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EXISTENCE AND STABILITY RESULTS FOR COINCIDENCE

POINTS OF NONLINEAR CONTRACTIONS

Binayak S. Choudhury, Nikhilesh Metiya and Sunirmal Kundu

Abstract. In this paper we define α - admissibility of multi-valued mapping with
respect to a single-valued mapping and use this concept to establish a coincidence
point theorem for pairs of nonlinear multi-valued and single-valued mappings under
the assumption of an inequality with rational terms. We illustrate the result with an
example. In the second part of the paper we prove the stability of the coincidence
point sets associated with the pairs of mappings in our coincidence point theorem. For
that purpose we define the corresponding stability concepts of coincidence points. The
results are primarily in the domain of nonlinear set-valued analysis.
Keywords: Hausdorff metric, α-admissible mappings, coincidence point, stability

1. Introduction and Mathematical Background

Our aim in this paper is to establish the existence of coincidence points of two
nonlinear single-valued and multi-valued contractions in complete metric spaces.
We also discuss stability of the sets of such coincidence points. The study is a part
of set-valued analysis.

The famous Banach’s contraction mapping principle [2] was extended to the
case of set-valued mappings by Nadler in 1969 [17]. The work is recognized as the
origin of metric fixed point theory of multi-valued functions. Following the work of
Nadler, a large number of works on multi-valued fixed point theory have appeared
in literatures. We first describe below some essential concepts for our discussion in
this paper. Let (X, d) be a metric space. Then

N(X) = {A : A is a non-empty subset of X},

B(X) = {A : A is a non-empty bounded subset of X},

CB(X) = {A : A is a non-empty closed and bounded subset of X} and

C(X) = {A : A is a non-empty compact subset of X}.
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For x ∈ X and B ∈ N(X), the function D(x, B), and for A, B ∈ CB(X), the
function H(A, B) are defined as follows:

D(x, B) = inf {d(x, y) : y ∈ B} and H(A, B) = max {sup
x∈A

D(x, B), sup
y∈B

D(y, A)}.

H is known as the Hausdorff metric induced by the metric d on CB(X) [17]. Fur-
ther, if (X, d) is complete then (CB(X), H) is also complete.

The following is the multi-valued contraction mapping theorem due to Nadler
[17].

Theorem 1.1. Let (X, d) be a complete metric space, and let T : X −→ CB(X)
be a multi-valued mapping. Assume that there exists k ∈ (0, 1) such that

H(Tx, T y) ≤ k d(x, y), for all x, y ∈ X.

Then T has a fixed point, that is, there exists z ∈ X such that z ∈ Tz.

The result of the following lemma was proved by Nadler for establishing the
above theorem.

Lemma 1.1. [17] Let (X, d) be a metric space and A, B ∈ CB(X). Let q > 1.
Then for every x ∈ A, there exists y ∈ B such that d(x, y) ≤ q H(A, B).

The above lemma is also valid for q ≥ 1. We give the result in the following
lemma.

Lemma 1.2. Let (X, d) be a metric space and A, B ∈ C(X). Let q ≥ 1. Then
for every x ∈ A, there exists y ∈ B such that d(x, y) ≤ q H(A, B).

Proof. Let A, B ∈ C(X) and x ∈ A. Since A, B ∈ C(X) implies A, B ∈ CB(X),
by Lemma 1.1 the result is true if q > 1. So, we shall prove the result for q = 1.
Now, we know that

H(A, B) = max {sup
x∈A

D(x, B), sup
y∈B

D(y, A)}.

From the definition, p = D(x, B) = inf {d(x, b) : b ∈ B} ≤ H(A, B). Then there
exists a sequence {yn} in B such that d(x, yn) → p as n→ ∞. Since B is compact,
{yn} has a convergent subsequence {yn(k)}. Hence there exists y ∈ X such that
yn(k) → y as k → ∞. As B is compact, it is closed and y ∈ B. Now, lim

n→∞

d(x, yn) =

p implies that lim
k→∞

d(x, yn(k)) = p, that is, d(x, y) = p = D(x, B) ≤ H(A, B).

Hence the proof is completed.

The following is a consequence of Lemma 1.2.

Lemma 1.3. Let A and B be two nonempty compact subsets of a metric space
(X, d) and T : A→ C(B) be a multi-valued mapping. Let q ≥ 1. Then for a, b ∈ A

and x ∈ Ta, there exists y ∈ Tb such that d(x, y) ≤ q H(Ta, T b).
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Definition 1.1. Let T : X → CB(Y ) be a multi-valued mapping, where (X, ρ),
(Y, d) are two metric spaces andH is the Hausdorff metric on CB(Y ). The mapping
T is said to be continuous at x ∈ X if for any sequence {xn} in X , H(Tx, Txn) → 0
whenever ρ(x, xn) → 0 as n→ ∞.

A new contraction mapping was introduced by Samet et al [19] which is known
as (α − ψ) - contraction for which a fixed point result was established in the same
work. Subsequently there have been generalizations and extensions of this result
through a good number of works like [1, 8, 10, 13, 20] through which the (α− ψ) -
type contractions have emerged as an important area of study in recent literatures
of fixed point theory. The following definition is associated with this area of study.

Definition 1.2. [19] Let X be a nonempty set, T : X −→ X and α : X ×X −→
[0, ∞). The mapping T is α-admissible if for x, y ∈ X ,

α(x, y) ≥ 1 =⇒ α(Tx, T y) ≥ 1.

Following the above definition we define multi-valued α-admissible mapping with
respect to a single-valued mapping.

Definition 1.3. Let X be a nonempty set, T : X −→ N(X) a multi-valued map-
ping, g : X −→ X and α : X×X −→ [0, ∞). The mapping T is called multi-valued
α-admissible with respect to the mapping g if for x0, y0 ∈ X ,

α(gx0, gy0) ≥ 1 =⇒ α(x1, y1) ≥ 1, where x1 ∈ Tx0 and y1 ∈ Ty0.

We use the concept of compatibility between a single-valued and a multi-valued
mapping.

Definition 1.4. [21] Let (X, d) be a metric space, T : X −→ CB(X) a multi-
valued mapping and g : X −→ X . The pair of mappings (g, T ) is said to compatible
if lim

n−→∞

D(gyn+1, T gxn) = 0 whenever {xn} and {yn} are sequences in X such that

lim
n−→∞

gxn = yn = t for some t in X , where yn+1 ∈ Txn for n = 1, 2, 3, ....

The compatibility concept between two mappings has an extensive role in the
theory of common fixed points and coincidence points. Originally introduced by
Jungck [11], this concept has been variously generalized and used in fixed point
related problems. Some of the works in this area are noted in [3, 4, 6, 7, 12, 18].

Definition 1.5. Let X be a nonempty set, g : X −→ X a single-valued mapping
and T : X −→ N(X) a multivalued mapping. A point x ∈ X is a coincidence point
of g and T if gx ∈ Tx.

The set of all coincidence points of g and T is denoted by C(g, T ), that is,
C(g, T ) = {x ∈ X : gx ∈ Tx}.
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The second part of the paper deals with the stability of coincidence point sets of
the single-valued and multi-valued contractions we consider here. Such a concept
is a generalization of the stability of fixed point sets which have been considered in
several papers like [5, 8, 9, 14, 15, 16] in recent times. The following is the essential
background for this study.

Let (X, d) be a metric space and
{

Tn : X −→ X : n ∈ N

}

be a sequence of

mappings. We recall that the fixed point sets F (Tn) of a sequence {Tn} are stable

if H
(

F (Tn), F (T )
)

−→ 0 as n −→ ∞ where T = lim
n→∞

Tn and H is the Hausdorff

metric. We propose the following two definitions of stability for coincidence point
sets. The first definition is the stability of coincidence point sets of a sequence of

pair of mappings
{

(g, Tn) : n ∈ N, Tn : X −→ X and g : X −→ X
}

while the

other is the stability of coincidence point sets of a sequence of pair of mappings
{

(g, Tn) : n ∈ N, Tn : X −→ CB(X) and g : X −→ X
}

.

Definition 1.6. Let (X, d) be a metric space. Let
{

Tn : X −→ X : n ∈

N

}

be a sequence of mappings and g : X −→ X . The coincidence point sets

C(g, Tn) of the sequence of pair of mappings {(g, Tn) : n ∈ N} are stable if

limn→∞H
(

C(g, Tn), C(g, T )
)

= 0, where T = lim
n→∞

Tn and H is the Hausdorff

metric.

Definition 1.7. Let (X, d) be a metric space. Let
{

Tn : X −→ CB(X) : n ∈ N

}

be a sequence of multi-valued mappings and g : X −→ X . The coincidence point
sets C(g, Tn) of the sequence of pair of mappings {(g, Tn) : n ∈ N} are stable if

limn→∞H
(

C(g, Tn), C(g, T )
)

= 0, where T = lim
n→∞

Tn and H is the Hausdorff

metric.

Note: In definition 1.6, if one treats each Tn (n = 1, 2, 3, ...) as a multi-valued
mapping in which case Tnx is a singleton set for every x ∈ X , then the definition
1.6 reduces to definition 1.7. So definition 1.6 is a special case of definition 1.7.

Note: In both of the definitions 1.6 and 1.7, if one considers g : X −→ X to be
identity mapping, then both the definitions 1.6 and 1.7 reduce to the definition of

stability of fixed point sets of a sequence of mappings
{

Tn : X −→ X : n ∈ N

}

and
{

Tn : X −→ C(X) : n ∈ N

}

respectively.

As mentioned earlier, the present work has two parts. The first part is a coin-
cidence point result for a single-valued and a multi-valued mappings. The second
part is the analysis of stability of coincidence point sets.

We note some features of the present work in the following.

• We consider nonlinear single and multi-valued mappings.
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• We use in our theorem a rational inequality.

• We define multi-valued α - admissibility with respect to single-valued map-
pings.

• We define stability of coincidence point sets for single and multi-valued map-
ping pairs.

• The stability of coincidence point sets is established.

• Hausdorff distance is used.

• An illustrative example is discussed.

2. Main Results

Theorem 2.1. Let (X, d) be a complete metric space, T : X −→ C(X) a multi-
valued mapping, g : X −→ X and α : X ×X −→ [0, ∞). Suppose that

(i) Tx ⊆ g(X) for every x ∈ X,

(ii) g and T are continuous,

(iii) The pair of mappings (g, T ) is compatible,

(iv) T is multi-valued α− admissible with respect to the mapping g.

Let ϕ : [0, ∞) −→ [0, ∞) be a continuous and nondecreasing function with
∑

∞

n=1 ϕ
n(t) <∞ and ϕ(t) < t for each t > 0. Suppose that for all x, y ∈ X,

(2.1) α(gx, gy) H(Tx, T y) ≤ ϕ
(

U(x, y)
)

,

where
(2.2)

U(x, y) = max
{

d(gx, gy),
D(gy, T y) [1 +D(gx, Tx)]

1 + d(gx, gy)
,
D(gy, Tx) [1 +D(gx, T y)]

1 + d(gx, gy)

}

.

If there exist x0 ∈ X and y1 ∈ Tx0 such that α(gx0, y1) ≥ 1, then C(g, T ) is
non-empty.

Proof. By the condition, there exist x0 ∈ X and y1 ∈ Tx0 such that α(gx0, y1) ≥ 1.
Since Tx0 ⊆ g(X) and y1 ∈ Tx0, there exists x1 ∈ X such that gx1 = y1. So
α(gx0, gx1) ≥ 1. By Lemma 1.3, for y1 = gx1 ∈ Tx0 there exists y2 ∈ Tx1 such
that

d(y1, y2) ≤ α(gx0, gx1) H(Tx0, T x1).

Since Tx1 ⊆ g(X) and y2 ∈ Tx1, there exists x2 ∈ X such that gx2 = y2. So from
the above inequality, we have

d(gx1, gx2) ≤ α(gx0, gx1) H(Tx0, T x1).
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Applying (2.1) and using the monotone property of ϕ, we have

d(gx1, gx2) ≤ α(gx0, gx1) H(Tx0, T x1)

≤ ϕ
(

max
{

d(gx0, gx1),
D(gx1, T x1) [1 +D(gx0, T x0)]

1 + d(gx0, gx1)
,

D(gx1, T x0) [1 +D(gx0, T x1)]

1 + d(gx0, gx1)

})

≤ ϕ
(

max
{

d(gx0, gx1),
d(gx1, gx2) [1 + d(gx0, gx1)]

1 + d(gx0, gx1)
,

d(gx1, gx1) [1 + d(gx0, gx2)]

1 + d(gx0, gx1)

})

≤ ϕ
(

max
{

d(gx0, gx1), d(gx1, gx2)
})

.

Therefore,

(2.3) d(gx1, gx2) ≤ ϕ
(

max
{

d(gx0, gx1), d(gx1, gx2)
})

.

Suppose that d(gx0, gx1) < d(gx1, gx2). Then d(gx1, gx2) > 0 and it follows by
(2.3) and a property of ϕ that

d(gx1, gx2) ≤ ϕ
(

d(gx1, gx2)
)

< d(gx1, gx2),

which is a contradiction. Hence d(gx1, gx2) ≤ d(gx0, gx1). Then it follows from
(2.3) that

(2.4) d(gx1, gx2) ≤ ϕ
(

d(gx0, gx1)
)

.

Since T is α-admissible with respect to the mapping g and gx1 ∈ Tx0, gx2 ∈ Tx1
with α(gx0, gx1) ≥ 1, we have that α(gx1, gx2) ≥ 1. By Lemma 1.3, for y2 =
gx2 ∈ Tx1 there exists y3 ∈ Tx2 such that

d(y2, y3) ≤ α(gx1, gx2) H(Tx1, T x2).

Since Tx2 ⊆ g(X) and y3 ∈ Tx2, there exists x3 ∈ X such that gx3 = y3. Then we
have

d(gx2, gx3) ≤ α(gx1, gx2) H(Tx1, T x2).

Applying (2.1) and using the monotone property of ϕ, we have

d(gx2, gx3) ≤ α(gx1, gx2) H(Tx1, T x2)

≤ ϕ
(

max
{

d(gx1, gx2),
D(gx2, T x2) [1 +D(gx1, T x1)]

1 + d(gx1, gx2)
,

D(gx2, T x1) [1 +D(gx1, T x2)]

1 + d(gx1, gx2)

})

≤ ϕ
(

max
{

d(gx1, gx2),
d(gx2, gx3) [1 + d(gx1, gx2)]

1 + d(gx1, gx2)
,

d(gx2, gx2) [1 + d(gx1, gx3)]

1 + d(gx1, gx2)

})



Existence and Stability for Coincidence Points 475

≤ ϕ
(

max
{

d(gx1, gx2), d(gx2, gx3)
})

.

Therefore,

(2.5) d(gx2, gx3) ≤ ϕ
(

max
{

d(gx1, gx2), d(gx2, gx3)
})

.

Suppose that d(gx1, gx2) < d(gx2, gx3). Then d(gx2, gx3) > 0 and it follows by
(2.5) and a property of ϕ that

d(gx2, gx3) ≤ ϕ
(

d(gx2, gx3)
)

< d(gx2, gx3),

which is a contradiction. Hence d(gx2, gx3) ≤ d(gx1, gx2). Then it follows from
(2.5) that

(2.6) d(gx2, gx3) ≤ ϕ
(

d(gx1, gx2)
)

.

Since T is α-admissible with respect to the mapping g and gx2 ∈ Tx1, gx3 ∈ Tx2
with α(gx1, gx2) ≥ 1, we have that α(gx2, gx3) ≥ 1. Maintaining this process, we
construct sequences {xn} and {yn} in X such that for all n ≥ 0,

(2.7) yn+1 = gxn+1 ∈ Txn,

(2.8) α(gxn, gxn+1) ≥ 1

and

(2.9) d(gxn+1, gxn+2) ≤ ϕ
(

d(gxn, gxn+1)
)

.

Applying (2.9) repeatedly and using the monotone property of ϕ, we have
(2.10)

d(gxn+1, gxn+2) ≤ ϕ
(

d(gxn, gxn+1)
)

≤ ϕ2
(

d(gxn−1, gxn)
)

≤ ... ≤ ϕn+1
(

d(gx0, gx1)
)

.

Then by a property of ϕ, we have

∑

n

d(gxn, gxn+1) ≤
∑

n

ϕn
(

d(gx0, gx1)
)

<∞,

which shows that {gxn} is a Cauchy sequence in X . As the metric space (X, d) is
complete, there exists a point p ∈ X such that

(2.11) gxn −→ p as n −→ ∞.

By (2.7) and (2.11), we have

(2.12) yn −→ p as n −→ ∞.
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Here {xn} and {yn} are sequences in X such that yn+1 ∈ Txn for n ∈ N and
lim

n−→∞

gxn = yn = p, where p ∈ X . So applying the compatibility condition of the

pairs of functions g and T , we have

lim
n−→∞

D(gyn+1, T gxn) = 0.

Since T and g are continuous, using (2.11) and (2.12), we have from the above
inequality that D(gp, T p) = 0. Since Tp ∈ C(X), Tp is compact and hence Tp is
closed, that is, Tp = Tp, where Tp denotes the closure of Tp. Now, D(gp, T p) = 0
implies that gp ∈ Tp = Tp, that is, p ∈ C(g, T ). Hence C(g, T ) is non-empty.

In the next the theorem we consider g(X) to be closed in the metric space (X, d)
and also consider a order condition involving α. Due to this considerations we need
not require the following assumptions which we consider in theorem 2.1 :

(a) the continuity assumption of g and T ,

(b) the compatibility assumption of the pairs (g, T ).

Theorem 2.2. In addition to the hypotheses of Theorem 2.1 ( except the hypoth-
esis (ii) and (iii)), suppose that g(X) is a closed subset of (X, d) and if {xn} is a
sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn −→ x as n −→ ∞, then
there exists a subsequence {xn(l)} of {xn} such that α(xn(l), x) ≥ 1 for all l. Then
C(g, T ) is non-empty.

Proof. We take the same sequence {xn} as in the proof of Theorem 2.1. Then
{gxn} satisfies (2.7), (2.8) and (2.9). Arguing similarly as in the proof of Theorem
2.1, we prove that {gxn} is a Cauchy sequence in g(X) ⊆ X and satisfies (2.11),
that is,

gxn −→ p as n −→ ∞.

As g(X) is closed, we have p ∈ g(X). So there exists u ∈ X such that gu = p.
Therefore

(2.13) gxn −→ gu as n −→ ∞.

Using (2.7), (2.8) and (2.13), we have a subsequence {gxn(l)} of {gxn} such that

α(gxn(l), gu) ≥ 1, for all l ≥ 1.

Since gxn(l)+1 ∈ Txn(l), for all l ≥ 1, from (2.1) and (2.2), we get
D(gxn(l)+1, T u) ≤ H(Txn(l), T u) ≤ α(gxn(l), gu) H(Txn(l), T u)

≤ ϕ
(

max
{

d(gxn(l), gu),
D(gu, Tu)

[

1 +D(gxn(l), T xn(l))
]

1 + d(gxn(l), gu)
,

D(gu, Txn(l))
[

1 +D(gxn(l), T u)
]

1 + d(gxn(l), gu)

})
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≤ ϕ
(

max
{

d(gxn(l), gu),
D(gu, Tu)

[

1 + d(gxn(l), gxn(l)+1)
]

1 + d(gxn(l), gu)
,

d(gu, gxn(l)+1)
[

1 +D(gxn(l), T u)
]

1 + d(gxn(l), gu)

})

.

Taking limit l −→ ∞ in the above inequality, using (2.13) and the continuity of ϕ,
we have

D(gu, Tu) ≤ ϕ
(

D(gu, Tu)
)

.

Suppose that D(gu, Tu) 6= 0. Then from the above inequality and by a property
of ϕ, we have

D(gu, Tu) ≤ ϕ
(

D(gu, Tu)
)

< D(gu, Tu),

which is a contradiction. Hence D(gu, Tu) = 0. Then arguing similarly as in the
proof of Theorem 2.1, u ∈ C(g, T ), that is, C(g, T ) is non-empty.

Example 2.1. Let X =
[

2, ∞
)

and “d” be the usual metric on X.

Let T : X −→ C(X) be defined as follows:

Tx =











[

x+
1

x
−

1

3
, 3

]

, if 2 ≤ x ≤ 3

{x}, if x > 3.

Let g : X −→ X be defined as follows:

gx =











x+
1

x
−

1

3
, if 2 ≤ x ≤ 3

x, if x > 3.

Let α : X ×X → [0, ∞) be defined as

α(x, y) =











2, if x = y > 3

1

4
, otherwise.

Let ϕ : [0, ∞) −→ [0, ∞) be defined as follows:

ϕ(t) = k t, where t ∈ [0, ∞) and
1

2
≤ k < 1.

Then all the conditions of the Theorems 2.1 and 2.2 are satisfied and here C(g, T ) =
[

2, ∞
)

.
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3. Stability of coincidence point sets

In this section, we investigate the stability of coincidence point sets of the set
valued contractions mentioned in section 2.

Theorem 3.1. Let (X, d) be a complete metric space, Ti : X −→ C(X), i = 1, 2
be two multi-valued mappings, g : X −→ X and α : X × X −→ [0, ∞). Let the
following conditions be satisfied.

(i) Tix ⊆ g(X) for every x ∈ X, where i ∈ {1, 2},

(ii) Each Ti (i=1, 2) and g are continuous,

(iii) Each Ti (i=1, 2) is multivalued α−admissible with respect to the mapping g,

(iv) Each pair mappings (g, Ti), where i ∈ {1, 2}, is compatible,

(v) Let Mi = Sup {d(x, gx) : x ∈ C(g, Ti)}, where i ∈ {1, 2}, exist.

Suppose that each pair (g, Ti), i = 1, 2 satisfies 2.1 and 2.2 of theorem 2.1, where
ϕ : [0, ∞) → [0, ∞) is a continuous and nondecreasing function with Φ(t) =
∑

∞

n=1 ϕ
n(t) <∞, Φ(t) → 0 as t→ 0 and ϕ(t) < t for each t > 0. Also suppose that

for any x ∈ C(g, T1), we have α(gx, y) ≥ 1 whenever y ∈ T2x; and for any x ∈

C(g, T2), we have α(gx, y) ≥ 1 whenever y ∈ T1x. Then H
(

C(g, T1), C(g, T2)
)

≤

Φ(K) +R, where K = supx∈X H(T1x, T2x) and R = Max {Mi : i = 1, 2}.

Proof. By theorem 2.1, the sets C(g, T1) and C(g, T2) are non-empty. Let
x0 ∈ C(g, T1), that is, gx0 ∈ T1x0. Following the Lemma 1.2, there exists y1 ∈ T2x0
such that

d(gx0, y1) ≤ H(T1x0, T2x0).

Since x0 ∈ C(g, T1) and y1 ∈ T2x0, by the condition of the theorem, we have
α(gx0, y1) ≥ 1. As T2x0 ⊆ g(X) and y1 ∈ T2x0, there exists x1 ∈ X such that
gx1 = y1. So α(gx0, gx1) ≥ 1. Therefore, the above inequality reduces to the
following inequality

(3.1) d(gx0, gx1) ≤ H(T1x0, T2x0).

Since gx1 = y1 ∈ T2x0, following the Lemma 1.3 there exists y2 ∈ T2x1 such that

d(gx1, y2) ≤ α(gx0, gx1)H(T2x0, T2x1).

Since T2x1 ⊆ g(X) and y2 ∈ T2x1, there exists x2 ∈ X such that gx2 = y2. Then
the above inequality becomes

d(gx1, gx2) ≤ α(gx0, gx1)H(T2x0, T2x1).

Arguing similarly as in the proof of Theorem 2.1, we construct sequences {xn} and
{yn} in X such that for all n ≥ 0

(3.2) yn+1 = gxn+1 ∈ T2xn,
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and (2.8), (2.9) and (2.10) are satisfied. Arguing similarly as in the proof of Theorem
2.1, we prove that {gxn} is a Cauchy sequenceX and there exists a point p ∈ X such
that (2.11) and (2.12) are satisfied and also gp ∈ T2p = T2p, that is, p ∈ C(g, T2),
that is, C(g, T2) is non-empty.

From (3.1) and the the definition of K, we have

(3.3) d(gx0, gx1) ≤ H(T1x0, T2x0) ≤ K = sup
x∈X

H(T1x, T2x).

By triangle inequality and (2.10), we have

d(gx0, p) ≤ d(gxn+1, p) +

n
∑

i=0

d(gxi, gxi+1) ≤ d(gxn+1, p) +

n
∑

i=0

ϕi
(

d(gx0, gx1)
)

.

Taking limit n −→ ∞ in the above inequality, using (2.11), (3.3) and the properties
of ϕ, we have

(3.4) d(gx0, p) ≤
∞
∑

i=0

ϕi
(

d(gx0, gx1)
)

≤
∞
∑

i=0

ϕi(K) = Φ(K).

By triangle inequality and (3.4), we have

d(x0, p) ≤ d(x0, gx0) + d(gx0, p) ≤ d(x0, gx0) + Φ(K) ≤ Φ(K) +R.

Thus, given arbitrary x0 ∈ C(g, T1), we can find p ∈ C(g, T2) for which

d(x0, p) ≤ Φ(K) +R.

Similarly, we can prove that for arbitrary z0 ∈ C(g, T2), there exists a w ∈ C(g, T1)
such that d(z0, w) ≤ Φ(K) +R. Hence, we conclude that

H
(

C(g, T1), C(g, T2)
)

≤ Φ(K) +R.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1 ( except the hypoth-
esis (ii) and (iv)), suppose that g(X) is a closed subset of (X, d) and if {xn} is a
sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn −→ x as n −→ ∞, then
there exists a subsequence {xn(l)} of {xn} such that α(xn(l), x) ≥ 1 for all l. Then

H
(

C(g, T1), C(g, T2)
)

≤ Φ(K) + R, where K and R are as defined in Theorem

3.1.

Proof. From Theorem 2.2, the sets C(g, T1) and C(g, T2) are non-empty. Let
y0 ∈ C(g, T1), that is, gy0 ∈ T1y0. Arguing similarly as in the proof of Theorem
2.2 and Theorem 3.1, we have the required proof.

Lemma 3.1. Let (X, d) be a complete metric space. Let {Tn : X −→ C(X) : n ∈
N} be a sequence of multi-valued mappings, g : X −→ X and α : X×X −→ [0, ∞).



480 B. S. Choudhury, N. Metiya and S. Kundu

Let each Tn (n ∈ N) be multi-valued α - admissible with respect to the mapping g.
Suppose that if {xn} and {yn} are two sequences in X with xn → a and yn → b as
n→ ∞, then

(3.5) α(xn, yn) ≥ 1 for every n ∈ N =⇒ α(a, b) ≥ 1.

Suppose that the sequence {Tn} is uniformly convergent to a multi-valued mapping
T : X −→ C(X). If for every n ∈ N, the pair (g, Tn) satisfies (2.1) and (2.2), then
T is multi-valued α-admissible with respect to g and the pair (g, T ) satisfies (2.1)
and (2.2), where the function ϕ : [0, ∞) → [0, ∞) is continuous.

proof. For every n ∈ N, the pair (g, Tn) satisfies (2.1) and (2.2), we have

α(gx, gy) H(Tnx, Tny) ≤ ϕ
(

max
{

d(gx, gy),
D(gy, Tny) [1 +D(gx, Tnx)]

1 + d(gx, gy)
,

D(gy, Tnx) [1 +D(gx, Tny)]

1 + d(gx, gy)

})

.

Since the sequence {Tn} is uniformly convergent to T and ϕ is continuous, taking
limit n→ ∞ in the above inequality, we get

α(gx, gy) H(Tx, T y) ≤ ϕ
(

max
{

d(gx, gy),
D(gy, T y) [1 +D(gx, Tx)]

1 + d(gx, gy)
,

D(gy, Tx) [1 +D(gx, T y)]

1 + d(gx, gy)

})

,

which shows that the pair (g, T ) satisfies (2.1)and (2.2).

Now, we shall prove that T is multi-valued α-admissible with respect to the
mapping g. Let α(gx, gy) ≥ 1, for some x, y ∈ X . Let a ∈ Tx and b ∈ Ty be
arbitrary. Since Tn → T uniformly, there exist two sequences {xn} in {Tnx} and
{yn} in {Tny} such that xn → a and yn → b as n → ∞. Since for every n ∈ N, Tn
is multi-valued α-admissible with respect to g and α(gx, gy) ≥ 1, it follows from
definition 1.3 that α(xn, yn) ≥ 1, for every n ∈ N. Then by (3.5), it follows that
α(a, b) ≥ 1. Thus for x, y ∈ X , we have

α(gx, gy) ≥ 1 =⇒ α(a, b) ≥ 1, where a ∈ Tx and b ∈ Ty.

Hence T is multi-valued α-admissible with respect to the mapping g.

In the following we present our stability results.

Theorem 3.3. Let (X, d) be a complete metric space. Let
{

Tn : X −→ C(X) :

n ∈ N

}

be a sequence of multi-valued mappings, g : X −→ X and α : X ×X −→
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[0, ∞). Suppose that the sequence {Tn} is uniformly convergent to a multi-valued
mapping T : X −→ C(X). Suppose that the following hold:

(i) Tnx ⊆ g(X) for every x ∈ X and n ∈ N,

(ii) each Tn(n ∈ N) and g are continuous,

(iii) each Tn(n∈N) is multi-valued α−admissible with respect to the mapping g,

(iv) each pair of mappings (g, Tn), where n ∈ N, is compatible,

(v) each pair of mappings (g, Tn), where n ∈ N, satisfies (2.1) and (2.2),

where the conditions upon ϕ are the same as in Theorem 3.1,

(vi) if {xn} and {yn} are two sequences in X with xn→a and yn→b as n→∞,

then α(xn, yn) ≥ 1 for every n ∈ N =⇒ α(a, b) ≥ 1,

(vii) for any x∈C(g, Tn)(n ∈ N) there exists y∈Tx such thatα(gx, y)≥1;

also, for any x ∈ C(g, T ) there exists y∈Tnx(n∈N) such that α(gx, y)≥1,

(viii) Mn = Sup
{

d(x, gx) : x ∈ C(g, Tn)
⋃

C(g, T )
}

and Mn → 0 as n→ ∞.

Then limn→∞H
(

C(g, Tn), C(g, T )
)

= 0, that is, the coincidence point sets of the

sequence of pair of mappings {(g, Tn)} are stable.

proof. Since {Tn : X −→ C(X) : n ∈ N} is a sequence of continuous multi-valued
mappings and is uniformly convergent to a multi-valued mapping T : X −→ C(X),
T is also continuous. By Lemma 3.1, T is multi-valued α-admissible with respect
to g and the pair (g, T ) satisfies (2.1) and (2.2). Let Kn = supx∈X H(Tnx, Tx).
Since the sequence {Tn} is uniformly convergent to T on X ,

(3.6) lim
n→∞

Kn = lim
n→∞

sup
x∈X

H(Tnx, Tx) = 0.

From Theorem 3.1, we get

H
(

C(g, Tn), C(g, T )
)

≤ Φ(Kn) +Mn, for every n ∈ N.

Since ϕ is continuous and Φ(t) → 0 as t → 0, using (3.6) and the condition (viii)
of the theorem, we have

lim
n→∞

H
(

C(g, Tn), C(g, T )
)

≤ lim
n→∞

[

Φ(Kn) +Mn

]

= 0,

that is,

lim
n→∞

H
(

C(g, Tn), C(g, T )
)

= 0.

Hence the proof is completed.

Theorem 3.4. In addition to the hypotheses of Theorem 3.3 ( except the hypoth-
esis (ii) and (iv)), suppose that g(X) is a closed subset of (X, d) and if {xn} is
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a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn −→ x as n −→ ∞,
then there exists a subsequence {xn(l)} of {xn} such that α(xn(l), x) ≥ 1 for all l.

Then limn→∞H
(

C(g, Tn), C(g, T )
)

= 0, that is, the coincidence point sets of the

sequence of pair of mappings {(g, Tn)} are stable.

proof. Arguing similarly as in the proof of theorem 3.3 and using theorem 3.2, we
have the required proof.
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