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1. Introduction

An emerging branch of modern mathematics is the geometry of contact mani-
folds. The notion of contact geometry has evolved from the mathematical formalism
of classical mechanics [8]. Two important classes of contact manifolds areK-contact
manifolds and Sasakian manifolds ([7], [17]). K-contact manifolds have been stud-
ied by several authors ([4], [10], [13], [14], [20], [22]) and many others.

Let ∇̄ be a linear connection in a Riemannian manifold M . The torsion tensor
T is given by

T (X,Y ) = ∇̄XY − ∇̄Y X − [X,Y ].

The connection ∇̄ is symmetric if its torsion tensor vanishes, otherwise it is non-
symmetric. The connection ∇̄ is a metric connection if there is a Riemannian metric
g in M such that ∇̄Xg = 0, otherwise it is non-metric. It is well known that a lin-
ear connection is symmetric and metric if and only if it is the Levi-Civita connection.

A. Friedmann and J.A. Schouten introduced the idea of a semi-symmetric linear
connection [2]. A linear connection ∇̄ is said to be a semi-symmetric connection if
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its torsion tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y

for all X,Y ∈ χ(M), where χ(M) is the Lie algebra of vector fields on the manifold
M .

S. Golab introduced the idea of a quarter symmetric linear connection in a
differentiable manifold [16]. A linear connection is said to be a quarter-symmetric
connection if its torsion tensor T is of the form

T (X,Y ) = η(Y )φX − η(X)φY,

where η is a 1-form and φ is a (1, 1) tensor field. If we put φX = X and φY = Y ,
then the quarter-symmetric metric connection reduces to the semi-symmetric met-
ric connection [2]. Thus the notion of the quarter-symmetric connection generalizes
the notion of the semi-symmetric connection. A quarter-symmetric metric connec-
tion have been studied by various authors ([1], [3], [12], [15], [18], [19], [21]).

A relation between the quarter-symmetric metric connection ∇̄ and the Levi-
Civita connection ∇ in an n-dimensional K-contact manifold M is given by [6]

∇̄XY = ∇XY − η(X)φY.(1.1)

Motivated by the above studies, in this paper we study certain curvature condi-
tions on the conformal curvature tensor in K-contact manifolds with respect to the
quarter-symmetric metric connection. The paper is organized as follows: In Section
2, we give a brief introduction of K-contact manifolds. In Section 3, we deduce the
relation between the curvature tensor of K-contact manifolds with respect to the
quarter-symmetric metric connection and the Levi-Civita connection. In Section 4,
we consider conformal curvature tensor with respect to the quarter-symmetric met-
ric connection and discuss its characteristic properties. Section 5 is devoted to study
flatness conditions on K-contact manifolds with respect to the quarter-symmetric
metric connection.

2. Preliminaries

Let M be an almost contact metric manifold of dimension n equipped with an
almost contact metric structure (φ, ξ, η, g) admitting a (1, 1) tensor field φ, a vector
field ξ, a 1-form η and a Riemannian metric g. Then

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0,(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),(2.2)

g(X,φY ) = −g(φX, Y )(2.3)
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for all vector fields X , Y on M .

An almost contact metric manifold is
(i) a contact manifold if g(X,φY ) = dη(X,Y ); and
(ii) a Sasakian manifold if (∇Xφ)Y = g(X,Y )ξ − η(Y )X
for every X,Y on M .

A contact metric manifold is K-contact if and only if the (1, 1) type tensor field h

defined by h = 1

2
£ξφ is equal to zero, where £ denotes Lie differentiation. Every

Sasakian manifold is K-contact but the converse is not true, in general. However a
three-dimensional K-contact manifold is a Sasakian manifold [9]. It is well known
that (M, g) is Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y(2.4)

for all vector fields X, Y on M .

In a K-contact manifold M , the following relations hold:

∇Xξ = −φX,(2.5)

g(R(X,Y )Z, ξ) = g(Y, Z)η(X)− g(X,Z)η(Y ),(2.6)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, R(ξ,X)ξ = −X + η(X)ξ,(2.7)

S(X, ξ) = (n− 1)η(X), Qξ = (n− 1)ξ(2.8)

for any vector fields X , Y and Z, where R and S are the Riemannian curvature
tensor and the Ricci tensor of M , respectively.

Definition 2.1. A K-contact manifold M is said to be an η-Einstein manifold if
its Ricci tensor S is of the form [11]

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),(2.9)

where a and b are smooth functions on M .

Definition 2.2. The conformal curvature tensor C on a K-contact manifold M

is defined by [11]

C(X,Y )Z = R(X,Y )Z −
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y(2.10)

+g(Y, Z)QX − g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],

where R, S, Q and r are the Riemannian curvature tensor, the Ricci tensor, the
Ricci operator and the scalar curvature, respectively.
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3. Curvature tensor on K-contact manifolds with respect to the

quarter-symmetric metric connection

If R and R̄, respectively, are the curvature tensors of the Levi-Civita connection
∇ and the quarter-symmetric metric connection ∇̄ on a K-contact manifold M .
Then we have [6]

R̄(X,Y )Z = R(X,Y )Z + 2g(φX, Y )φZ + [η(X)g(Y, Z)− η(Y )g(X,Z)]ξ(3.1)

+η(Z)[η(Y )X − η(X)Y ],

R̄(X,Y )ξ = 2[η(Y )X − η(X)Y ],(3.2)

R̄(ξ,X)Y = 2[g(X,Y )ξ − η(Y )X ],(3.3)

S̄(Y, Z) = S(Y, Z)− g(Y, Z) + nη(Y )η(Z),(3.4)

S̄(X, ξ) = 2(n− 1)η(X), S̄(ξ, ξ) = 2(n− 1),(3.5)

Q̄Y = QY − Y + nη(Y )ξ, Q̄ξ = 2(n− 1)ξ,(3.6)

r̄ = r(3.7)

for all vector fields X,Y, Z ∈ χ(M).

4. Conformal curvature tensor on K-contact manifolds with respect to

the quarter-symmetric metric connection

Analogous to the Definition 2.2, the conformal curvature tensor C̄ on a K-
contact manifold M with respect to the quarter-symmetric metric connection ∇̄ is
given by

C̄(X,Y )Z = R̄(X,Y )Z −
1

(n− 2)
[S̄(Y, Z)X − S̄(X,Z)Y(4.1)

+g(Y, Z)Q̄X − g(X,Z)Q̄Y ] +
r̄

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],

where R̄, S̄, Q̄ and r̄ are the Riemannian curvature tensor, the Ricci tensor, the Ricci
operator and the scalar curvature with respect to the connection ∇̄, respectively on
M .
Using (3.1), (3.4), (3.6) and (3.7) in (4.1), we get

C̄(X,Y )Z = C(X,Y )Z + 2g(φX, Y )φZ +
2

(n− 2)
[g(X,Z)η(Y )ξ(4.2)

−g(Y, Z)η(X)ξ + η(X)η(Z)Y − η(Y )η(Z)X + g(Y, Z)X − g(X,Z)Y ],
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where

C(X,Y )Z = R(X,Y )Z −
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]

is the conformal curvature tensor with respect to the Levi-Civita connection ∇.
Putting Z = ξ in (4.2) and using (2.1) and (2.2), we get

C̄(X,Y )ξ = C(X,Y )ξ.(4.3)

Hence we can state the following theorem:

Theorem 4.1. An n-dimensional K-contact manifold is ξ-conformally flat with

respect to the quarter-symmetric metric connection if and only if the manifold is

also ξ-conformally flat with respect to the Levi-Civita connection.

Taking the inner product of (4.2) with U , we have

C̄(X,Y, Z, U) = C(X,Y, Z, U) + 2g(φX, Y )g(φZ,U)(4.4)

+
2

(n− 2)
[g(X,Z)η(Y )η(U)− g(Y, Z)η(X)η(U) + g(Y, U)η(X)η(Z)

−g(X,U)η(Y )η(Z) + g(Y, Z)g(X,U)− g(X,Z)g(Y, U)],

where g(C(X,Y )Z,U) = C(X,Y, Z, U) and g(C̄(X,Y )Z,U) = C̄(X,Y, Z, U) are
the conformal curvature tensors with respect to the connections ∇ and ∇̄, respec-
tively on M .
Interchanging X and Y in (4.4), we have

C̄(Y,X,Z, U) = C(Y,X,Z, U) + 2g(φY,X)g(φZ,U)(4.5)

+
2

(n− 2)
[g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U) + g(X,U)η(Y )η(Z)

−g(Y, U)η(X)η(Z) + g(X,Z)g(Y, U)− g(Y, Z)g(X,U)].

On adding (4.4) and (4.5), we get

C̄(X,Y, Z, U) + C̄(Y,X,Z, U) = 0.(4.6)

Interchanging Z and U in (4.4), we have

C̄(X,Y, U, Z) = C(X,Y, U, Z) + 2g(φX, Y )g(φU,Z)(4.7)
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+
2

(n− 2)
[g(X,U)η(Y )η(Z)− g(Y, U)η(X)η(Z) + g(Y, Z)η(X)η(U)

−g(X,Z)η(Y )η(U) + g(Y, U)g(X,Z)− g(X,U)g(Y, Z)].

Adding (4.4) and (4.7), we get

C̄(X,Y, Z, U) + C̄(X,Y, U, Z) = 0.(4.8)

Again interchanging pair of slots in (4.4), we have

C̄(Z,U,X, Y ) = C(Z,U,X, Y ) + 2g(φZ,U)g(φX, Y )(4.9)

+
2

(n− 2)
[g(Z,X)η(U)η(Y )− g(U,X)η(Z)η(Y ) + g(U, Y )η(Z)η(X)

−g(Z, Y )η(U)η(X) + g(U,X)g(Z, Y )− g(Y, U)g(X,Z)].

Now, subtracting (4.9) from (4.4), we get

C̄(X,Y, Z, U)− C̄(Z,U,X, Y ) = 0.(4.10)

Thus in view of (4.6), (4.8) and (4.10), we can state the following theorem:

Theorem 4.2. In an n-dimensional K-contact manifold with respect to the quarter-

symmetric metric connection, we have

(i) C̄(X,Y, Z, U) + C̄(Y,X,Z, U) = 0;
(ii) C̄(X,Y, Z, U) + C̄(X,Y, U, Z) = 0;
(iii) C̄(X,Y, Z, U)− C̄(Z,U,X, Y ) = 0
for any vector fields X,Y, Z, U ∈ χ(M).

Now, let R̄(X,Y )Z = 0, then from (3.2), we have

R(X,Y )Z = 2g(X,φY )φZ + [η(Y )g(X,Z)− η(X)g(Y, Z)]ξ(4.11)

+[η(X)Y − η(Y )X ]η(Z).

Taking the inner product of (4.11) with ξ and using (2.1) and (2.2), we have

g(R(X,Y )Z, ξ) = −[g(Y, Z)η(X)− g(X,Z)η(Y )](4.12)

which can be written as

g(R(X,Y )Z,U) = −[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].(4.13)

Thus we can state the following theorem:

Theorem 4.3. If the curvature tensor of a quarter-symmetric metric connection

in a K-contact manifold M vanishes, then the manifold is of constant curvature

tensor −1 and consequently it is locally isometric to the hyperbolic space Hn(−1).
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5. Flatness conditions on K-contact manifolds with respect to the

quarter-symmetric metric connection

Definition 5.1. A K-contact manifold is said to be
(i) conformally flat with respect to the quarter-symmetric metric connection, if

C̄(X,Y )Z = 0 for all X, Y, Z ∈ χ(M);(5.1)

(ii) ξ-conformally flat with respect to the quarter-symmetric metric connection, if

C̄(X,Y )ξ = 0 for all X, Y ∈ χ(M);(5.2)

(iii) quasi-conformally flat with respect to the quarter-symmetric metric connection,
if

g(C̄(X,Y )Z, φW ) = 0 for all X, Y, Z,W ∈ χ(M); and(5.3)

(iv) φ-conformally flat with respect to the quarter-symmetric metric connection, if

φ2C̄(φX, φY )φZ = 0 for all X, Y, Z ∈ χ(M).(5.4)

Firstly, we consider that the manifold M with respect to the quarter-symmetric
metric connection is conformally flat. Then from (4.1) and (5.1) it follows that

R̄(X,Y )Z =
1

(n− 2)
[S̄(Y, Z)X − S̄(X,Z)Y + g(Y, Z)Q̄X − g(X,Z)Q̄Y ](5.5)

−
r̄

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ].

Taking the inner product of (5.5) with ξ and using then (2.2), we have

g(R̄(X,Y )Z, ξ) =
1

(n− 2)
[S̄(Y, Z)η(X)− S̄(X,Z)η(Y )(5.6)

+g(Y, Z)S̄(X, ξ)− g(X,Z)S̄(Y, ξ)]−
r̄

(n− 1)(n− 2)
[g(Y, Z)η(X)− g(X,Z)η(Y )].

Putting X = ξ in (5.6) and using (2.1), (3.3) and (3.5), we have

S̄(Y, Z) = (
r̄

n− 1
− 2)g(Y, Z)− (

r̄

n− 1
− 2n)η(Y )η(Z).(5.7)

In view of (3.4) and (3.7), (5.7) takes the form

S(Y, Z) = (
r

n− 1
− 1)g(Y, Z) + (n−

r

n− 1
)η(Y )η(Z).(5.8)
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Secondly, we consider that the manifoldM with respect to the quarter-symmetric
metric connection is ξ-conformally flat. Then from (4.1) and (5.2) it follows that

g[R̄(X,Y )ξ −
1

(n− 2)
(S̄(Y, ξ)X − S̄(X, ξ)Y + g(Y, ξ)Q̄X − g(X, ξ)Q̄Y )(5.9)

+
r̄

(n− 1)(n− 2)
(g(Y, ξ)X − g(X, ξ)Y ),W ] = 0.

Using (2.2), (3.2) and (3.5) in (5.9), we have

(
r̄

n− 1
− 2)(η(Y )g(X,W )− η(X)g(Y,W ))(5.10)

−η(Y )S̄(X,W ) + η(X)S̄(Y,W ) = 0.

Taking Y = ξ in (5.10) and using (2.1), (2.2), (3.5) and (3.7), we have

S̄(X,W ) = (
r

n− 1
− 2)g(X,W ) + (2n−

r

n− 1
)η(X)η(W )

which in view of (3.4), takes the form

S(X,W ) = (
r

n− 1
− 1)g(X,W ) + (n−

r

n− 1
)η(X)η(W ).(5.11)

Thirdly, we consider that the manifold M with respect to the quarter-symmetric
metric connection is quasi-conformally flat. Then from (4.1) and (5.3) it follows that

g[R̄(X,Y )Z, φW ] =
1

(n− 2)
[S̄(Y, Z)g(X,φW )−S̄(X,Z)g(Y, φW )+g(Y, Z)S̄(X,φW )

(5.12)

−g(X,Z)S̄(Y, φW )] −
r̄

(n− 1)(n− 2)
[g(Y, Z)g(X,φW )− g(X,Z)g(Y, φW )].

By considering Y = Z = ξ and using (2.1), (2.2), (3.2) and (3.5), (5.12) reduces to

S̄(X,φW ) = (
r̄

n− 1
− 2)g(X,φW ).(5.13)

Replacing W by φW in (5.13) and using (2.1), (3.5) and (3.7), we have

S̄(X,W ) = (
r

n− 1
− 2)g(X,W ) + (2n−

r

n− 1
)η(X)η(W )

which in view of (3.4), takes the form

S(X,W ) = (
r

n− 1
− 1)g(X,W ) + (n−

r

n− 1
)η(X)η(W ).(5.14)
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Finally, we consider that the manifold is φ-conformally flat with respect to the
quarter-symmetric metric connection. Then from (5.4), we have

g(C̄(φX, φY )φZ, φW ) = 0(5.15)

for any X,Y, Z,W ∈ χ(M). In view of (4.1), (5.15) takes the form

g(R̄(φX, φY )φZ, φW ) =
1

(n− 2)
[g(φY, φZ)S̄(φX, φW )(5.16)

−g(φX, φZ)S̄(φY, φW ) + g(φX, φW )S̄(φY, φZ) − g(φY, φW )S̄(φX, φZ)]

−
r̄

(n− 1)(n− 2)
[g(φY, φZ)g(φX, φW ) − g(φX, φZ)g(φY, φW )].

Now using (2.1), (3.1), (3.4) and (3.7) in (5.16), we have

g(R(φX, φY )φZ, φW ) = 2g(Y, φX)g(Z, φW )(5.17)

+
1

(n− 2)
[S(φY, φZ)g(φX, φW )− g(φY, φZ)g(φX, φW )− S(φX, φZ)g(φY, φW )

+g(φX, φZ)g(φY, φW ) + S(φX, φW )g(φY, φZ)− g(φX, φW )g(φY, φZ)

−S(φY, φW )g(φX, φZ) + g(φY, φW )g(φX, φZ)]

−
r

(n− 1)(n− 2)
[g(φY, φZ)g(φX, φW ) − g(φX, φZ)g(φY, φW )].

Let {e1, e2, ....., en−1, ξ} be a local orthonormal basis of vector fields in M . Using
that {φe1, φe2, ....., φen−1, ξ} is also a local orthonormal basis, if we putX = W = ei
in (5.17) and sum up with respect to i, then

n−1∑

i=1

g[R(φei, φY )φZ, φei] = 2

n−1∑

i=1

g(Y, φei)g(Z, φei)+
1

(n− 2)

n−1∑

i=1

[S(φY, φZ)g(φei, φei)

(5.18)

−g(φY, φZ)g(φei, φei)− S(φei, φZ)g(φY, φei) + g(φei, φZ)g(φY, φei)

+S(φei, φei)g(φY, φZ)− g(φei, φei)g(φY, φZ)− S(φY, φei)g(φei, φZ)

+g(φY, φei)g(φei, φZ)] +
r

(n− 1)(n− 2)

n−1∑

i=1

[g(φei, φZ)g(φY, φei)− g(φY, φZ)g(φei, φei)].



512 R. Prasad and A. Haseeb

It can be verified easily that [5]

n−1∑

i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ)− g(φY, φZ),(5.19)

n−1∑

i=1

S(φei, φei) = r − (n− 1),(5.20)

n−1∑

i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ),(5.21)

n−1∑

i=1

g(φei, φei) = n− 1,(5.22)

n−1∑

i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ),(5.23)

n−1∑

i=1

g(φei, Y )g(φei, Z) = g(Y, Z)− η(Y )η(Z).(5.24)

By virtue of (5.19)-(5.24), the equation (5.18) can be written as

S(φY, φZ)− g(φY, φZ) = +2g(Y, Z)− 2η(Y )η(Z)(5.25)

+
1

(n− 2)
[(r − 3n+ 5)g(φY, φZ) + (n− 3)S(φY, φZ)]−

r

(n− 1)
g(φY, φZ)

from which it follows that

S(φY, φZ) = 2(n− 2)g(Y, Z)− 2(n− 2)η(Y )η(Z)(5.26)

+(
r

n− 1
− 2n+ 3)g(φY, φZ).

By replacing Y by φY and Z by φZ and using (2.1), (2.2) and (2.8), (5.26) becomes

S(Y, Z) = (
r

n− 1
− 1)g(Y, Z)− (

r

n− 1
− n)η(Y )η(Z).(5.27)

Equations (5.8), (5.11), (5.14) and (5.27) are of the form S(X,Y ) = ag(X,Y ) +
bη(X)η(Y ), where a = ( r

n−1
− 1) and b = (n − r

n−1
). Thus, we can state the

following theorem:

Theorem 5.1. Conformally flat, ξ-conformally flat, quasi-conformally flat and φ-

conformally flat K-contact manifolds of dimensional n (n > 3) with respect to the

quarter-symmetric metric connection are an η-Einstein manifold.
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