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Abstract. The aim of the present paper is to study biharmonic magnetic curves on
three-dimensional α-Sasakian manifolds. We also characterize biminimal curves on a
hypersurface of a three-dimensional α-Sasakian manifold with constant curvature.
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1. Introduction

In [3], Cabrerizo, Fernandez and Gomez introduced a geometric approach to the
study of magnetic fields on three-dimensional Sasakian manifolds. A magnetic curve
is the trajectory of magnetic fields. Geodesics on a manifold are curves which do
not experience any kind of forces where the magnetic curves experience force due
to magnetic fields. If the magnetic field disappears, the magnetic curves become
geodesics. In this way a magnetic curve is a generalization of a geodesic.

Nowadays, the study of geometric variational problem of curves has become a
subject of growing interest. Elastic curves are concerned with the classically known
geometrical variational problems. A plane curve is called an elastic curve if it is
a critical point of elastic energy [10]. In [9], Inoguchi and Lee studied another
geometric variational problem in Riemannian 2-manifolds of constant curvature.
They have investigated biminimal curves in 2-dimensional space forms. A smooth
map φ : (M, g) → (N, h) between Riemannian manifolds is said to be biharmonic
if it is a critical point of the bienergy functional E2(φ) =

∫
M

|τ(φ)2|dvg, where
τ(φ) = tr∇dφ is the tension field of φ. For further details we refer [4], [9], [12].
Loubeau and Montaldo introduced the notion of biminimal immersions [11]. An
isometric immersion φ : (M, g) → (N, h) is said to be biminimal if it is a critical
point of the bienergy functional under all normal variations. Thus, the biminimality
is weaker than biharmonicity for isometric immersions, in general. For a unit speed
curve γ(s) in a Riemannian 2-manifold M, its tension field is given by T (γ) = ∇γ′γ′.
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Thus the bienergy of γ is the elastic energyE2(γ) =
1
2

∫
k(s)2ds, where k(s) is signed

curvature of γ. Loubeau and Montaldo [11] proved that a unit speed curve γ(s) in

a Riemannian 2-manifold of Gaussian curvature K is biminimal if and only if its

signed curvature k(s) satisfies

k′′ − k3 + kK = 0.(1.1)

γ is biharmonic if and only if γ is biminimal and additionally satisfies kk′ = 0. The
concept of ξ-vertical and ξ-horizontal can be found in the paper [8]. Following it we
shall call the hypersurface of a three-dimensional α-Sasakian manifold as ξ-vertical
if the tangent vector fields of the hypersurface is orthogonal to ξ. Here, we inves-
tigate the biharmonic magnetic curves on three-dimensional α-Sasakian manifolds.
We are also interested in studying biminimal curves in ξ-vertical hypersurfaces of
three-dimensional α-Sasakian manifolds with constant curvature. We mainly cal-
culate the signed curvature of the biminimal curves because it is well known that a
plane curve is completely determined by its signed curvature. The notion of trans-
Sasakian manifolds was introduced by J. A. Oubina [13] in 1985. A trans-Sasakian
manifold with α as a constant and β = 0 is known as α-Sasakian manifold. The
present paper is organized as follows:
After the introduction, we recollect some preliminaries in Section 2 for the sub-
sequent use. Section 3 is devoted to the study of biharmonic magnetic curves on
three-dimensional α-Sasakian manifolds. In Section 4, as in the paper [9], we cal-
culate the signed curvature of biminimal curves on a ξ-vertical hypersurface of a
three-dimensional α-Sasakian manifold.

2. Preliminaries

LetM be a connected almost contact metric manifold with an almost contact metric
structure (φ, ξ, η, g), that is, φ is an (1, 1) tensor field, ξ is a vector field, η is an
1-form and g is compatible Riemannian metric such that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X),(2.3)

for all X,Y ∈ T (M) [2]. The fundamental 2-form Φ of the manifold is defined by

Φ(X,Y ) = g(X,φY ),(2.4)

for X,Y ∈ T (M).

An almost contact metric manifold is normal if

[φ, φ](X,Y ) + 2dη(X,Y )ξ = 0.

For an α-Sasakian manifold we know
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(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X),(2.5)

for a constant α. Here ∇ is the Levi-Civita connection on M. From (2.5) it follows
that

∇Xξ = −αφX.(2.6)

An α-Sasakian manifold of dimension three is a trans-Sasakian manifold of di-
mension three with α as a constant and β = 0. The Riemannian curvature tensor
R with respect to the Levi-Civita connection of a three-dimensional α-Sasakian
manifold is given by [7]

R(X,Y )Z = (
r

2
+ 2ξβ − 2α2)(g(Y, Z)X − g(X,Z)Y )

−g(Y, Z)(
r

2
− 3α2)η(X)ξ

+g(X,Z)(
r

2
− 3α2)η(Y )ξ

+(
r

2
− 3α2)η(Y )η(Z)X

+(
r

2
− 3α2)η(X)η(Z))Y,(2.7)

where S is the Ricci tensor of type (0, 2), and r is the scalar curvature of the
manifold M with respect to the Levi-Civita connection. Again it is well known that
the Gaussian curvature of a 2-dimensional space is the half of the scalar curvature
of the space.

Let M be a 3−dimensional Riemannian manifold. Let γ : I → M, I being an
interval, be a curve in M which is parameterized by arc length, and let ∇γ̇ denote
the covariant differentiation along γ with respect to the Levi-Civita connection on
M. It is said that γ is a Frenet curve if one of the following three cases holds:

(a) γ is of osculating order 1, i.e., ∇tt = 0 (geodesic), t = γ̇. Here, . denotes
differentiation with respect to the arc parameter.

(b) γ is of osculating order 2, i.e., there exist two orthonormal vector fields
t(= γ̇), n and a non-negative function k (curvature) along γ such that ∇tt = kn,

∇tn = −kt.

(c) γ is of osculating order 3, i.e., there exist three orthonormal vectors t(= γ̇),
n, b and two non-negative functions k(curvature) and τ(torsion) along γ such that

∇tt = kn,(2.8)

∇tn = −kt+ τb,(2.9)

∇tb = −τn.(2.10)

With respect to the Levi-Civita connection, a Frenet curve of osculating order
3 for which k is a positive constant and τ = 0 is called a circle in M ; a Frenet curve
of osculating order 3 is called a helix in M if k and τ both are positive constants
and the curve is called a generalized helix if k

τ
is a constant.
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3. Biharmonic magnetic curves in three-dimensional α-Sasakian

manifolds

In [6] Cho and Lee studied biharmonic Legendre curves. Biharmonic curves have
also been studied by the first author of the present paper [15]. Following [6], we
give the following definition.

Definition 3.1. A unit speed curve γ on a smooth manifold is called biharmonic

with respect to Levi-Civita connection if it satisfies

∇3
t t+ R(∇tt, t)t = 0,(3.1)

where t = γ̇.

Following [3], we give the following definition.

Definition 3.2. A smooth curve γ on a three-dimensional α-sasakian manifold

is called magnetic curve if it satisfies

∇γ̇ γ̇ = φγ̇.(3.2)

Let us consider a magnetic curve γ on a three-dimensional α-Sasakian manifold.
So, we have ∇γ̇ γ̇ = φγ̇. Differentiating it along γ̇, we obtain

∇2
γ̇ γ̇ = (∇γ̇φ)γ̇ − γ̇ + η(γ̇)ξ.

By virtue of (2.5), the above equation yields

∇2
γ̇ γ̇ = αg(γ̇, γ̇)ξ + η(γ̇)(ξ − αα̇)− γ̇.(3.3)

Differentiating the above equation along γ and using (2.6) we have

∇3
γ̇ γ̇ = −(α2 + 2αη(γ̇) + 1)φγ̇ +∇γ̇η(γ̇)ξ − α∇γ̇η(γ̇)γ̇.(3.4)

In view of (2.7)

R(φγ̇, γ̇) = (
r

2
− 2α2 + η(γ̇)2(3α2 − r

2
))φγ̇.(3.5)

From (3.4) and (3.5) and considering the curve biharmonic, we obtain

∇3
γ̇ γ̇ +R(∇γ̇ γ̇, γ̇)γ̇ = (

r

2
− 2α2 + η(γ̇)2(3α2 − r

2
)

− α2 − 2αη(γ̇)− 1)φγ̇ +∇γ̇η(γ̇)ξ

− α∇γ̇η(γ̇)γ̇.(3.6)

If the curve is biharmonic, we have

(
r

2
− 2α2 + η(γ̇)2(3α2 − r

2
)− α2 − 2αη(γ̇)− 1)φγ̇

+ ∇γ̇η(γ̇)ξ − α∇γ̇η(γ̇)γ̇

= 0.(3.7)
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Taking inner product with ξ in both sides of the equation (3.7) we obtain ∇γ̇η(γ̇) =
0. Consequently, η(γ̇) = a constant. Taking inner product in both sides of (3.7)
with respect to φγ̇, it follows that

r

2
− 2α2 + η(γ̇)2(3α2 − r

2
)− α2 − 2αη(γ̇)− 1 = 0.

The above equation yields r = a constant. A three-dimensional trans-Sasakian
Sasakian manifold with constant structure function is locally φ-symmetric [7] if and
only if the scalar curvature of the manifold is constant. It is so for three-dimensional
α-Sasakian manifolds. Thus we are in a position to state the following:

Theorem 3.1. If a three-dimensional α-Sasakian manifold admits a biharmonic

magnetic curve, then the manifold is locally φ-symmetric.

4. Biminimal curves on a hypersurface of a three-dimensional

α-Sasakian manifold.

Consider an α-Sasakian manifold of dimension three. If the manifold is of constant
curvature then, the Riemannian curvature of the manifold is given by

R(X,Y )Z = λ(g(Y, Z)X − g(X,Z)Y ),(4.1)

for the tangent vector fields X,Y, Z of the manifold and a constant λ. Comparing
(4.1) with (2.7) it follows that λ = r

2 − 2α2. Hence (4.1) takes the form

R(X,Y )Z = (
r

2
− 2α2)(g(Y, Z)X − g(X,Z)Y ),(4.2)

for the tangent vector fieldsX,Y, Z of the manifold. The Ricci tensor of the manifold
is given by

S(X,W ) = 2(
r

2
− 2α2)g(X,W ).(4.3)

And the scalar curvature of the manifold is given by

r = −6α2.(4.4)

Let S1 be the Ricci tensor and r1 be the scalar curvature of the ξ vertical hyper-
surface of the manifold. Then we have

S1(X,W ) = (
r

2
− 2α2)g(X,W ),(4.5)

where X,W are orthogonal to ξ. r1 = r − 4α2. Using (4.4) in (4.3) we obtain

r1 = 2α2.(4.6)

Let G1 be the Gaussian curvature of the ξ-vertical hypersurface of the manifold.
Then G1 = α2. Thus we obtain the following:
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Proposition 4.1. The Gaussian curvature of the ξ-vertical hypersurface of a

three-dimensional α-Sasakian manifold with constant curvature is α2.

Let us consider an α-Sasakian manifold of dimension three, where α is a constant.
LetM be a ξ vertical hypersurface of a three-dimensional α-Sasakian manifold. Now
the Gaussian curvature of M is α2. Consider a biminimal curve γ on M. Let k(s)
be the signed curvature of γ. Hence we have

k′′ − k3 + kα2 = 0.(4.7)

Multiplying both sides of the above equation by 2 dk
ds

and integrating we get

(k′)2 − 1

2
k4 + α2k2 = d,(4.8)

where d is constant of integration. The above equation yields
∫

dk√
k4 − 2α2k2 + 2d

=

∫
ds√
2
,

or, ∫
dk√

k4 − 2α2k2 + 2d
=

1√
2
(s− s0),

where s0 is a constant. The left-hand side of the above equation is an elliptic
integral. The integration process is given in the paper [9]. Following the process
we can get the values of k for different values of the integration constants as the
following.

(i) when α4 − 2d < 0,

k = α(
1− cn(

√
2α(s− s0)); sinθ

1 + cn(
√
2α(s− s0)); sinθ

)
1

2 ,(4.9)

where θ is given by cos2θ = α4

√
2d
.

(ii) when α4 − 2d = 0,

k = −αtanh(
α(s− s0)√

2
).(4.10)

(iii) when α4 − 2d > 0 and d > 0

k = bsn(
a(s− s0)√

2
;
b

a
), or, k =

a

sn(a(s−s0)√
2

; b
a
)
,(4.11)

where a and b are given by a2 = α2 +
√
α4 − 2d and b2 = α2 −

√
α4 − 2d.

(iv) when α4 − 2d > 0, d < 0

k =
b

cn(
√
a2+b2√

2
; a√

a2+b2
)
.(4.12)
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In this case a and b are given by a2 =
√
α4 − 2d− α2 and b2 =

√
α4 − 2d+ α2.

From the above values of k, we see that the signed curvature of biminimal curves
on the ξ-vertical hypersurface of a three-dimensional α-Sasakian manifold depends
on the choice of d and the value of α. In the above k are periodic but not of a
constant period. Now we know that [1] if a curve in a 2-dimensional space is a
periodic curve, then its signed curvature is so. Thus we are in a position to state
the following:

Theorem 4.1. No biminimal curve on a ξ-vertical hypersurface of a three-

dimensional α-Sasakian manifold with constant curvature is a curve of constant

period.
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