BEST PROXIMITY POINT FOR GENERALIZED (α, ϕ, ψ)-PROXIMAL CONTRACTIONS ON SEMI-METRIC SPACES

Abdelbasset Felhi

Abstract

In this paper, we introduce a class of generalized (α, ϕ, ψ)-proximal contraction non-self-maps in semi-metric spaces. For such maps, we provide sufficient conditions ensuring the existence and uniqueness of best proximity points by using the concept of α-proximal admissible mapping. As applications, we infer the best proximity point and fixed point results for mappings in partially ordered semi-metric spaces. The presented results generalize and improve various known results from the best proximity and fixed point theory.

Keywords: semi-metric space; best proximity point; fixed point; generalized (α, ϕ, ψ) proximal maps

1. Introduction and preliminaries

Semi-metric spaces were considered by several authors as Fréchet, Menger [22], Chittenden [10] and Wilson [29] as a generalization of metric spaces. Since then, some fixed point results for this class of spaces have been investigated in [11]-[26]. On the other hand, the existence and approximation of best proximity points is an interesting topic in the optimization theory [13, 27]

Definition 1.1. Let X be a nonempty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a symmetric on X if for any $x, y \in X$, the following conditions hold:
$(W 1) d(x, y)=0$ if and only if $x=y$;
$(W 2) d(x, y)=d(y, x)$.
The pair (X, d) is then called a symmetric space.
Note that many topological notions in symmetric spaces can be defined similar to those in metric spaces. Recall that in each symmetric space (X, d) one can

[^0]introduce a topology τ_{d} by defining the family of open sets as follows: a nonempty set $A \subseteq X$ is open (i.e. $A \in \tau_{d}$) if and only if for each $x \in A$, there is $\varepsilon>0$ such that $B_{d}(x, \varepsilon) \subseteq A$, where $B_{d}(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}$.

Definition 1.2. [14] A symmetric d on X is said to be a semi-metric if for each $x \in X$ and $\varepsilon>0$, the open ball $B_{d}(x, \varepsilon)$ is a neighborhood of x in the topology τ_{d}.

Proposition 1.1. [3] Let (X, d) be a symmetric space. Then (X, d) is a semimetric space if and only if the following conditions hold:
(1) $\left(X, \tau_{d}\right)$ is first countable;
(2) For any sequence $\left\{x_{n}\right\}$ in $X, d\left(x_{n}, x\right) \rightarrow 0$ is equivalent to $x_{n} \rightarrow x$ in the topology τ_{d}.

Definition 1.3. $[16,14]$ Let (X, d) be a symmetric space and $\left\{x_{n}\right\}$ be a sequence in X. We say that $\left\{x_{n}\right\}$ is d-Cauchy sequence if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. Furthermore, (X, d) is said to be d-Cauchy complete if every d-Cauchy sequence converges to some $x \in X$ in τ_{d}.

Definition 1.4. Let (X, d) be a symmetric space and $\left\{x_{n}\right\}$ be a sequence in X. We say that (X, d) satisfies the Fatou property if for all $x, y \in X$, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0 \Rightarrow d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y\right)
$$

We introduce the concept of $\left(W_{C}\right)$ property we will need in the sequel.
Definition 1.5. Let (X, d) be a symmetric space. We say that (X, d) satisfies the property $\left(W_{C}\right)$ if for all sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X and all $x, y \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(y_{n}, y\right)=0$, one has

$$
d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

Remark 1.1. 1. If (X, d) be a symmetric space satisfying the property $\left(W_{C}\right)$, then it is also satisfying the Fatou property.
2. Each metric space satisfies the property $\left(W_{C}\right)$.

For A and B two nonempty subsets of a symmetric space (X, d), define

$$
\begin{aligned}
d(A, B) & =\inf \{d(a, b): a \in A, b \in B\}, \\
A_{0} & =\{a \in A: d(a, b)=d(A, B), \text { for some } b \in B\}, \\
B_{0} & =\{b \in B: d(a, b)=d(A, B), \text { for some } a \in A\} .
\end{aligned}
$$

As in [17], we introduce in the setting of symmetric spaces the following.

Definition 1.6. Let A and B be nonempty subsets of a symmetric space (X, d) and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: A \rightarrow B$ is named α-proximal admissible if

$$
\left\{\begin{array}{l}
\alpha(x, y) \geq 1 \\
d(u, T x)=d(A, B), \quad \Rightarrow \alpha(u, v) \geq 1 \\
d(v, T y)=d(A, B)
\end{array}\right.
$$

for all $x, y, u, v \in A$.
Clearly, if $d(A, B)=0, T$ is α-proximal admissible implies that T is α-admissible [28].

We introduce the following notion.
Definition 1.7. Let A and B be nonempty subsets of a symmetric space (X, d) and $\alpha: X \times X \rightarrow[0, \infty)$. A mapping $T: A \rightarrow B$ is named triangular α-proximal admissible if
(T_{1}) T is α-proximal admissible,
$\left(T_{2}\right) \alpha(x, y) \geq 1$ and $\alpha(y, z) \geq 1 \Rightarrow \alpha(x, z) \geq 1, x, y, z \in A$.
Definition 1.8. Let A and B be nonempty subsets of a symmetric space (X, d), α : $X \times X \rightarrow[0, \infty)$ and $T: A \rightarrow B$ be non-self-map. We say that A_{0} is α proximal T-orbitally d-Cauchy complete if every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d}.

On the other hand, the definition of the best proximity point is as follows.
Definition 1.9. Let (X, d) be a symmetric space. Consider A and B two nonempty subsets of X. An element $a \in X$ is said to be a best proximity point of $T: A \rightarrow B$ if

$$
d(a, T a)=d(A, B)
$$

It is clear that a fixed point coincides with a best proximity point if $d(A, B)=0$. For some results on above concept, see for example [18]-[30].

Denote by Ψ the set of functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying $\left(\psi_{1}\right) \psi$ is nondecreasing;
$\left(\psi_{2}\right) \lim _{n \rightarrow \infty} \psi^{n}(t)=0$ for each $t>0$, where ψ^{n} is the n-th iterate of ψ.
Also, denote by Φ the set of functions $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfying
$\left(\phi_{1}\right) \phi$ is nondecreasing;
$\left(\phi_{2}\right) \phi^{-1}(\{0\})=\{0\}$ and $\lim _{x \rightarrow 0^{+}} \phi(x)=0$.
Lemma 1.1. If $\psi \in \Psi$, then $\psi(t)<t$ for all $t>0, \psi$ is continuous at 0 and $\psi(0)=0$.

Lemma 1.2. Let $\phi \in \Phi$ and $\left\{a_{n}\right\} \subseteq[0, \infty)$. Then

$$
\lim _{n \rightarrow \infty} \phi\left(a_{n}\right)=0 \quad \text { if and only if } \quad \lim _{n \rightarrow \infty} a_{n}=0 .
$$

Proof. Let $\left\{a_{n}\right\} \subseteq[0, \infty)$. Suppose that $\lim _{n \rightarrow \infty} a_{n}=0$. From $\left(\phi_{2}\right)$, we get $\lim _{n \rightarrow \infty} \phi\left(a_{n}\right)=$ 0 . Now, suppose that $\lim _{n \rightarrow \infty} \phi\left(a_{n}\right)=0$ and $\lim _{n \rightarrow \infty} a_{n} \neq 0$. It follows that there exist a constant $c>0$ ad a subsequence $\left\{a_{n(k)}\right\}$ of $\left\{a_{n}\right\}$ such that $a_{n(k)} \geq c$ for all $k \geq 0$. Since ϕ is nondecreasing, then $\phi\left(a_{n(k)}\right) \geq \phi(c)>0$ for all $k \geq 0$. Thus, by letting $k \rightarrow \infty$, we get $0 \geq \phi(c)$, which is a contradiction. Hence $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 1.3. Let (X, d) be a symmetric space and $\phi \in \Phi$. Consider the function фod : $X \times X \rightarrow[0, \infty)$ defined as follows:

$$
\phi o d(x, y)=\phi(d(x, y)) \quad \text { for all } x, y \in X
$$

Then $(X, \phi o d)$ is also a symmetric space.
Proof. (W1) From (ϕ_{2}), we have $\phi o d(x, y)=0$ if and only if $d(x, y)=0$ if and only if $x=y$.
$(W 2)$ Since $d(x, y)=d(y, x)$, then $\phi o d(x, y)=\phi o d(y, x)$.

Definition 1.10. Let A and B two nonempty subsets of a symmetric space $(X, d), \phi \in$ $\Phi, \psi \in \Psi$ and $\alpha: X \times X \rightarrow[0, \infty)$. Consider a non-self map $T: A \rightarrow B$. We say that T is a generalized (α, ϕ, ψ)-proximal contraction if

$$
\begin{align*}
& \left\{\begin{array}{l}
\alpha(x, y) \geq 1 \\
d(u, T x)=d(A, B) \\
d(v, T y)=d(A, B)
\end{array}\right. \tag{1.1}\\
& \Rightarrow \phi(d(u, v)) \leq \psi(\max \{\phi(d(x, y)), \phi(d(x, u)), \phi(d(y, v)), \phi(d(x, v)), \phi(d(y, u))\})
\end{align*}
$$

where $x, y, u, v \in A$.
This paper is devoted to the proof of the existence and uniqueness of best proximity points for generalized (α, ϕ, ψ)-proximal contraction non-self-maps in semimetric spaces by using the concept of α-proximal admissible mapping. Some nice consequences are provided.

2. Main results

The first main result is

Theorem 2.1. Let A and B be nonempty subsets of a semi-metric space (X, d) such that $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ be a given non-self-map. Suppose that the following conditions hold:
(i) A_{0} is α-proximal T-orbitally d-Cauchy complete;
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) T is a generalized (α, ϕ, ψ)-proximal contraction;
(v) T is triangular α-proximal admissible;
(vi) There exist elements x_{0} and x_{1} in A_{0} such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(vii) If $\left\{x_{n}\right\}$ is a sequence in A_{0} such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1, d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \geq 0$;
(viii) $\left(A_{0}, \phi o d\right)$ satisfies the Fatou property.

Then, T has a best proximity point, that is, there exists $z \in A$ such that $d(z, T z)=$ $d(A, B)$.

Proof. By assumption $(v i)$, there exist x_{0} and $x_{1} \in A_{0}$ such that

$$
\begin{equation*}
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1 \tag{2.1}
\end{equation*}
$$

From condition (ii), we have $T\left(A_{0}\right) \subseteq B_{0}$, so there exists $x_{2} \in A_{0}$ such that

$$
\begin{equation*}
d\left(x_{2}, T x_{1}\right)=d(A, B) \tag{2.2}
\end{equation*}
$$

By (2.1), (2.2) and the fact that T is α-proximal admissible, we have

$$
\alpha\left(x_{1}, x_{2}\right) \geq 1
$$

Repeating the above strategy, by induction, we arrive to construct a sequence $\left\{x_{n}\right\}$ in A_{0} such that

$$
\begin{equation*}
d\left(x_{n+1}, T x_{n}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{n}, x_{n+1}\right) \geq 1 \quad \text { for all } n \geq 0 \tag{2.3}
\end{equation*}
$$

Since T is triangular α-proximal admissible, then

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \text { and } \alpha\left(x_{n+1}, x_{n+2}\right) \geq 1 \Rightarrow \alpha\left(x_{n}, x_{n+2}\right) \geq 1 .
$$

Thus by induction, we get

$$
\begin{equation*}
\alpha\left(x_{n}, x_{m}\right) \geq 1 \quad \text { for all } m>n \geq 0 \tag{2.4}
\end{equation*}
$$

For all $n=0,1, \cdots$, we denote

$$
\delta_{n}=\sup _{j, k \in \mathbb{N}} \phi\left(d\left(x_{n+j}, x_{n+k}\right)\right) .
$$

Note that by condition (ii) and the fact that ϕ is nondecreasing function, we have $\delta_{n}<\infty$, for all $n=0,1, \cdots$

On the other hand, from (2.3), we have

$$
d\left(x_{n+j}, T x_{n+j-1}\right)=d(A, B), \quad d\left(x_{n+k}, T x_{n+k-1}\right)=d(A, B) \text { for all } n, j, k \in \mathbb{N} .
$$

It follows from (2.4) and (1.1)

$$
\begin{aligned}
\phi\left(d\left(x_{n+j}, x_{n+k}\right)\right) & \leq \psi\left(\operatorname { m a x } \left\{\phi\left(d\left(x_{n+j-1}, x_{n+k-1}\right)\right), \phi\left(d\left(x_{n+j}, x_{n+j-1}\right)\right)\right.\right. \\
& \left.\left.\phi\left(d\left(x_{n+k}, x_{n+k-1}\right)\right), \phi\left(d\left(x_{n+j-1}, x_{n+k}\right)\right), \phi\left(d\left(x_{n+j}, x_{n+k-1}\right)\right)\right\}\right)
\end{aligned}
$$

for all $j<k$. Since ψ is nondecreasing function, then

$$
\phi\left(d\left(x_{n+j}, x_{n+k}\right)\right) \leq \psi\left(\delta_{n-1}\right), \quad \text { for all } j<k
$$

By symmetry of d, we get

$$
\phi\left(d\left(x_{n+j}, x_{n+k}\right)\right) \leq \psi\left(\delta_{n-1}\right) \quad \text { for all } j>k
$$

Also, for $j=k$, we have $\phi\left(d\left(x_{n+j}, x_{n+k}\right)\right)=\phi(0)=0 \leq \psi\left(\delta_{n-1}\right)$. Thus

$$
\phi\left(d\left(x_{n+j}, x_{n+k}\right)\right) \leq \psi\left(\delta_{n-1}\right) \quad \text { for all } j, k \in \mathbb{N} .
$$

So, we have

$$
\delta_{n} \leq \psi\left(\delta_{n-1}\right) \quad \text { for all } n \in \mathbb{N}
$$

By induction, we get

$$
\begin{equation*}
\delta_{n} \leq \psi^{n}\left(\delta_{0}\right) \quad \text { for all } n \in \mathbb{N} \tag{2.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
\phi\left(d\left(x_{n}, x_{n+m}\right)\right) \leq \delta_{n-1} \leq \psi^{n-1}\left(\delta_{0}\right) \quad \text { for all } n, m \geq 1 . \tag{2.6}
\end{equation*}
$$

This implies that

$$
\lim _{n \rightarrow \infty} \phi\left(d\left(x_{n}, x_{n+m}\right)\right)=0
$$

It follows from Lemma 1.2 that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+m}\right)=0
$$

which implies that $\left\{x_{n}\right\}$ is a d-Cauchy sequence in A_{0}. Since A_{0} is α-proximal T-orbitally d-Cauchy complete, there is $z \in A_{0}$ such that $\lim _{n \rightarrow \infty} x_{n}=z$ in the topology τ_{d} and so $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0$.

From (2.6), as ($\left.A_{0}, \phi o d\right)$ satisfies the Fatou property, by letting $m \rightarrow \infty$, we get

$$
\begin{equation*}
\phi\left(d\left(x_{n}, z\right)\right) \leq \psi^{n-1}\left(\delta_{0}\right) \quad \text { for all } n \geq 1 \tag{2.7}
\end{equation*}
$$

As $z \in A_{0}$, there is $w \in A_{0}$ such that

$$
\begin{equation*}
d(w, T z)=d(A, B) \tag{2.8}
\end{equation*}
$$

Further, from (2.3), we have

$$
d\left(x_{2}, T x_{1}\right)=d(A, B)
$$

By condition (vii), (1.1), (2.6) and (2.7), we get

$$
\begin{align*}
\phi\left(d\left(w, x_{2}\right)\right) & \leq \psi\left(\max \left\{\phi\left(d\left(x_{1}, z\right), \phi(d(z, w)), \phi\left(d\left(x_{1}, x_{2}\right)\right), \phi(d(z, x)), \phi\left(d\left(x_{1}, w\right)\right)\right\}\right)\right. \tag{2.9}\\
& \leq \psi\left(\max \left\{\delta_{0}, \phi(d(z, w)), \psi\left(\delta_{0}\right), \phi\left(d\left(x_{1}, w\right)\right)\right\}\right) \\
& =\max \left\{\psi\left(\delta_{0}\right), \psi^{2}\left(\delta_{0}\right), \psi(\phi(d(z, w))), \psi\left(\phi\left(d\left(x_{1}, w\right)\right)\right)\right\}
\end{align*}
$$

Again, from (2.3), we have

$$
d\left(x_{3}, T x_{2}\right)=d(A, B)
$$

Then, by (vii), (1.1), (2.6), (2.7) and (2.9), we get

$$
\begin{aligned}
\phi\left(d\left(w, x_{3}\right)\right) & \leq \psi\left(\max \left\{\phi\left(d\left(x_{2}, z\right)\right), \phi(d(z, w)), \phi\left(d\left(x_{2}, x_{3}\right)\right), \phi\left(d\left(z, x_{3}\right)\right), \phi\left(d\left(x_{2}, w\right)\right)\right\}\right) \\
& \leq \psi\left(\max \left\{\psi\left(\delta_{0}\right), \phi(d(z, w)), \psi^{2}\left(\delta_{0}\right), \phi\left(d\left(x_{2}, w\right)\right)\right\}\right) \\
& \leq \psi\left(\max \left\{\psi\left(\delta_{0}\right), \psi^{2}\left(\delta_{0}\right), \phi(d(z, w)), \psi(d(z, w))\right\}\right) \\
& =\max \left\{\psi^{2}\left(\delta_{0}\right), \psi^{3}\left(\delta_{0}\right), \psi(\phi(d(z, w))), \psi^{2}(\phi(d(z, w))), \psi^{2}\left(\phi\left(d\left(x_{1}, w\right)\right)\right)\right\} .
\end{aligned}
$$

Continuing in this fashion, by induction, we get

$$
\begin{equation*}
\phi\left(d\left(w, x_{n}\right)\right) \leq \max \left\{\psi^{n-1}\left(\delta_{0}\right), \psi^{n}\left(\delta_{0}\right), \psi(\phi(d(z, w))), \psi^{n-1}(\phi(d(z, w))), \psi^{n}\left(\phi\left(d\left(x_{1}, w\right)\right)\right)\right\} \tag{2.10}
\end{equation*}
$$

Using the Fatou property, we get from (2.10)

```
\(\phi(d(w, z)) \leq \liminf _{n \rightarrow \infty} \phi\left(d\left(w, x_{n}\right)\right)\)
\(\leq \limsup _{n \rightarrow \infty} \phi\left(d\left(w, x_{n}\right)\right)\)
\(\leq \limsup _{n \rightarrow \infty} \max \left\{\psi^{n-1}\left(\delta_{0}\right), \psi^{n}\left(\delta_{0}\right), \psi(\phi(d(z, w))), \psi^{n-1}(\phi(d(z, w))), \psi^{n}\left(\phi\left(d\left(x_{1}, w\right)\right)\right)\right\}\)
\(=\max \{\psi(\phi(d(z, w))), 0\}=\psi(\phi(d(z, w)))\).
```

Then

$$
\phi(d(z, w)) \leq \psi(\phi(d(z, w)))
$$

which implies that $\phi o d(w, z)=0$ and so $w=z$. From (2.8), we obtain $d(z, T z)=$ $d(A, B)$, that is z is a best proximity point of T.

Theorem 2.2. Let A and B be nonempty subsets of a semi-metric space (X, d) such that $A_{0} \neq \varnothing$. Let $T: A \rightarrow B$ be a given non-self-map. Suppose that the following conditions hold:
(i) A_{0} is α-proximal T-orbitally d-Cauchy complete;
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) T is a generalized (α, ϕ, ψ)-proximal contraction;
(v) T is triangular α-proximal admissible;
(vi) There exist elements x_{0} and x_{1} in A_{0} such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

(vii) T is τ_{d}-continuous;
(viii) (X, d) satisfies the property $\left(W_{c}\right)$.

Then, T has a best proximity point.
Proof. Following the proof of Theorem 2.1, there exists a sequence $\left\{x_{n}\right\}$ in A_{0} such that (2.3) and (2.4) hold. Also, $\left\{x_{n}\right\}$ is d-Cauchy in the subset A_{0}, which is α proximal T-orbitally d-Cauchy complete, then there exists $z \in A_{0}$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$ in the topology τ_{d}. We shall prove that z is a best proximity point of T. Since T is τ_{d}-continuous, then $\lim _{n \rightarrow \infty} T x_{n}=T z$ in τ_{d} and so $\lim _{n \rightarrow \infty} d\left(T x_{n}, T z\right)=$ 0 . From (2.3) and as (X, d) satisfies the property $\left(W_{c}\right)$, we have

$$
d(A, B) \leq d(z, T z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n+1}, T x_{n}\right)=d(A, B)
$$

which implies that $d(z, T z)=d(A, B)$, i.e., z is a best proximity point of T.
Now, we prove the uniqueness of such best proximity point. For this, we need the following additional condition.
(U) : For all $x, y \in B(T)$, we have $\alpha(x, y) \geq 1$, where $B(T)$, denotes the set of best proximity points of T.

Theorem 2.3. Adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem Theorem 2.2), we obtain that z is the unique best proximity point of T.

Proof. Suppose there exist $z, w \in A$ such that $d(A, B)=d(z, T z)=d(w, T w)$. By assumption (U), we have $\alpha(z, w) \geq 1$, it follows from (1.1),

$$
\begin{aligned}
\phi(d(z, w)) & \leq \psi(\max \{\phi(d(z, w)), \phi(d(z, z)), \phi(d(w, w)), \phi(d(z, w)), \phi(d(w, z))\}) \\
& =\psi(\max \{\phi(d(z, w)), \phi(0)\}) \\
& =\psi(\phi(d(z, w)))
\end{aligned}
$$

which implies that $\phi o d(z, w)=0$ and so $z=w$.

Example 2.1. Let $X=[0, \infty) \times[0, \infty)$ endowed with the semi-metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$. Take $A=\{1\} \times[0, \infty)$ and $B=\{0\} \times[0, \infty)$. Mention that $d(A, B)=1, A_{0}=A$ and $B_{0}=B$. Consider the mapping $T: A \rightarrow B$ as

$$
T(1, x)= \begin{cases}\left(0, \frac{x^{2}+1}{4}\right) & \text { if } 0 \leq x \leq 1 \\ \left(0, x-\frac{1}{2}\right) & \text { if } x>1\end{cases}
$$

We have $T\left(A_{0}\right) \subseteq B_{0}$. Take $\psi(t)=\frac{1}{4} t, \phi(t)=t^{2}$ for all $t \geq 0$. Define $\alpha: X \times X \rightarrow[0, \infty)$ as follows

$$
\begin{cases}\alpha((x, y),(s, t))=1 & \text { if } \quad(x, y),(s, t) \in[0,1] \times[0,1] \\ \alpha((x, y),(s, t))=0 & \text { if not. }\end{cases}
$$

Let $\left(1, x_{1}\right),\left(1, x_{2}\right),\left(1, u_{1}\right)$ and $\left(1, u_{2}\right)$ in A such that

$$
\left\{\begin{array}{l}
\alpha\left(\left(1, x_{1}\right),\left(1, x_{2}\right)\right) \geq 1 \\
d\left(\left(1, u_{1}\right), T\left(1, x_{1}\right)\right)=d(A, B)=1 \\
d\left(\left(1, u_{2}\right), T\left(1, x_{2}\right)\right)=d(A, B)=1
\end{array}\right.
$$

Then, necessarily, $\left(x_{1}, x_{2}\right) \in[0,1] \times[0,1]$. Also, we have $\left(u_{1}=\frac{1+x_{1}^{2}}{4}\right.$ and $\left.u_{2}=\frac{1+x_{2}^{2}}{4}\right)$. So

$$
\alpha\left(\left(1, u_{1}\right),\left(1, u_{2}\right)\right) \geq 1
$$

that is, T is an α-proximal admissible. Moreover, T is triangular α-proximal admissible. Therefore,

$$
\begin{aligned}
d\left(\left(1, u_{1}\right),\left(1, u_{2}\right)\right) & =d\left(\left(1, \frac{1+x_{1}^{2}}{4}\right),\left(1, \frac{1+x_{2}^{2}}{4}\right)\right) \\
& =\left|\frac{1+x_{1}^{2}}{4}-\frac{1+x_{2}^{2}}{4}\right|=\left|\frac{x_{1}^{2}}{4}-\frac{x_{2}^{2}}{4}\right|=\frac{1}{4}\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \\
& \leq \frac{1}{2}\left|x_{1}-x_{2}\right|=\frac{1}{2} d\left(\left(1, x_{1}\right),\left(1, x_{2}\right)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
d^{2}\left(\left(1, u_{1}\right),\left(1, u_{2}\right)\right) & \leq \frac{1}{4} d^{2}\left(\left(1, x_{1}\right),\left(1, x_{2}\right)\right)=\psi\left(\phi\left(d\left(\left(1, x_{1}\right),\left(1, x_{2}\right)\right)\right)\right) \\
& \leq \psi\left(\operatorname { m a x } \left\{\phi\left(d\left(\left(1, x_{1}\right),\left(1, x_{2}\right)\right)\right), \phi\left(d\left(\left(1, x_{1}\right),\left(1, u_{1}\right)\right)\right), \phi\left(d\left(\left(1, x_{1}\right),\left(1, u_{2}\right)\right)\right)\right.\right. \\
& \left.\left.\phi\left(d\left(\left(1, x_{2}\right),\left(1, u_{1}\right)\right)\right), \phi\left(d\left(\left(1, x_{2}\right),\left(1, u_{2}\right)\right)\right)\right\}\right)
\end{aligned}
$$

So the condition contraction (1.1) holds. Also, A_{0} is α-proximal T-orbitally d-Cauchy complete. Furthermore, T is τ_{d}-continuous. Moreover, the condition (vi) of Theorem 2.2 is verified. Indeed, for $x_{0}=(1,1)$ and $x_{1}=\left(1, \frac{1}{2}\right)$, we have

$$
d\left(x_{1}, T x_{0}\right)=d\left(\left(1, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)\right)=1=d(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1
$$

Hence, all hypotheses of Theorem 2.2 are verified. So T has a best proximity point which is $u=(1,2-\sqrt{3})$. It is also unique.

3. Consequences

In this paragraph, we present some consequences on our obtained results.

3.1. Some classical best proximity point results

Denote by Λ the set of Lebesgue integrable mappings $\lambda:[0, \infty) \rightarrow[0, \infty)$, summable on each compact of $[0, \infty)$ and satisfying: $\int_{0}^{\varepsilon} \lambda(s) d s>0$ for each $\varepsilon>0$.

Corollary 3.1. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map, $k \in[0,1), \alpha: A \times A \rightarrow[0, \infty)$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
\alpha(x, y) \geq 1 \\
d(u, T x)=d(A, B), \\
d(v, T y)=d(A, B)
\end{array}\right. \\
\Rightarrow & \int_{0}^{d(u, v)} \lambda(t) d t \leq k \max \left\{\int_{0}^{d(x, y)} \lambda(t) d t, \int_{0}^{d(x, u)} \lambda(t) d t, \int_{0}^{d(y, v)} \lambda(t) d t,\right. \\
& \left.\int_{0}^{d(x, v)} \lambda(t) d t, \int_{0}^{d(y, u)} \lambda(t) d t\right\},
\end{aligned}
$$

where $x, y, u, v \in A$. Suppose that the following conditions hold:
(i) A_{0} is α-proximal T-orbitally d-Cauchy complete;
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) T is triangular α-proximal admissible;
(v) There exist elements x_{0} and x_{1} in A_{0} such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad \alpha\left(x_{0}, x_{1}\right) \geq 1 ;
$$

(vi) T is τ_{d}-continuous;
(vii) (X, d) satisfies the property $\left(W_{c}\right)$.

Then, T has a best proximity point.
Proof. It suffices to take $\alpha(x, y)=1, \phi(t)=\int_{0}^{t} \lambda(s) d s$ and $\psi(t)=k t$ in Theorem 2.2. It is clear that $\phi \in \Phi$ and $\psi \in \Psi$.

Corollary 3.2. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map, $\phi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
d(u, T x)=d(A, B) \\
d(v, T y)=d(A, B)
\end{array}\right. \\
& \Rightarrow \phi(d(u, v)) \leq \psi(\max \{\phi(d(x, y)), \phi(d(x, u)), \phi(d(y, v)), \phi(d(x, v)), \phi(d(y, u))\}),
\end{aligned}
$$

where $x, y, u, v \in A$. Suppose that the following conditions hold:
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d};
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) $\left(A_{0}, \phi o d\right)$ satisfies the Fatou property.

Then, T has a unique best proximity point.
Proof. It suffices to take $\alpha(x, y)=1$ in Theorem 2.1. The uniqueness of z holds since (U) is satisfied.

Corollary 3.3. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map and $\psi \in \Psi$ such that
$\left\{\begin{array}{l}d(u, T x)=d(A, B), \\ d(v, T y)=d(A, B)\end{array} \Rightarrow d(u, v) \leq \psi(\max \{d(x, y), d(x, u), d(y, v), d(x, v), d(y, u)\})\right.$,
where $x, y, u, v \in A$. Suppose that the following conditions hold:
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d};
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) $\left(A_{0}, d\right)$ satisfies the Fatou property.

Then, T has a unique best proximity point.
Proof. It suffices to take $\phi(t)=t$ in Corollary 3.2.
Corollary 3.4. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map, $\phi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
d(u, T x)=d(A, B) \\
d(v, T y)=d(A, B)
\end{array}\right. \\
& \Rightarrow \phi(d(u, v)) \leq \psi(\max \{\phi(d(x, y)), \phi(d(x, u)), \phi(d(y, v)), \phi(d(x, v)), \phi(d(y, u))\})
\end{aligned}
$$

where $x, y, u, v \in A$. Suppose that the following conditions hold:
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d};
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iv) T is τ_{d}-continuous;
(v) (X, d) satisfies the property $\left(W_{c}\right)$.

Then, T has a unique best proximity point.

3.2. Some classical fixed point results

If we take $A=B$ in the previous results, we have the following fixed point results.
Corollary 3.5. Let A be nonempty subset of a semi-metric space (X, d). Let $T: A \rightarrow A$ be a given self-map, $\phi \in \Phi, \psi \in \Psi$ and $\alpha: A \times A \rightarrow[0, \infty)$ such that $\phi o d(T x, T y) \leq \psi(\max \{\phi o d(x, y), \phi o d(x, T x), \phi o d(y, T y), \phi o d(x, T y), \phi o d(y, T x)\})$ for all $x, y \in A$ satisfying $\alpha(x, y) \geq 1$. Suppose that the following conditions hold:
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A with $x_{n+1}=T x_{n}$ for all $n \geq 0$, converges to some element in A in the topology τ_{d};
(ii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iii) T is triangular α-proximal admissible;
(iv) There exist elements $x_{0} \in A$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(v) If $\left\{x_{n}\right\}$ is a sequence in A such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \geq 0$;
(vi) $(A, \phi o d)$ satisfies the Fatou property.

Then, T has a fixed point in A.
Corollary 3.6. Let A be nonempty subset of a semi-metric space (X, d). Let $T: A \rightarrow A$ be a given self-map, $\phi \in \Phi, \psi \in \Psi$ and $\alpha: A \times A \rightarrow[0, \infty)$ such that $\phi o d(T x, T y) \leq \psi(\max \{\phi o d(x, y), \phi o d(x, T x), \phi o d(y, T y), \phi o d(x, T y), \phi o d(y, T x)\})$
for all $x, y \in A$ satisfying $\alpha(x, y) \geq 1$. Suppose that the following conditions hold:
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A with $x_{n+1}=T x_{n}$ for all $n \geq 0$, converges to some element in A in the topology τ_{d};
(ii) d is bounded, that is, $\sup _{x, y \in X} d(x, y)<\infty$;
(iii) T is triangular α-proximal admissible;
(iv) There exist elements $x_{0} \in A$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(v) T is τ_{d}-continuous;
(vi) (X, d) satisfies the property $\left(W_{c}\right)$.

Then, T has a fixed point in A.

3.3. Some best proximity results on a semi-metric space endowed with a partial order

Let (X, d) a symmetric space endowed with a partial order \leq. We introduce the following definition.

Definition 3.1. Let A and B be nonempty subsets of a symmetric space (X, d) and \leq a partial order on $X . T: A \rightarrow B$ is named a proximal nondecreasing map if

$$
\left\{\begin{array}{l}
x \leq y \\
d(u, T x)=d(A, B), \quad \Rightarrow u \leq v \\
d(v, T y)=d(A, B)
\end{array}\right.
$$

for all $x, y, u, v \in A$.
Wa also need the following hypothesis.
(H) if $\left\{x_{n}\right\}$ is a sequence in A such that $x_{n} \leq x_{n+1}, d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all n and $x_{n} \rightarrow x \in A$ as $n \rightarrow \infty$, then $x_{n} \leq x$ for all n.

We state the following.
Corollary 3.7. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
d(u, T x)=d(A, B) \\
d(v, T y)=d(A, B)
\end{array}\right. \\
& \Rightarrow \phi(d(u, v)) \leq \psi(\max \{\phi(d(x, y)), \phi(d(x, u)), \phi(d(y, v)), \phi(d(x, v)), \phi(d(y, u))\})
\end{aligned}
$$

for all $x, y \in A$ such that $x \leq y$. Suppose that
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $x_{n} \leq x_{n+1}, d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d};
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) T is a proximal nondecreasing map;
(iv) There exist elements x_{0} and x_{1} in A_{0} such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad x_{0} \leq x_{1}
$$

(v) $\left(A_{0}, \phi o d\right)$ satisfies the Fatou property;
(vi) (H) holds.

Then T has a best proximity point.

Proof. It suffices to consider $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { if not }\end{cases}
$$

All hypotheses of Theorem 2.1 are satisfied. This completes the proof.
Corollary 3.8. Let A and B be nonempty subsets of a semi-metric space (X, d). Let $T: A \rightarrow B$ be a given non-self-map and $\psi \in \Psi$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
d(u, T x)=d(A, B) \\
d(v, T y)=d(A, B)
\end{array}\right. \\
& \Rightarrow \phi(d(u, v)) \leq \psi(\max \{\phi(d(x, y)), \phi(d(x, u)), \phi(d(y, v)), \phi(d(x, v)), \phi(d(y, u))\}),
\end{aligned}
$$

for all $x, y \in A$ such that $x \leq y$. Suppose that
(i) Every d-Cauchy sequence $\left\{x_{n}\right\}$ in A_{0} with $x_{n} \leq x_{n+1}, d\left(x_{n+1}, T x_{n}\right)=d(A, B)$ for all $n \geq 0$, converges to some element in A_{0} in the topology τ_{d};
(ii) $T\left(A_{0}\right) \subseteq B_{0}$;
(iii) T is a proximal nondecreasing map;
(iv) There exist elements x_{0} and x_{1} in A_{0} such that

$$
d\left(x_{1}, T x_{0}\right)=d(A, B) \quad \text { and } \quad x_{0} \leq x_{1} ;
$$

(v) (X, d) satisfies the property $\left(W_{c}\right)$;
(vi) T is τ_{d}-continuous.

Then T has a best proximity point.

REFERENCES

1. M. Aamri, A. Bassou, D. El Moutawakil: Common fixed points for weakly compatible maps in symmetric spaces with applications to probabilistic spaces. Appl. Math. E-Notes 5 (2005), 171-175.
2. M. Aamri, D. El Moutawakil: Common fixed points under contractive conditions in symmetric spaces. Appl. Math. E-Notes 3 (2003), 156-162.
3. I. D. Arandelović, D. J. Kec̆kić: Symmetric spaces approach to some fixed point results. Nonlinear Anal. 75 (2012), 5157-5168.
4. A. Aliouche: A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J. Math. Anal. Appl. 322 (2006), 796-802.
5. S. Alshehri, I. Arandelović, N. Shahzad: Symmetric spaces and fixed points of generalized contractions. Abstr. Appl. Anal. 1 (2014), 8 pages.
6. H. Aydi, A. Felhi: Best proximity points for cyclic Kannan-Chatterjea-Cirić type contractions on metric-like spaces. J. Nonlinear Sci. Appl. 9 (2016), 24582466.
7. H. Aydi, A. Felhi, E. Karapinar: On common best proximity points for generalized $\alpha-\psi$-proximal contractions. J. Nonlinear Sci. Appl. 9 (2016), 26582670.
8. S. Basha, P. Veeramani: Best approximations and best proximity pairs. Acta Sci. Math. (Szeged). 63 (1997), 289-300.
9. S. Basha, P. Veeramani: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory. 103 (2000), 119-129.
10. E. W. Chittenden: On the equivalence of ecart and voisinage. Trans. Amer. Math. Soc. 18 (1917), 161-166.
11. M. Cicchese: Questioni di completezza e contrazioni in spazi metrici generalizzati. Boll. Un. Mat. Ital. 13-A (1976), 175179.
12. A. Felhi, H. Aydi: Best proximity points and stability results for controlled proximal contractive set valued mappings. Fixed Point Theory Appl. 2016 (2016), 2016:22.
13. F. Giannessi, A. Maugeri, P. M. Pardalos: Equilibrium Problems: nonsmooth optimization and variational inequality models. Nonconvex Optim. App. 58 (2004).
14. T. L. Hicks, B. E. Rhoades: Fixed point theory in symmetric spaces with applications to probabilistic spaces. Nonlinear Anal. Theory, Methods Appl. 36 (1999), 331-334.
15. M. Imdad, J. Ali, L. Khan: Coincidence and fixed points in symmetric spaces under strict contractions. J. Math. Anal. Appl. 320 (2006) 352-360. corrections: J. Math. Anal. Appl. 329 (2007), 752.
16. J. Jachymski, J. Matkowski, T. Swiatkowski: Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1 (1995), 125-134.
17. M. Jleli, E. Karapinar, B. Samet: Best proximity points for generalized $\alpha-\psi$ proximal contractive type mappings. Journal Appl. Math. 2013, Article ID 534127.
18. S. Karpagam, S. Agrawal: Best proximity points theorems for cyclic MeirKeeler contraction maps. Nonlinear Anal. 74 (2011), 1040-1046.
19. W. K. Kim, S. Kum, K. H. Lee: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68 (2008), 2216-2227.
20. Q. Kiran, M. U. Ali, T. Kamran, E. Karapinar: Existence of best proximity points for controlled proximal contraction. Fixed Point Theory Appl. 2015 (2015), 2015:207.
21. W. A. Kirk, S. Reich, P. Veeramani: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24 (2003), 851-862.
22. K. Menger: Untersuchungen ber allgemeine. Math. Annalen 100 (1928), 75-163.
23. D. Mine: A note on a paper of Hicks and Rhoades. Nonlinear Anal. Theory, Methods Appl. 65 (2006), 1411-1413.
24. C. Mongkolkeha, P. Kumam: Best proximity point Theorems for generalized cyclic contractions in ordered metric Spaces. Journal of Optimization Theory and Applications. 155 (2012), 215-226.
25. H. K. Nashine, P. Kumam, C. Vetro: Best proximity point theorems for rational proximal contractions. Fixed Point Theory Appl. 2013, 2013:95.
26. N. Shahzad, M. A. Alghamdi, S. Alshehri, I. Arandelović: Semi-metric spaces and fixed points of $\alpha-\varphi$-contractive maps. J. Nonlinear Sci. Appl. 9 (2016), 3147-3156.
27. P. M. Pardalos, T. M. Rassias, A. A. Khan: Equilibrium problems: nonlinear analysis and variational inequality problems in honor of George Isac. Springer Optim Appl. 35 (2010).
28. B. Samet, C. Vetro, P. Vetro: Fixed point theorems for $\alpha-\psi$-contractive type mappings Nonlinear Anal. 75 (2012), 2154-2165.
29. W. A. Wilson: On semi-metric spaces. Amer. J. Math. 53 (1931), 361-373.
30. J. Zhang, Y. Su, Q. Cheng: A note on "A best proximity point theorem for Geraghty-contractions". Fixed Point Theory Appl. (2013), 2013:99.
31. J. Zhu, Y. J. Сho, S. M. Kang: Equivalent contractive conditions in symmetric spaces. Comp. Math. Appl. 50 (2005), 1621-1628.

Abdelbasset Felhi
Preparatory Engineering Institute, Carthage University
Department of Mathematics and Physics
Bizerta, Tunisia
abdelbassetfelhi@gmail.com

[^0]: Received April 05, 2017; accepted September 04, 2017
 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25

