, E) for every soft set (U, K) $\in \sigma$ [5].
- (f) Soft β -continuous if f_{pu}^{-1} (U, K) $\in S\beta O(X, E)$ for every soft set (U, K) $\in \sigma$ [4].

Definition 2.16. A soft mapping f_{pu} : (X, τ ,E) \rightarrow (X, σ ,K) is said to be :

- (a) Soft open if $f_{pu}(U, E) \in \sigma$ for every soft set $(U, E) \in \tau$ [26].
- (b) Soft α -open if f_{pu} (U, E) $\in S\alpha O(Y, K)$ for every soft set (U, E) $\in \tau$ [3].
- (c) Soft semi-open if $f_{pu}(U, E) \in SSO(Y, K)$ for every soft set $(U, E) \in \tau$ [17].
- (d) Soft preopen if $f_{pu}(U, E) \in SPO(Y, K)$ for every soft set $(U, E) \in \tau$ [2].

(e) Soft b-open if $f_{pu}(U, E) \in SbO(Y, K)$ for every soft set $(U, E) \in \tau$ [5].

(f) Soft β -open if $f_{pu}(U, E) \in S\beta O(Y, K)$ for every soft set $(U, E) \in \tau$ [4].

Definition 2.17. [14] Let (X,τ,E) be a soft topological space, and (A,E),(B,E) be two soft sets over X. The soft sets (A,E) and (B,E) are said to be soft-separated, if $(A,E) \cap Cl(B,E) = \phi$ and $Cl(A,E) \cap (B,E) = \phi$.

Definition 2.18. [14] Let (X,τ,E) be a soft topological space and if there exist two non-empty soft separated sets (A,E),(B,E) such that $(A,E) \cup (B,E) = \tilde{X}$, then (A,E) and (B,E) are said to be a soft disconnection for a soft topological space $(X,\tau,E).(X,\tau,E)$ is said to be soft-disconnected if (X,τ,E) has a soft disconnection. Otherwise, (X,τ,E) is said to be soft-connected.

Definition 2.19. [17] Let (X, τ, E) be a soft topological space. The nonempty soft sets (F,A) and (F,B) in S(X,E) are called soft semi-separated iff $sCl(F,A) \cap (F,B) = (F,A) \cap sCl(F,B) = \phi$.

Definition 2.20. [17] Let (X, τ, E) be a soft topological space. If there does not exist a soft semi-separation of X, then it is said to be soft s-connected.

Definition 2.21. [24] Let (X, τ, E) be a soft topological space. The nonempty soft sets (F,A) and (F,B) in S(X,E) are called soft preseparated iff $pCl(F,A) \cap (F,B) = (F,A) \cap pCl(F,B) = \phi$.

Definition 2.22. [24] Let (X, τ, E) be a soft topological space. If there does not exist a soft preseparation of X, then it is said to be soft P-connected.

Definition 2.23. [21] A subfamily $m_{(X,E)}$ of S(X,E) is called a soft minimal structure (briefly soft m-structure) over X if $\phi \in m_{(X,E)}$ and $\tilde{X} \in m_{(X,E)}$.

 $(X, m_{(X,E)})$ is called a soft space with a soft minimal structure $m_{(X,E)}$ or simply a soft m-space. Each member of $m_{(X,E)}$ is called a soft m-open set and the complement of a soft m-open set is called a soft m-closed set.

Remark 2.1. [21] Let (X,τ,E) be a soft topological space. Then the families τ , SSO(X,E), SPO(X,E), S α O(X,E), S β O(X,E), SbO(X,E), SRO(X,E) are all soft m-structures over X.

Definition 2.24. [21] Let X be a nonempty set, E be a set of parameters and $m_{(X,E)}$ be a soft m-structure over X. The soft $m_{(X,E)}$ -closure and the soft $m_{(X,E)}$ -interior of the soft set (A,E) over X are defined as follows:

(1) $m_{(X,E)}$ -Cl(A,E) = $\cap \{ (F,E) : (A,E) \subset (F,E), (F,E)^c \in m_{(X,E)} \}.$

(2) $m_{(X,E)}$ -Int(A,E) = \cup {(F,E) : (F,E) \subset (A,E) ,(F,E) \in $m_{(X,E)}$ }.

Remark 2.2. [21] Let (X,τ,E) be a soft topological space and (A,E) be a soft set over X. If $m_{(X,E)} = \tau$ (respectively SO(X,E), SPO(X,E), S α O(X,E), S β O(X,E), SbO(X,E)), then we have:

(1) $m_{(X,E)}$ -Cl(A,E) = Cl(A,E) (resp. sCl(A,E), pCl(A,E), \alphaCl(A,E), β Cl(A,E), bCl(A,E)).

 $(2) m_{(X,E)}-\mathrm{Int}(\mathbf{A},\mathbf{E}) = \mathrm{Int}(\mathbf{A},\mathbf{E}) \text{ (resp. sInt}(\mathbf{A},\mathbf{E}), p\mathrm{Int}(\mathbf{A},\mathbf{E}), \alpha\mathrm{Int}(\mathbf{A},\mathbf{E}), \beta\mathrm{Int}(\mathbf{A},\mathbf{E}), b\mathrm{Int}(\mathbf{A},\mathbf{E})).$

Theorem 2.1. [21] Let S(X,E) be a family of soft sets and $m_{(X,E)}$ a soft minimal structure over X.

For soft sets (A, E) and (B, E) of X, the following holds:

- (a) (i): $m_{(X,E)}$ -Int $(A, E)^c = (m_{(X,E)} Cl(A, E))^c$ and (ii) : $m_{(X,E)}$ -Cl $(A, E)^c = (m_{(X,E)} Int(A, E))^c$.
- (b) If $(A, E)^c \in m_{(X,E)}$, then $m_{(X,E)}$ -Cl(A,E) = (A,E) and if $(A,E) \in m_{(X,E)}$, then $m_{(X,E)}$ -Int(A,E) = (A,E).
- (c) $m_{(X,E)}$ - $Cl(\phi) = \phi$, $m_{(X,E)}$ - $Cl(\tilde{X}) = \tilde{X}$, $m_{(X,E)}$ - $Int(\phi) = \phi$, $m_{(X,E)}$ - $Int(\tilde{X}) = \tilde{X}$.
- (d) If $(A,E) \subset (B,E)$, then $m_{(X,E)}$ - $Cl(A,E) \subset m_{(X,E)}$ -Cl(B,E), $m_{(X,E)}$ -Int $(A,E) \subset m_{(X,E)}$ -Int(B,E).
- (e) $(A,E) \subset m_{(X,E)}$ -Cl(A,E) and $m_{(X,E)}$ -Int $(A,E) \subset (A,E)$.
- (f) $m_{(X,E)}$ - $Cl(m_{(X,E)}$ - $Cl(A,E)) = m_{(X,E)}$ -Cl(A,E) and $m_{(X,E)}$ - $Int(m_{(X,E)}$ - $Int(A,E)) = m_{(X,E)}$ -Int(A,E).

Definition 2.25. [21] A soft mapping $f_{pu} : (X, m_{(X,E)}) \to (Y, m_{(Y,K)})$, where the minimal soft structure $m_{(X,E)}$ and $m_{(Y,K)}$ over X and Y, respectively, is said to be soft M-continuous if for each $x_e \in S(X,E)$ and each $(V,K) \in m_{(Y,K)}$ containing f_{pu} (x_e) , there exists $(U,E) \in m_{(X,E)}$ containing x_e such that $f_{pu}(U,E) \subset (V,K)$.

Throughout this paper soft clopen means soft closed and open.

3. Connectedness in soft m-structure

Definition 3.1. [21] A soft minimal structure $m_{(X,E)}$ over X is said to have the property **B** if the union of any family of subsets belongs to $m_{(X,E)}$ belongs to $m_{(X,E)}$.

Definition 3.2. Let X be a nonempty set, E be a set of parameters and $m_{(X,E)}$ be a soft m-structure over X with property **B**. In $(X,m_{(X,E)})$ two nonempty soft sets (A,E) and (B,E) over X are called soft m-separated iff $m_{(X,E)}$ -Cl(A,E) \cap (B,E) = (A,E) \cap $m_{(X,E)}$ -Cl(B,E) = ϕ .

Remark 3.1. Let (X,τ,E) be a soft topological space over X. If $m_{(X,E)} = \tau$ (resp. SSO(X,E),SPO(X,E),SbO(X,E)) and $m_{(X,E)}$ -Cl(A,E) = Cl(A,E) (resp. sCl(A,E), pCl(A,E), bCl(A,E)) we get definitions of soft separated (resp. soft semi-separated, soft preseparated, soft b-separated) sets.

Definition 3.3. Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**. Then $(X,m_{(X,E)})$ is said to be soft m-connected if there does not exist two nonempty soft m-separated sets (A,E) and (B,E) over X, such that (A,E) \cup (B,E) = \tilde{X} . Otherwise it is soft m-disconnected. In this case, the pair (A,E) and (B,E) is called soft m-disconnection over X.

Remark 3.2. Let (X,τ,E) be a soft topological space over X. If we replace soft mseparated by soft separated (resp. soft semi-separated, soft preseparated, soft b-separated) sets we get a definition for soft connectedness (resp. soft semi-connectedness, soft preconnectedness, soft b-connectedness).

Theorem 3.1. Let $(X,m_{(X,E)})$ be a soft *m*-space with the property **B**. Then the following conditions are equivalent:

(1) $(X,m_{(X,E)})$ has a soft m-disconnection.

(2) There exist two disjoint soft m-closed sets (A,E), $(B,E) \in m_{(X,E)}$ such that $(A,E) \cup (B,E) = \tilde{X}$.

(3) There exist two disjoint soft m-open sets (A,E), $(B,E) \in m_{(X,E)}$ such that $(A,E) \cup (B,E) = \tilde{X}$.

(4) $(X,m_{(X,E)})$ has a proper soft m-open and soft m-closed set over X.

Proof: $(1) \rightarrow (2)$: Let $(X, m_{(X,E)})$ have a soft m-disconnection (A,E) and (B,E). Then $(A,E) \cap (B,E) = \phi$ and

 $m_{(X,E)}\text{-Cl}(A,E) = m_{(X,E)}\text{-Cl}(A,E) \cap ((A,E) \cup (B,E)) = (m_{(X,E)}\text{-Cl}(A,E) \cap (A,E)) \cup (m_{(X,E)}\text{-Cl}(A,E) \cap (B,E)) = (A,E).$

Therefore, (A,E) is a soft m-closed set over X. Similarly, we can see that (B,E) is also a soft m-closed set over X.

 $(2) \rightarrow (3)$: Let $(X, m_{(X,E)})$ has a soft m-disconnection (A, E) and (B, E) such that (A, E) and (B, E) are soft m-closed. Then $(A, E)^c$ and $(B, E)^c$ are soft m-open sets in $m_{(X,E)}$. Then it is easy to see $(A, E)^c \cap (B, E)^c = \phi$ and $(A, E)^c \cup (B, E)^c = \tilde{X}$.

 $(3) \rightarrow (4)$: Let $(X, m_{(X,E)})$ have a soft m-disconnection (A,E) and (B,E) such that (A,E) and (B,E) are soft m-open over X. Then (A,E) and (B,E are also soft closed in $(X, m_{(X,E)})$.

 $(4) \to (1)$: Let $(X, m_{(X,E)})$ has a proper soft m-open and soft m-closed set (F,E)over X. Put $(H,E) = (F,E)^c$. Then (H,E) and (F,E) are non-empty soft m-closed sets in $(X, m_{(X,E)})$. $(H,E) \cap (F,E) = \phi$ and $(H,E) \cup (F,E) = \tilde{X}$. Therefore, (H,E)and (F,E) is a soft m-disconnection of $(X, m_{(X,E)})$. **Remark 3.3.** Let (X,τ,E) be a soft topological space over X , if $m_{(X,E)} = \tau$ (resp. SSO(X,E),SPO(X,E),SbO(X,E)) Then the following conditions are equivalent:

(1) (X,τ,E) has a soft disconnection (resp. soft semi-disconnection, soft pre disconnection, soft b-disconnection).

(2) There exist two disjoint soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed) sets (A,E) ,(B,E) such that (A,E) \cup (B,E) = \tilde{X} .

(3) There exist two disjoint soft open (resp. soft semi-open, soft pre-open, soft b-open) sets (A,E) ,(B,E) such that (A,E) \cup (B,E) = \tilde{X} .

(4) (X,τ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open) and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed) set over X.

Corollary 3.1. Let $(X,m_{(X,E)})$ be a soft m-space with the property **B**. Then the following conditions are equivalent: (1) $(X,m_{(X,E)})$ is a soft m-connected.

(2) There does not exist two disjoint soft m-closed sets (A,E), $(B,E) \in m_{(X,E)}$ such that $(A,E) \cup (B,E) = \tilde{X}$.

(3) There does not exist two disjoint soft m-open sets $(A,E), (B,E) \in m_{(X,E)}$ such that $(A,E) \cup (B,E) = \tilde{X}$.

(4) $(X,m_{(X,E)})$ at most has two soft m-closed and soft m-open sets over X, that is, ϕ and \tilde{X} .

Remark 3.4. Let (X,τ,E) be a soft topological space over X if $m_{(X,E)} = \tau$ (resp. SSO(X,E),SPO(X,E),SbO(X,E)). Then the following conditions are equivalent:

(1) (X, τ ,E) is a soft connected (resp. soft semi-connected, soft preconnected ,soft b-connected).

(2) There does not exist two disjoint soft closed (resp. soft semi-closed, soft preclosed, soft b-closed) sets (A,E) ,(B,E) such that (A,E) \cup (B,E) = \tilde{X} .

(3) There does not exist two disjoint soft open (resp. soft semi-open, soft pre-open, soft b-open) sets (A,E), (B,E) such that (A,E) \cup (B,E) = \tilde{X} .

(4) (X,τ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open) and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed)set over X.

Definition 3.4. Let $(X, m_{(X,E)})$ be a soft m-space with the property $\mathbf{B}, Y \subset X$ in $(X, m_{(X,E)})$. The soft space $(Y, m_{(Y,E)})$ is called a soft m-subspace of $(X, m_{(X,E)})$ if $m_{(Y,E)} = \{(A,E) \cap \tilde{Y} : (A,E) \in m_{(X,E)}\}.$

Lemma 3.1. Let $(X,m_{(X,E)})$ be a soft m-space with the property **B**, $(Y,m_{(Y,E)})$ be a soft m-subspace of $(X,m_{(X,E)})$. If $(A,E) \subset \tilde{Y} \subset \tilde{X}$. Then $m_{(Y,E)}$ - $Cl(A,E) = m_{(X,E)}$ - $Cl(A,E) \cap \tilde{Y}$.

Proof: We have $m_{(Y,E)}$ -Cl(A,E) = ∩ {(F,E): (A,E) ⊂ (F,E), \tilde{Y} -(F,E) ∈ $m_{(Y,E)}$)}= ∩ {(F,E) ∩ \tilde{Y} : (A,E) ⊂ (F,E)∩ \tilde{Y} , \tilde{X} - (F,E) ∈ $m_{(X,E)}$ }= ∩ {(F,E) ∩ \tilde{Y} : (A,E) ⊂ (F,E), \tilde{X} - (F,E) ∈ $m_{(X,E)}$ } = ∩ {(F,E) : (A,E) ⊂ (F,E), \tilde{X} - (F,E) ∈ $m_{(X,E)}$ } ∩ \tilde{Y} = $m_{(X,E)}$ -Cl(A,E) ∩ \tilde{Y} .

Therefore, the lemma holds.

Lemma 3.2. Let $(X,m_{(X,E)})$ be a soft m-space with the property **B**, $(Y,m_{(Y,E)})$ be a soft m-subspace of $(X,m_{(X,E)})$. If (A,E) and (B,E) are soft sets in $(Y,m_{(Y,E)})$, then (A,E) and (B,E) are soft m-separated in $(Y,m_{(Y,E)})$ if and only if (A,E) and (B,E) are soft m-separated in $(X,m_{(X,E)})$.

Proof: We have $m_{(Y,E)}$ -Cl(A,E) \cap (B,E) = $(m_{(X,E)}$ -Cl(A,E) $\cap \tilde{Y}) \cap$ (B,E) = $m_{(X,E)}$ -Cl(A,E) \cap (B,E) by lemma 3.1.

Similarly, we have

 $m_{(Y,E)}$ -Cl(B,E) \cap (A,E) = $m_{(X,E)}$ -Cl(B,E) \cap (A,E).

Therefore, the lemma holds.

Lemma 3.3. Let $(X,m_{(X,E)})$ be a soft *m*-space with the property **B**, $\tilde{Y} \subset \tilde{X}$. $(Y,m_{(Y,E)})$ be a soft *m*-subspace of $(X,m_{(X,E)})$. $(Y,m_{(Y,E)})$ is soft *m*-connected. If (A,E) and (B,E) are soft *m*-separated in $(X,m_{(X,E)})$, such that $\tilde{Y} \subset (A,E) \cup (B,E)$, then $\tilde{Y} \subset (A,E)$ or $\tilde{Y} \subset (B,E)$.

Proof: We have $\tilde{Y} \subset (A,E) \cup (B,E)$, we have $\tilde{Y} = (\tilde{Y} \cap (A,E)) \cup (\tilde{Y} \cap (B,E))$. By lemma 3.2, $\tilde{Y} \cap (A,E)$ and $\tilde{Y} \cap (B,E)$ are soft m-separated in $(Y,m_{(Y,E)})$. Since $(Y,m_{(Y,E)})$ is soft m-connected, we have $\tilde{Y} \cap (A,E) = \phi$ or $\tilde{Y} \cap (B,E) = \phi$. Therefore, $\tilde{Y} \subset (A,E)$ or $\tilde{Y} \subset (B,E)$.

Lemma 3.4. Let $\{(X_{\alpha}, m_{(X_{\alpha}, E)}: \alpha \in J\}$ be a soft family non-empty soft mconnected subspaces of $(X, m_{(X, E)})$. If $\bigcap_{\alpha \in J} X_{\alpha} \neq \phi$, then $(\bigcup_{\alpha \in J} X_{\alpha}, \bigcup_{\alpha \in J} m_{(X_{\alpha}, E)})$ is a soft m-connected subspace of $(X, m_{(X, E)})$.

Proof: Let $Y = (\bigcup_{\alpha \in J} X_{\alpha})$. Choose a soft point $x_e \in \tilde{Y}$. Let (C, E) and (D, E)be a soft m-disconnection of $(\bigcup_{\alpha \in J} X_{\alpha}, \bigcup_{\alpha \in J} m_{(X_{\alpha}, E)})$. Then, $x_e \in (C, E)$ and $x_e \in (D, E)$, we assume that $x_e \in (C, E)$. For each $\alpha \in J$. Since $\{(X_{\alpha}, m_{(X_{\alpha}, E)}) \text{ is soft} m$ -connected, it follows from lemma 3.3 that $(X_{\alpha}) \subset (C, E)$ or $(X_{\alpha}) \subset (D, E)$. Therefore, we have $\tilde{Y} \subset (C, E)$ since $x_e \in (C, E)$ and then $(D, E) = \phi$, which is a contradiction. Thus $(\bigcup_{\alpha \in J} X_{\alpha}, \bigcup_{\alpha \in J} m_{(X_{\alpha}, E)})$ is a soft m-connected subspace of $(X, m_{(X, E)})$.

Theorem 3.2. Let $\{(X_{\alpha}, m_{(X_{\alpha}, E)}): \alpha \in J\}$ be a soft family non-empty soft mconnected subspaces of $(X, m_{(X, E)})$. If $X_{\alpha} \cap X_{\beta} \neq \phi$ for $\alpha, \beta \in J$, then $(\bigcup_{\alpha \in J} X_{\alpha}, m_{(\bigcup_{\alpha \in J} X_{\alpha}, E)})$ is a soft m-connected subspace of $(X, m_{(X, E)})$.

Proof : Let $\alpha_o \in J$. For $\beta \in J$, Put $A_\beta = X_{\alpha_o} \cup X_\beta$ By lemma 3.4 , $\{(A_\beta, m_{(X_\beta, E)}) \text{ is soft m-connected}$. Then, $\{\{(A_\beta, m_{(X_\beta, E)}) : \beta \in J\}$ is a family soft m-connected subspace of $(X, m_{(X,E)})$ and $\bigcap_{\beta \in J} A_\beta = X_{\alpha_o} \neq \phi$. Obviously, $(\bigcup_{\alpha \in J} X_\alpha = (\bigcup_{\beta \in J} A_\beta)$. It follows from lemma 3.4 that $(\bigcup_{\alpha \in J} X_\alpha, \bigcup_{\alpha \in J} m_{(X_\alpha, E)})$ is a soft m-connected subspace of $(X, m_{(X,E)})$.

Theorem 3.3. Let $(X,m_{(X,E)})$ be a soft *m*-space with the property **B**, $\tilde{Y} \subset \tilde{X}$. $(Y,m_{(Y,E)})$ be a soft *m*-subspace of $(X,m_{(X,E)})$. If $\tilde{Y} \subset \tilde{A} \subset m_{(X,E)}$ -Cl(F,E), then $(A,m_{(A,E)})$ is a soft connected m-subspace of $(X,m_{(X,E)})$. In particular, $m_{(X,E)}$ -Cl(F,E) is a soft connected m-subspace of $(X,m_{(X,E)})$.

Proof: Let (C,E) and (D,E) be a soft m-disconnection of $(A,m_{(A,E)})$. By lemma 3.3, we have $\tilde{A} \subset (C,E)$ or $\tilde{A} \subset (D,E)$. We assume that $\tilde{A} \subset (C,E)$. By lemma 3.2, we have $m_{(X,E)}$ -Cl $(C,E) \cap (D,E) = \phi$ and, hence, $\tilde{A} \cap (D,E) = \phi$, which is a contradiction.

Theorem 3.4. Let $f_{pu} : (X, m_{(X,E)}) \to (Y, m_{(Y,K)})$ be a soft M-continuous mapping, where $m_{(X,E)}$ and $m_{(Y,K)}$ are soft minimal structures over X and Y, respectively. If $(X, m_{(X,E)})$ is soft m-connected, then the soft image of $(X, m_{(X,E)})$ is also soft m-connected.

Proof: Let $f_{pu} : (\mathbf{X}, m_{(X,E)}) \to (\mathbf{Y}, m_{(Y,K)})$ be a soft continuous mapping. Conversely, suppose that $(\mathbf{Y}, m_{(Y,K)})$ is soft m-disconnected and the pair (A,K) and (B,K) is a soft m-disconnection of $(\mathbf{Y}, m_{(Y,K)})$. Since $f_{pu} : (\mathbf{X}, m_{(X,E)}) \to (\mathbf{Y}, m_{(Y,K)})$ is soft continuous, then $f_{pu}^{-1}(\mathbf{A}, \mathbf{K}) \in m_{(X,E)}$, $f_{pu}^{-1}(\mathbf{B}, \mathbf{K}) \in m_{(X,E)}$. Clearly, the pair $f_{pu}^{-1}(\mathbf{A}, \mathbf{K})$ and $f_{pu}^{-1}(\mathbf{B}, \mathbf{K})$ is a soft m-disconnection of $(\mathbf{X}, m_{(X,E)})$, which is a contradiction. Hence, $(\mathbf{Y}, m_{(Y,K)})$ is soft m-connected. This completes the proof.

Remark 3.5. Let (X,τ,E) and (Y,ϑ,K) be two soft topological spaces over X and Y, respectively. If $m_{(X,E)} = \tau$, $m_{(Y,K)} = \vartheta$. $f_{pu} : (X,\tau,E) \to (Y,\vartheta,K)$ is a soft continuous mapping. If (X,τ,E) is soft connected (resp. soft semi-connected, soft pre connected, soft b-connected) then the soft image of (X,τ,E) is also soft connected (resp. soft semi-connected, soft preconnected, soft b-connected).

Definition 3.5. Let $m_{(X,E)}$ be a soft m-structure over X. A soft set (F,E) in $(X,m_{(X,E)})$ is soft m-connected if it is soft m-connected as a soft m-subspace.

Remark 3.6. Let (X,τ,E) be a soft topological space over X. A soft set (F,E) in (X,τ,E) is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) if it is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) as a soft subspace.

Theorem 3.5. Let $m_{(X,E)}$ be a soft *m*-structure over X, (G,E) be a soft *m*-connected set in $(X,m_{(X,E)})$ and (F,E) be a soft set over X such that $(G,E) \subset (F,E) \subset m_{(X,E)}$ -Cl(G,E). Then(F,E) is soft *m*-connected.

Proof: It is sufficient that $m_{(X,E)}$ -Cl(G,E) is soft m-connected. On the contrary, suppose that $m_{(X,E)}$ -Cl(G,E) is soft m-disconnected. Then there exists a soft m-disconnection ((H,E),(K,E)) of $m_{(X,E)}$ -Cl(G,E). That is, there are $((H,E)\cap (G,E)),((K,E)\cap (G,E))$ soft sets in (G,E) such that $((H,E)\cap (G,E))\cap ((K,E)\cap (G,E)) = ((H,E)\cup ((H,E)\cap (G,E))\cap (G,E) = \phi$, and $((H,E)\cap (G,E))\cup ((K,E)\cap (G,E)) = ((H,E)\cup (K,E))\cap (G,E) = (G,E)$. This yields that the pair $((H,E)\cap (G,E))$ and $((K,E)\cap (G,E))$ is a soft m-disconnection of (G,E), which is a contradiction. This proves that $m_{(X,E)}$ -Cl(G,E) is soft m-connected. Hence, the proof is complete.

Lemma 3.5. Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**, and let (A,E) and (B,E) be two soft sets over X. In $(X,m_{(X,E)})$ the following statements are equivalent:

(1) ϕ , X are only soft m-open and soft m-closed set in $m_{(X,E)}$.

(2) $(X,m_{(X,E)})$ is not a soft union of two disjoint soft sets (A,E) and $(B,E) \in m_{(X,E)}$.

 $(3)(X,m_{(X,E)})$ is not a soft union of two disjoint soft sets $(A, E)^c$ and $(B, E)^c \in m_{(X,E)}$.

 $(4)(X,m_{(X,E)})$ is not a soft union of two nonempty soft m-separated sets.

Remark 3.7. Let (X, τ, E) be a soft topological space over X, so we put $m_{(X,E)} = \tau$ (resp. SSO(X,E),SPO(X,E),SbO(X,E)). Also, let (A,E) and (B,E) be two soft sets over X. In (X, τ, E) the following statements are equivalent:

(1) ϕ and X are only soft clopen (resp. soft semi-clopen, soft preclopen, soft b-clopen) sets in (X, τ , E).

(2) (X, τ , E) is not a soft union of two soft disjoint soft open (resp. soft semi-open , soft pre open, soft b-open) sets .

(3) (X, τ ,E) is not a soft union of two soft disjoint soft closed (resp. soft semi-closed, soft preclosed, soft b-closed) sets.

(4) (X, τ , E) is not a soft union of two nonempty soft separated (soft semi separated, soft preseparated, soft b-separated) sets.

Theorem 3.6. Let $m_{(X,E)}$ be a soft *m*-structure over X with the property **B**. In $(X,m_{(X,E)})$ the following statements are equivalent:

(1) $(X, m_{(X,E)})$ is a soft m-connected space.

 $(2)(X, m_{(X,E)})$ is not a soft union of any two soft m-separated sets.

Proof: (1) \rightarrow (2) : Assume (1). Suppose (2) is false, then let (A,E) and (B,E) be two soft m-separated sets such that $\tilde{X} = (A,E) \cup (B,E)$. Since $(X, m_{(X,E)})$ is soft m-connected $m_{(X,E)}$ -Cl(A,E) \cap (B,E)=(A,E) \cap $m_{(X,E)}$ -Cl(B,E) = ϕ . Since (A,E) $\subset m_{(X,E)}$ -Cl(A,E) and (B,E) $\subset m_{(X,E)}$ -Cl(B,E), then (A,E) \cup (B,E) = ϕ . Now $m_{(X,E)}$ -Cl(A,E) $\subset (B,E)^c = (A,E)$. Hence, $m_{(X,E)}$ -Cl(A,E) = (A,E). Therefore, $(A, E)^c \in m_{(X,E)}$.By the same way we show that $(B, E)^c \in m_{(X,E)}$ which is a contradiction with remark 3.5. This shows that (2) is true. Therefore (1) \rightarrow (2).

 $(2) \rightarrow (1)$: Assume that (2) is not true. Let $(A, E)^c$ and $(B, E)^c$ be two soft m-disjoint nonempty and $(A, E)^c$ and $(B, E)^c \in m_{(X,E)}$ such that $\tilde{X} = (A, E)^c \cup (B, E)^c$. Then, $m_{(X,E)}$ -Cl $(A, E)^c \cap (B,E)=(A,E) \cap m_{(X,E)}$ -Cl $(B, E)^c = (A, E)^c \cap (B, E)^c = \phi$. This contradicts the hypothesis in (2). This show that (1) is true. Therefore, $(2) \rightarrow (1)$.

Remark 3.8. Let (X, τ, E) be a soft topological space over X, so we put $m_{(X,E)} = \tau$. Then, the following statements are equivalent:

(1) (X, τ , E) is a soft connected (soft semi-connected, soft preconnected, soft b connected) space. (2) (X, τ ,E) is not the soft union of any two soft separated (soft semi separated, soft preseparated, soft b-separated) sets.

Remark 3.9. (1) Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**, and let (A,E) be a soft set over X. If $\phi \neq (A,E) \subset (X,m_{(X,E)})$ then (A,E) is a soft m-connected set in $m_{(X,E)}$ whenever $(X,m_{(X,E)})$ is a soft m-connected space.

(2) Let (X, τ, E) be a soft topological space over X, so we put $m_{(X,E)} = \tau$. If $\phi \neq (A,E) \subset (X, \tau, E)$ then (A,E) is a soft connected (soft semi-connected, soft preconnected, soft b-connected) set over X whenever (X, τ, E) is a soft connected (soft semi-connected, soft preconnected, soft b-connected) space.

Theorem 3.7. Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**. In $(X,m_{(X,E)})$, let the soft set (A,E) be a soft m-connected set. Let (B,E) and (C,E) be soft m-separated sets. If $(A,E) \subset (B,E) \cup (C,E)$. Then, either $(A,E) \subset (B,E)$ or $(A,E) \subset (C,E)$.

Proof: Suppose (A,E) is a soft m-connected set and (B,E),(C,E) are soft mseparated sets such that (A,E) \subset (B,E) \cup (C,E). Let (A,E) notsubset (B,E) and (A,E) is not a subset of (C,E). Suppose $(A_1,E) = (B,E) \cap (A,E) \neq \phi$ and (A_2,E) $= (C,E) \cap (A,E) \neq \phi$. Then, (A,E) $= (A_1,E) \cup (A_2,E)$. Since $(A_1,E) \subset (B,E)$. Hence, $m_{(X,E)}$ -Cl $(A_1,E) \subset m_{(X,E)}$ -Cl(B,E). Since $m_{(X,E)}$ -Cl $(B,E) \cap (C,E) = \phi$ then $m_{(X,E)}$ -Cl $(A_1,E) \cap (A_2,E) = \phi$. Since $(A_2,E) \subset (C,E)$. Hence, $m_{(X,E)}$ -Cl (A_2,E) $\subset m_{(X,E)}$ -Cl(C,E). Since $m_{(X,E)}$ -Cl $(C,E) \cap (B,E) = \phi$. Then $m_{(X,E)}$ -Cl (A_2,E) $\cap (A_1,E) = \phi$. But $(A,E) = (A_1,E) \cup (A_2,E)$. Therefore, (A,E) is not a soft mconnected space. This is a contradiction. Then either $(A,E) \subset (B,E)$ or $(A,E) \subset$ (C,E).

Remark 3.10. Let (X, τ, E) be a soft topological space over X, so we put $m_{(X,E)} = \tau$. Also, let (A,E) be a soft connected (resp. soft semi-connected, soft preconnected, soft b-connected) set. Let (B,E) and (C,E) be soft separated (resp. soft semi-separated, soft preseparated, soft b-separated) sets. If $(A,E) \subset (B,E) \cup (C,E)$ then either $(A,E) \subset (B,E)$ or $(A,E) \subset (C,E)$.

Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**. In $(X,m_{(X,E)})$, let the soft set (A,E) be a soft m-connected set, then $m_{(X,E)}$ -Cl(A,E) is soft m-connected.

Proof: Suppose the soft set (A,E) is a soft m-connected set and $m_{(X,E)}$ -Cl(A,E) is not. Then there exist two soft m-separated sets (B,E) and (C,E) such that $m_{(X,E)}$ -Cl(A,E) = (B,E) \cup (C,E). But (A,E) $\subset m_{(X,E)}$ -Cl(A,E),then (A,E) = (B,E) \cup (C,E) and since (A,E) is a soft m-connected set, then by Theorem 3.7 either (A,E) \subset (B,E) or (A,E) \subset (C,E).

(i) If $(A,E) \subset (B,E)$ then $m_{(X,E)}$ -Cl $(A,E) \subset m_{(X,E)}$ -Cl(B,E). But $m_{(X,E)}$ -Cl $(B,E) \cap (C,E) = \phi$. Hence, $m_{(X,E)}$ -Cl $(A,E) \cap (C,E) = \phi$. Since $(C,E) \subset m_{(X,E)}$ -Cl(A,E), then $(C,E) = \phi$ this is a contradiction.

(ii) If $(A,E) \subset (C,E)$ then in the same way we can prove that $(B,E) = \phi$, which is a contradiction. Therefore, $m_{(X,E)}$ -Cl(A,E) is soft m-connected.

Remark 3.11. Let (X, τ, E) be soft topological space over X, we put $m_{(X,E)} = \tau$ let soft set (A,E) be a soft connected (resp. soft semi connected, soft pre connected, soft b-connected)set then $m_{(X,E)}$ -Cl(A,E) is soft connected(resp. soft semi connected, soft pre connected, soft b-connected).

Theorem 3.8. Let $m_{(X,E)}$ be a soft m-structure over X with the property **B**. In $(X,m_{(X,E)})$, let the soft set (A,E) be a soft m-connected set and $(A,E) \subset (B,E) \subset m_{(X,E)}$ -Cl(A,E) then (B,E) is soft m-connected.

Proof: If (B,E) is not soft m-connected, then there exist two soft sets (C,E) and (D,E) such that $m_{(X,E)}$ -Cl(C,E) \cap (D,E) = (C,E) \cap $m_{(X,E)}$ -Cl(D,E) = ϕ and (B,E) = (C,E) \cup (D,E). Since (A,E) \subset (B,E), thus either (A,E) \subset (C,E) or (A,E) \subset (D,E). Suppose (A,E) \subset (C,E) then $m_{(X,E)}$ -Cl(A,E) \subset $m_{(X,E)}$ -Cl(C,E), thus $m_{(X,E)}$ -Cl(A,E) \subset (D,E) = $m_{(X,E)}$ -Cl(C,E) \subset (D,E) = ϕ . But (D,E) \subset (B,E) \subset $m_{(X,E)}$ -Cl(A,E), thus $m_{(X,E)}$ -Cl(A,E) \cap (D,E) = (D,E). Therefore, (D,E) = ϕ which is a contradiction. Thus, (B,E) is a soft m-connected set.

If $(A,E) \subset (B,E)$, then we can prove that $(C,E) = \phi$. This is a contradiction. Then (B,E) is soft m-connected.

Remark 3.12. Let (X, τ, E) be a soft topological space over X, so we put $m_{(X,E)} = \tau$. Also, let the soft set (A,E) be a soft connected (resp. soft semi-connected, soft preconnected, soft b-connected) set and $(A,E) \subset (B,E) \subset m_{(X,E)}$ -Cl(A,E), then (B,E) is soft connected (resp. soft semi-connected, soft preconnected, soft b-connected).

Remark 3.13. Let (X,τ,E) be a soft topological space over X, and (F,E) be a soft set over X. (X,τ,E) is soft connected (soft semi-connected, soft preconnected, soft b-connected) if and only if there does not exist nonempty soft set (F,E) over X which is both soft open (resp. soft semi-open, soft preopen, soft b-open) and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed) set over X.

REFERENCES

- U. ACAR, F. KOYUNCU and B. TANAY: Soft sets and soft rings. Comput. Math. Appl. ,59, (2010), pp. 3458–3463.
- 2. M. AKDAG and A. OZKAN : On soft preopen sets and soft pre separation axioms.Gazi University Journal of Science GU J Sci., **27(4)**, (2014), pp. 1077–1083.
- M. AKDAG and A. OZKAN: On soft α-open sets and soft α-continuous functions. Abstract and Applied Analysis http//dx.doi.org/101155/2014/891341 2014 Article ID 891341 (2014) 7 pages.
- 4. M. AKDAG and A. OZKAN: On soft β -open sets and soft β -continuous functions. The Scientific World Journal 2014 Article ID 843456 (2014) 6 pages.
- M. AKDAG and A. OZKAN : soft b-open sets and soft b-continuous functions. Math. Sci 8:124 DOI 10.1007/s40096-014-0124-7 (2014).
- I. AROCKIARANI and A. AROKIALANCY : Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces. Int. J. Math. Arch., 4(2), (2013), pp. 1–7.

S.S. Thakur and A.S. Rajput

- M. IRFAN ALI, F. FENG, X. LIU, W. K. MIN and M. SHABIR: On some new operations in soft set theory. Comput. Math. Appl., 57, (2009), pp. 1547–1553.
- 8. B. CHEN: Soft semi-open sets and related properties in soft topological spaces. Applied Mathematics and Information Sciences ,7(1) ,(2013),pp. 287–294.
- 9. D.N.GEORGIOU, A.C.MEGARITIS and V.I.PETROPOULOS: On soft topological spaces. Applied Mathematics and Information Sciences, 7, (2013), pp. 1889–1901.
- H.HAZRA , P.MAJUMDAR and S.K.SAMANTA: Soft topology. Fuzzy Inf. Eng., DOI 10, (2012), pp.105–115.
- 11. SABIR HUSSAIN: A note on soft connectedness. Journal of the Egyptian Math ematical Society ,23, (2015) ,pp.6–11.
- A. KHARAL and B. AHMAD: *M*appings on soft classes. New Math. Nat. Comput., 7 (3), (2011) ,pp. 471–481.
- A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF : gammaoperation and decompositions of some forms of soft continuity in soft topological spaces. Annals of Fuzzy Mathematics and Informatics, 7, (2014),pp. 181–196.
- FUCAI LIN: Soft connected space and soft paracompact space. International Journal of Mathematical, Physical, Electrical and Computer Enginnering, 7 (2), (2013), pp. 277–283.
- P.K. MAJI, R. BISWAS and R. ROY: An application of soft sets in decision making problem. Comput. Math. Appl. ,44, (2002),pp. 1077–1083.
- P.K. MAJI, R. BISWAS and R. ROY: Soft set theory. Comput. Math Appl. ,45, (2003),pp. 555–562.
- 17. J. MAHANTA and P. K. DAS: On soft topological space via semi open and semi closed soft sets. Kyungpook Math. J.,54, (2014), pp. 221–236.
- W. K. MIN: A note on soft topological spaces. Computers and Mathematics with Applications ,62 ,(2011),pp. 3524–3528.
- D. MOLODTSOV: Soft set theory first results. Comput. Math. Appl., 37, (1999), pp. 9–31.
- 20. E. PEYGHAN ,B. SAMADI and A. TAYEBI: On soft connectedness. arXiv:1202.1668v1 [math.GN]8Feb (2012).
- S. S. THAKUR and ALPA SINGH RAJPUT: On Soft M-continuous Mappings. The Journal of Fuzzy Mathematics, Los Angeles, 25, (2017), pp. 313–326.
- M. SHABIR and M. NAZ: On soft topological spaces. Comput. Math. Appl., 61, (2011), pp. 1786–1799.
- Q. M. SUN, Z. L. ZHANG and J. LIU: In proceedings of rough sets and knowledge technology. Third International Conference. RSKT 2008, (17-19), (2008), pp. 403– 409.
- J. SUBHASHININ and C. SEKAR : Soft p-connectedness via soft p-open sets. International Journal of Mathematical Trends and Technology (IJMTT). V6:203-214, ISSN:2231-5373
- I. ZORLUTUNA, N. AKDAG W.K. MIN and S. ATMACA: Remarks on soft topological spaces. Ann Fuzzy Math. Inf.,3 (2), (2012), pp. 171–185.
- I. ZORLUTUNA and H. ÇAKIR: On continuity of soft mappings. Appl. Math. Inf. Sci.,9(1),(2015),pp. 403–409.

S.S. thakur Faculty of Science Department of Applied Mathematics P. O. Box 60 Jabalpur Engineering College , Jabalpur (M. P.) 482011 India samajh_singh@rediffmail.com

Alpa Singh Rajput Department of Mathematics P.O. Box 73 Jabalpur Engineering College , Jabalpur (M. P.) 482011 India alpasinghrajput09@gmail.com