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Ser. Math. Inform. Vol. 32, No 5 (2017), 729–745

https://doi.org/10.22190/FUMI1705729G

ENTIRE FUNCTIONS SHARING POLYNOMIALS

WITH THEIR DERIVATIVES

Goutam Kumar Ghosh

Abstract. In this paper we study the uniqueness of entire functions sharing two poly-
nomials with their derivatives. The results of the paper improve the corresponding re-
sults of Chang and Fang (Kodai Math.J. 25(2002), 309–320) and Lahiri-Ghosh(Present
author) (Analysis ,Munich. 31(2011), 47–59).
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1. Introduction, definitions and results

Let f be a non-constant meromorphic function in the open complex plane C. We
denote by n(r,∞; f) the number of poles of f lying in | z |< r, the poles are counted
according to their multiplicities. The quantity

N(r,∞; f) =

r
∫

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r

is called the integrated counting function or simply the counting function of poles
of f .

Also m(r,∞; f) = 1
2π

2π
∫

0

log+ | f(reiθ) | dθ is called the proximity function of

poles of f , where log+ x = log x if x ≥ 1 and log+ x = 0 if 0 ≤ x < 1.

The sum T (r, f) = m(r,∞; f)+N(r,∞; f) is called the Nevanlinna characteristic
function of f . We denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as
r → ∞ except possibly a set of finite linear measure.

For a ∈ C, we put N(r, a; f) = N
(

r,∞; 1
f−a

)

and m(r, a; f) = m
(

r,∞; 1
f−a

)

.
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Let us denote by n(r, a; f) the number of distinct a-points of f lying in | z |< r,
where a ∈ C ∪ {∞}. The quantity

N(r, a; f) =

r
∫

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r

denotes the reduced counting function of a-points of f .

Also by N (2(r, a; f) we denote the reduced counting function of multiple a-points
of f .

Let A ⊂ C and nA(r, a; f) be the number of a-points of f lying in A∩{z :| z |< r},
where a ∈ C ∪ {∞} and the a-points are counted according to their multiplicities.
We put

NA(r, a; f) =

r
∫

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r.

For a ∈ C ∪ {∞} we denote by E(a; f) the set of a-points of f (counted with
multiplicities) and by E(a; f) the set of distinct a-points of f .

For standard definitions and results of the value distribution theory the reader
may consult [3] and [11].

In 1977 L.A.Rubel and C.C.Yang [9] first investigated the uniqueness of entire
function sharing certain values with their derivatives. They proved the following
result.

Theorem 1.1. [9] Let f be a nonconstant entire function. If E(a; f) = E(a; f (1))
and E(b; f) = E(b; f (1)), for distinct finite complex numbers a and b, then f ≡ f (1).

In 1979, E. Mues and N. Steinmetz [8] took up the case of IM shared values in
the place of CM shared values and proved the following theorem.

Theorem 1.2. [8] Let f be a nonconstant entire function. If E(a; f) = E(a; f (1))
and E(b; f) = E(b; f (1)), for distinct finite complex numbers a and b, then f ≡ f (1).

Afterwards in 1986 G. Jank, E. Mues and L. Volkman [4] considered the case of
a single shared value by the first two derivatives of an entire function. They proved
the following result:

Theorem 1.3. [4] Let f be a nonconstant entire function and a(6= 0) be a finite
number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (2)), then f ≡ f (1).

In 2002 J. Chang and M. Fang [2] extended Theorem 1.3 in the following way.
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Theorem 1.4. [2] Let f be a nonconstant entire function and a, b be two finite

constants. If E(a; f) ⊂ E(a; f (1)) ⊂ E(b; f (2)), then either f = λe
bz
a + ab−a2

b
or

f = λe
bz
a + a, where λ(6= 0) is a constant.

In [12] it was observed by the following example that in Theorem 1.3 the second
derivative can not be straightway replaced by a higher order derivative.

Example 1.1. Let (k ≥ 3) be a positive integer and w( 6= 1) be a root of the algebraic
equation wk−1 = 1. We put f = ewz +w − 1, then E(w; f) = E(w; f (1)) = E(w; f (k)) but
f 6≡ f (1).

In this context Zhong [12] extended Theorem 1.3 to higher order derivatives and
proved the following result.

Theorem 1.5. [12] Let f be a nonconstant entire function and a(6= 0) be a finite
complex number. If f and f (1) share the value a CM and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

For A ⊂ C ∪ {∞}, we denote by NA(r, a; f)(NA(r, a; f)) the counting function
(reduced counting function) of those a− points of f which belong to A.

In 2011, I. Lahiri and G. K. Ghosh(Present author) [5] improved Theorem 1.5
in the following manner.

Theorem 1.6. [5] Let f be a nonconstant entire function and a, b be two nonzero
finite constants. Suppose further that A = E(a; f) \E(a; f (1)) and B = E(a; f (1)) \
{E(a; f (n)) ∩ E(b; f (n+1))} for n(≥ 1). If each common zero of f − a and f (1) − a

has the same multiplicity and NA(r, a; f)+NB(r, a; f
(1)) = S(r, f), then f = λe

bz
a +

ab−a2

b
or f = λe

bz
a + a, where λ(6= 0) is a constant.

Another similar type of results we may see [6].

In the paper we extend Theorem 1.4 and Theorem 1.6 by considering shared
polynomials instead of value sharing.

We now state the main result of the paper.

Theorem 1.7. Let f be a nonconstant entire function. Also let a(6≡ 0), b(6≡ 0) be
two polynomials having degrees less than 2 and deg(a) 6= deg(f). Suppose further
that

(i) NA∪B(r, a; f) + NA(r, a; f
(1)) = S(r, f), where A = E(a; f)∆E(a; f (1)) and

B = E(a; f) \ E(b; f (2)),

(ii) E1)(a; f) ⊂ E(a; f (1)), and

(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Then a ≡ b and f = λez, where λ(6= 0) is a constant.
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Theorem 1.8. Let f be a nonconstant entire function. Also let a(6≡ 0), b(6≡ 0) be
two polynomials having degrees less than n and deg(a) 6= deg(f). Suppose further
that

(i) NA(r, a; f) +NA∪B(r, a; f
(1)) = S(r, f), where A = E(a; f)∆E(a; f (1)) , B =

E(a; f (1)) \ {E(a; f (n))∩E(b; f (n+1))∩E(a; f (n+2))} and n ≥ 1 is an integer,

(ii) E1)(a; f) ⊂ E(a; f (1)), and

(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Then a ≡ b and either f = λez or f = a+ λez , where λ(6= 0) is a constant.

Putting A = B = Ø in Theorem 1.7 and Theorem 1.8 we respectively obtain
the following corollaries.

Corollary 1.1. Let f be a nonconstant entire function. Also let a(6≡ 0), b(6≡ 0) be
two polynomials having degrees less than 2 and deg(a) 6= deg(f). Further suppose
that E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(b; f (2)). Then a ≡ b and f = λez , where
λ(6= 0) is a constant.

Corollary 1.2. Let f be a nonconstant entire function. Also let a(6≡ 0), b(6≡ 0) be
two polynomials having degrees less than n and deg(a) 6= deg(f). Further suppose
that E(a; f) = E(a; f (1)) and E(a; f) ⊂ {E(a; f (n)) ∩ E(b; f (n+1)) ∩ E(a; f (n+2))}.
Then a ≡ b and either f = λez or f = a+ λez , where λ(6= 0) is a constant.

We note that Corollary 1.1 is an improvement of Theorem 1.4 .

2. Lemmas

In this section we need the following lemmas.

Lemma 2.1. [13] Let g ge a transcendental entire function and φ(6≡ 0) be a mero-
morphic function satisfying T (r, φ) = S(r, g). Then for any positive integer n

T (r, g) ≤ Cn{N(r, 0; g) +N(r, 0; g(n) − φ)} + S(r, g),

where Cn is a constant depending only on n.

Lemma 2.2. Let f ge a transcendental entire function and a, b be two meromor-
phic functions satisfying T (r, a) + T (r, b) = S(r, f) and b− a(n) 6≡ 0. Then

T (r, f) ≤ Cn{N(r, 0; f − a) +N(r, 0; f (n) − b)}+ S(r, f),

where Cn is a constant depending only on n(≥ 1).

Proof. Putting g = f − a and φ = b− a(n) in Lemma 2.1 we get Lemma 2.2.
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Lemma 2.3. [1] Let f be a meromorphic function and n be a positive integer. If
there exist meromorphic functions a0(6≡ 0), a1, a2, · · · , an such that

a0f
n + a1f

n−1 + · · ·+ an−1f + an ≡ 0,

then

m(r, f) ≤ nT (r, a0) +
n
∑

j=1

m(r, aj) + (n− 1) log 2.

Lemma 2.4. { [7]; see also p.28[11]} Let f be a nonconstant meromorphic func-
tion. If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0f q + b1f q−1 + · · ·+ bq

is an irreducible rational function in f with the coefficients being small functions
of f and a0b0 6≡ 0, then

T (r, R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.5. Let f, a0, a1, a2, · · · , ap, b0, b1, b2, · · · , bq be meromorphic functions.
If

R(f) =
a0f

p + a1f
p−1 + · · ·+ ap

b0f q + b1f q−1 + · · ·+ bq
(a0b0 6≡ 0),

then

T (r, R(f)) = O(T (r, f) +

p
∑

i=0

T (r, ai) +

q
∑

j=0

T (r, bj)).

Proof. The Lemma follows from the first fundamental theorem and the properties
of the characteristic function.

Lemma 2.6. {p.68 [3]} Let f be a transcendental meromorphic function and fnP (z) =
Q(z), where P(z), Q(z) are differential polynomials generated by f and the degree of
Q is at most n. Then m(r, P ) = S(r, f).

Lemma 2.7. {p.69 [3]} Let f be a nonconstant meromorphic function and

g(z) = fn(z) + Pn−1(f),

where Pn−1(f) is a differential polynomial generated by f and of degree at most n−1.

If N(r,∞; f)+N(r, 0; g) = S(r, f), then g(z) = hn(z), where h(z) = f(z)+ a(z)
n

and hn−1(z)a(z) is obtained by substituting h(z) for f(z), h(1)(z) for f (1)(z) etc.
in the terms of degree n− 1 in Pn−1(f).
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Let us note the special case, where Pn−1(f) = a0(z)f
n−1 + terms of degree

n − 2 at most. Then hn−1(z)a(z) = a0(z)h
n−1(z) and so a(z) = a0(z). Hence

g(z) = (f(z) + a0(z)
n

)n.

Lemma 2.8. {p.47 [3]} Let f be a nonconstant meromorphic function and a1,a2,a3
be three distinct meromorphic functions satisfying T (r, aµ) = S(r, f) for µ = 1, 2, 3.
Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 2.9. {p.92, [11]} Suppose that f1, f2, · · · , fn(n ≥ 3) are meromorphic

functions which are not constants except possibly for fn. Further let
n
∑

j=1

fj(z) ≡ 1.

If fn 6≡ 0 and

n
∑

j=1

N(r, 0; fj) + (n− 1)

n
∑

j=1

N(r,∞; fj) < {λ+ o(1)}T (r, fk)

for 0 < λ < 1 and k = 1, 2, · · · , n− 1, then fn ≡ 1.

3. Proof of the theorems

Proof. [Proof of Thorem 1.7] We verify that f cannot be a polynomial. If f is a
polynomial, then T (r, f) = O(log r) and so NA∪B(r, a; f) = S(r, f) implies that
A = B = Ø. Therefore E(a; f)∆E(a; f (1)) = {E(a; f)−E(a; f (1))} ∪ {E(a; f (1))−
E(a; f)} = Ø implies that E(a; f) = E(a; f (1)).

Let deg(f) = m and deg(a) = p. If m ≥ p + 1, then deg(f − a) = m and
deg(f (1) − a) ≤ m − 1. Since E(a; f) = E(a; f (1)) and each common zero of f − a

and f (1) − a has the same multiplicity, we arrive at a contradiction.

If m ≤ p− 1 and deg(a) = p < 2 then f will be a constant, which contradicts our
assumption that f is nonconstant entire function. Therefore f is a transcendental
entire function.

Let z0 be a zero of f−a and f (1)−a with multiplicity q(≥ 2), since by hypotheses
each common zero of f − a and f (1) − a has the same multiplicity. Then z0 is
a zero of f (1) − a(1) with multiplicity q − 1. Hence z0 is a zero of a − a(1) =
(f (1) − a(1))− (f (1) − a) with multiplicity q − 1. Since q ≤ 2(q − 1), we have

(3.1) N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f).

Let λ = f(1)
−a

f−a
and F = f − a. Then by the hypotheses we get

N(r, 0;λ) +N(r,∞;λ) ≤ NA(r, 0; f − a) +NA(r, 0; f
(1) − a)

= S(r, f).(3.2)
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Now

(3.3) F (1) = λF + a− a(1) = λF + h,

where h = a− a(1). And also

F (2) = λF (1) + λ(1)F + h(1)

= λ(λF + h) + λ(1)F + h(1)

= (λ2 + d1λ)F + λh+ h(1),(3.4)

where d1 = λ(1)

λ
and T (r, d1) = N(r, 0;λ) +N(r,∞;λ) + S(r, λ) = S(r, f).

Set

(3.5) τ =
(a− a(1))(f (2) − a(2))− (b − a(2))(f (1) − a(1))

f − a
.

Then by the lemma of logarithmic derivative m(r, τ) = S(r, f). Now by (3.1) and
by hypotheses we get N(r, τ) = S(r, f) and so T (r, τ) = S(r, f).

Since a is a polynomial and deg(a) < 2 so a(2) = 0, then by (3.5) we get

τF = (a− a(1))F (2) − (b− a(2))F (1) = hF (2) − bF (1).

Putting the value of F (1) and F (2) from (3.3) and (3.4) to the above equation we
get

(3.6) {hλ2 + (hd1 − b)λ− τ}F = h2(
b− a(1)

a− a(1)
− λ).

If hλ2 + (hd1 − b)λ− τ 6≡ 0 , then from (3.6) we get

(3.7) F = −
h2λ− (b− a(1))h

hλ2 + (hd1 − b)λ− τ
.

Then from (3.7) we get by Lemma 2.5, T (r, F ) = O(T (r, λ)) + S(r, f) and so
T (r, f) = T (r, F + a) ≤ T (r, F ) + S(r, f) also T (r, F ) ≤ T (r, f) + S(r, f) i.e.,
T (r, f) = T (r, F ) + S(r, f) = O(T (r, λ)) + S(r, f) this implies that S(r, f) is re-
placeable by S(r, λ).

Also from (3.7) we see that F is a rational function in λ, which can be made
irreducible. We put

(3.8) F =
Pl(λ)

Ql+1(λ)
,

where Pl(λ) and Ql+1(λ) are relatively prime polynomials in λ of respective degrees
l and l+ 1. Also the coefficients of the both the polynomials are small functions of
λ. Without loss of generality we assume that Ql+1(λ) is a monic polynomial. We
further note that the counting function of the common zeros of Pl(λ) and Ql+1(λ),
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if any, is S(r, λ), because Pl(λ) and Ql+1(λ) are relatively prime and the coefficients
are small functions of λ.

Since N(r,∞;F ) = S(r, f) = S(r, λ), we see from (3.8) that N(r, 0;Ql+1(λ)) =
S(r, λ). Also by (3.2) we know that N(r,∞;λ) = S(r, f) = S(r, λ). So by Lemma
2.7 we get

(3.9) Ql+1(λ) = (λ+
c

l + 1
)l+1,

where c is the coefficient of λl in Ql+1(λ).

If c 6≡ 0, then by Lemma 2.8 we obtain

T (r, λ) ≤ N(r, 0;λ) +N(r,∞;λ) +N(r,−
c

l + 1
;λ) + S(r, λ)

= N(r, 0;Ql+1(λ)) + S(r, λ)

= S(r, λ),

a contradiction. Therefore c ≡ 0 and we get from (3.8) and (3.9)

(3.10) F =
Pl(λ)

λl+1
.

Differentiating (3.10) we obtain F (1) = d1
λP

(1)
l

(λ)−(l+1)Pl(λ)

λl+1 , where d1 = λ(1)

λ
and

T (r, d1) = O(N(r, 0;λ)+N (r,∞;λ))+m(r, d1) = S(r, f)+S(r, λ) = S(r, λ). So by
Lemma 2.4 we have

(3.11) T (r, F (1)) = (l + 1− p)T (r, λ) + S(r, λ)

for some integer p, 0 ≤ p ≤ l.

Again since F (1) = λF + h, where h = a − a(1) 6= 0, we get by (3.10) F (1) =
Pl(λ)
λl + h and so by Lemma 2.4 we have

(3.12) T (r, F (1)) = (l − p)T (r, λ) + S(r, λ),

where p is same as in (3.11). Now from (3.11) and (3.12) we get T (r, λ) = S(r, λ),
a contradiction.

If hλ2+(hd1− b)λ− τ ≡ 0, then by (3.6) and h2 6≡ 0 we deduce that λ ≡ b−a(1)

a−a(1) .

Since λ = f(1)
−a

f−a
so

(3.13)
f (1) − a

f − a
=

b− a(1)

a− a(1)
.

Then (3.13) can be written as

f (1) − a(1)

f − a
+

a(1) − a

f − a
=

b− a(1)

a− a(1)
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and so m(r, a; f) = O(log r)+S(r, f) = S(r, f) , because f is transcendental. Hence

(3.14) T (r, f) = N(r, a; f) + S(r, f).

Also (3.13) can be written in the form

(3.15)
f (1) − f

f − a
=

b− a

a− a(1)
.

If a 6≡ b then the number of common zeros of f (1) − a and f − a are at most finite.
So

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a) = S(r, f) +O(log r) = S(r, f),

which contradicts (3.14).

Hence a ≡ b and so by (3.15) we conclude that f ≡ f (1). Therefore f = cez,
where c(6= 0) is a constant. This proves the theorem.

Proof. [Proof of Theorem 1.8] We verify that f cannot be a polynomial. If f is
a polynomial, then T (r, f) = O(log r) and so NA∪B(r, a; f) = S(r, f) implies that
A = B = Ø. Therefore E(a; f)∆E(a; f (1)) = {E(a; f)−E(a; f (1))} ∪ {E(a; f (1))−
E(a; f)} = Ø implies that E(a; f) = E(a; f (1)).

Let deg(f) = m and deg(a) = p. If m ≥ p + 1, then deg(f − a) = m and
deg(f (1) − a) ≤ m − 1. Since E(a; f) = E(a; f (1)) and each common zero of f − a

and f (1) − a has the same multiplicity, we arrive at a contradiction.

If m ≤ p− 1. Then deg(f − a) = deg(f (1) − a) = p. Since E(a; f) = E(a; f (1))
and each common zero of f − a and f (1) − a has the same multiplicity, we have
f (1)−a = k(f −a), where (k 6= 0) is a constant. If k 6= 1, then kf −f (1) ≡ (k−1)a,
which is impossible as deg(k−1)a = p > m = deg(kf−f (1)). If k = 1, then f (1) ≡ f

but f is a polynomial, which is a contradiction. Therefore f is a transcendental
entire function.

Case 1. Let f (n) 6≡ f (n+1). Then we have two possibilities either af (n+1) ≡
bf (n) or af (n+1) 6≡ bf (n).

Sub-Case 1.1. Let af (n+1) ≡ bf (n). If E(a : f (n)) ∩ E(b; f (n+1)) = Ø, then
N(r, a; f (1)) = NB(r, a; f

(1)) = S(r, f) and so by (3.1) and hypothesis we get

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a)

≤ N1)(r, a; f | f (1) = a) +N(2(r, a; f | f (1) = a) + S(r, f)

≤ N(r, a; f | f (1) = a) +N(2(r, a; f) + S(r, f)

≤ N(r, a; f (1)) + S(r, f)

= S(r, f).

Where N1)(r, a; f | f (1) = a) denotes the simple a-points of f which are also a-points

of f (1).
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Hence by Lemma 2.2 we get T (r, f) = S(r, f), a contradiction. Therefore
E(a; f (n)) ∩ E(b; f (n+1)) 6= Ø.
Differentiating both sides of af (n+1) ≡ bf (n) we get af (n+2)+a(1)f (n+1) ≡ bf (n+1)+
b(1)f (n), which implies

af (n+2) ≡ b(
b

a
f (n)) + b(1)f (n) − a(1)(

b

a
f (n))

≡ (
b2

a
+ b(1) −

a(1)b

a
)f (n).(3.16)

If z0 is a zero of f (1) − a which is also a zero of f (n) − a, f (n+1) − b and f (n+2) − a,
then (3.16) shows that z0 is a zero of a2− b2− ab(1)+ a(1)b, provided that a2 − b2−
ab(1) + a(1)b 6≡ 0.

If a2 − b2 − ab(1) + a(1)b 6≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a)

≤ nN(r, a; f | f (1) = a) + S(r, f)

≤ nNB(r, a; f
(1)) + nN(r, a; f (1) | f (n) = a, f (n+1) = b, f (n+2) = a) + S(r, f)

= O(log r) + S(r, f)

= S(r, f).

Also

N(r, a; f (1)) ≤ NA∪B(r, a; f
(1)) +N(r, a; f (1) | f (n) = a, f (n+1) = b, f (n+2) = a)

= O(log r) + S(r, f)

= S(r, f).

So by Lemma 2.2 we get T (r, f) = S(r, f), a contradiction.

Therefore a2− b2−ab(1)+a(1)b ≡ 0 and so (a
b
)2+(a

b
)(1) ≡ 1, which implies a

b
≡

e2z−c
e2z+c

, where c is a constant. Since a, b are polynomials so a
b
is a rational function,

we have c = 0 and so a ≡ b. Therefore af (n+1) ≡ bf (n) implies f (n+1) ≡ f (n), a
contradiction. Hence af (n+1) 6≡ bf (n).

Sub-Case 1.2. If af (n+1) 6≡ bf (n). Now by the hypothesis we get

N(r, a; f (1)) ≤ N(r,
b

a
;
f (n+1)

f (n)
) +NA∪B(r, a; f

(1))

≤ T (r,
f (n+1)

f (n)
) + S(r, f)

= N(r, 0; f (n)) + S(r, f).(3.17)

Again,

m(r, a; f) ≤ m(r, 0; f (n)) + S(r, f)

= T (r, f (n))−N(r, 0; f (n)) + S(r, f)

≤ T (r, f)−N(r, 0; f (n)) + S(r, f).
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implies

(3.18) N(r, 0; f (n)) ≤ N(r, a; f) + S(r, f).

From (3.17) and (3.18) and Lemma 2.2 we get

(3.19) T (r, f) ≤ 2CnN(r, a; f) + S(r, f).

In the proof of Theorem 1.7 we have λ = f(1)
−a

f−a
. Then f (1) − a = λf − λa, so

(3.20) F (1) = λ1F + µ1,

where F = f − a, λ1 = λ and µ1 = a − a(1) = h, say. Taking the derivatives of
(3.20) and using (3.20) repeatedly we get

(3.21) F (k) = λkF + µk,

where λk+1 = λ
(1)
k + λ1λk and µk+1 = µ

(1)
k + µ1λk for k = 1, 2, . . ..

Now we shall prove that T (r, λ) = S(r, f). If λ is constant, then obviously
T (r, λ) = S(r, f). So we suppose that λ is nonconstant. From the hypothesis we
get

N(r, 0;λ) +N(r,∞;λ) ≤ NA(r, 0; f − a) +NA(r, 0; f
(1) − a)

= S(r, f).(3.22)

Put k = 1 in λk+1 = λ
(1)
k + λ1λk we get λ2 = λ2 + d1λ where d1 = λ(1)

λ
. Again

putting k = 2 in λk+1 = λ
(1)
k +λ1λk we get λ3 = λ

(1)
2 +λ1λ2, so λ3 = λ3+3d1λ

2+d2λ,

where d2 = d21 + d
(1)
1 . Similarly λ4 = λ

(1)
3 + λ1λ3 = λ4 + 6d1λ

3 + (6d21 + 3d
(1)
1 +

d2)λ
2 + (d

(1)
2 + d1d2)λ. Therefore, in general, we get for k ≥ 2

(3.23) λk = λk +
k−1
∑

j=1

αjλ
j ,

where T (r, αj) = O(N(r, 0;λ)+N(r,∞;λ))+S(r, λ) = S(r, f) for j = 1, 2, · · · , k−1.

Again put k = 1 in µk+1 = µ
(1)
k + µ1λk we get µ2 = µ

(1)
1 + µ1λ1 = hλ + h(1).

Also putting k = 2 in µk+1 = µ
(1)
k + µ1λk we obtain by (3.23), µ3 = µ

(1)
2 + µ1λ2 =

hλ(1) + h(1)λ + h(2) + h(λ2 + d1λ) = hλ2 + (h(1) + 2hd1)λ + h(2). Similarly µ4 =

hλ3 + (5hd1 + h(1))λ2 + (h(2) + 2hd1 + 2hd21 + 2hd
(1)
1 + h(1)d1 + h(1))λ+ h(3).

Therefore, in general, for k ≥ 2

(3.24) µk =

k−1
∑

j=1

βjλ
j + h(k−1),
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where T (r, βj) = O(N(r, 0;λ)+N(r,∞;λ))+S(r, λ) = S(r, f) for j = 1, 2, · · · , k−1
and βk−1 = h.

Now we suppose that n ≥ 2. Then we set

(3.25) Ψ =
af (n+1) − bf (n)

f − a
.

Then clearly m(r,Ψ) = S(r, f). Now by (3.1) and by hypotheses we get N(r,Ψ) ≤
N(2(r, a; f) + NA(r, a; f) + S(r, f) = S(r, f) and so T (r,Ψ) = S(r, f). Then from
(3.25) we get

(3.26) Ψ(f − a)− af (n+1) + bf (n) ≡ 0.

Since deg(a) is less than n and a is a polynomial so (3.26) can be rewritten as

(3.27) ΨF − aF (n+1) + bF (n) ≡ 0.

Using (3.21),(3.23),(3.24) and (3.27) we get ΨF−a(λn+1F+µn+1)+b(λnF+µn) ≡ 0

implies ΨF − a{(λn+1 +
n
∑

j=1

αjλ
j)F +

n
∑

j=1

βjλ
j + h(n)} + b{(λn +

n−1
∑

j=1

αjλ
j)F +

n−1
∑

j=1

βjλ
j + h(n−1)} ≡ 0 implies

{Ψ− aλn+1 − (aαn − b)λn − (a− b)

n−1
∑

j=1

αjλ
j}F

−{aβnλ
n + (a− b)

n−1
∑

j=1

βjλ
j − bh(n−1)} ≡ 0.(3.28)

If Ψ− aλn+1 − (aαn − b)λn − (a− b)
n−1
∑

j=1

αjλ
j ≡ 0, then by Lemma 2.3 we get

m(r, λ) ≤ O(log r) = S(r, f), because f is a transcendental entire function. There-
fore by (3.22) we have T (r, λ) = S(r, f).

Next suppose that

Ψ− aλn+1 − (aαn − b)λn − (a− b)

n−1
∑

j=1

αjλ
j 6≡ 0.

Then from (3.28) we get

(3.29) F =

aβnλ
n + (a− b)

n−1
∑

j=1

βjλ
j − bh(n−1)

Ψ− aλn+1 − (aαn − b)λn − (a− b)
n−1
∑

j=1

αjλj

.
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Following the similar argument of the Theorem 1.7 and using (3.29) we can show
that T (r, λ) = S(r, λ), a contradiction. Therefore we establish that T (r, λ) = S(r, f)
for n ≥ 2.

Next suppose that n = 1. Let φ = af(2)
−bf(1)

f−a
, then

(3.30) φF − aF (2) + bF (1) ≡ 0.

Since deg(a) and deg(b) < n so a and b must be constant and so by hypothesis we
have T (r, φ) = S(r, f). Using (3.21), (3.23), (3.24) and (3.30) we get

(3.31) {φ− aλ2 + (b− aα1)λ}F + {bh− aβ1λ− ah(1)} ≡ 0.

Following the similar argument of the preceding case and using (3.31) we can
show that m(r, λ) = S(r, f) . So by (3.22) we have T (r, λ) = S(r, f).

Since T (r, λ) = S(r, f), we see that T (r, λk)+T (r, µk) = S(r, f) for k = 1, 2, . . .,
where λk and µk are defined in (3.21). Let z0 be a zero of F = f − a such that
z0 6∈ A ∪ B. For k = n we have from (3.21) F (n) = λnF + µn and since a(n) ≡ 0
then we have

(3.32) f (n) = λn(f − a) + µn.

Since z0 6∈ A∪B then z0 must be a zero of f − a, f (1) − a, f (n) − a, f (n+1) − b and
f (n+2) − a. That is f(z0) = a(z0) and f (n)(z0) = a(z0). Then from (3.32) we get
f (n)(z0) = λn(z0)(f − a)(z0) +µn(z0) then we get, a(z0) = µn(z0). If a(z) 6≡ µn(z),
we get

N(r, a; f) ≤ NA(r, 0; f − a) +N(r, 0; a− µn) + S(r, f)

= S(r, f)

which contradicts (3.19).
Therefore

(3.33) a(z) ≡ µn(z).

Again differentiate (3.32) we get f (n+1) = λ
(1)
n (f−a)+λn(f

(1)−a(1))+µ
(1)
n . Now at

the point z0 we get f
(n+1)(z0) = λ

(1)
n (z0)(f−a)(z0)+λn(z0)(f

(1)−a(1))(z0)+µ
(1)
n (z0)

then by hypothesis b(z0) = λn(z0)(a(z0)−a(1)(z0))+µ
(1)
n (z0). If b(z) 6≡ λn(z)(a(z)−

a(1)(z)) + µ
(1)
n (z), we get

N(r, a; f) ≤ NA(r, 0; f − a) +N(r, 0; b− λn(a− a(1))− µ(1)
n ) + S(r, f)

= S(r, f)

which contradicts (3.19).
Therefore

(3.34) b(z) = λn(z)(a(z)− a(1)(z)) + µ(1)
n (z).



742 G.K. Ghosh

Differentiate (3.33) we get

(3.35) a(1)(z) ≡ µ(1)
n (z).

From (3.34) and (3.35) we get b(z) = λn(z)(a(z)− a(1)(z)) + a(1)(z) implies

(3.36) λn =
b− a(1)

a− a(1)
.

Hence from (3.32), (3.33) and (3.36) we get

(3.37) f (n) =
b− a(1)

a− a(1)
(f − a) + a.

Now (3.37) can be rewritten in the form

(3.38)
f (n) − f

f − a
=

b− a

a− a(1)
.

Also from (3.37) we get

1

f − a
=

1

a
(
f (n)

f − a
−

b− a(1)

a− a(1)
)

and so

m(r, a; f) ≤ O(log r) + S(r, f) = S(r, f).

Hence

(3.39) T (r, f) = N(r, a; f) + S(r, f).

If a 6≡ b then by (3.38) we conclude that the number of common zeros of f − a and
f (n) − a at most finite.

Therefore by hypothesis we get

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (n) = a)

= O(log r) + S(r, f)

= S(r, f),

which contradicts (3.39). Hence a ≡ b. Then from (3.38) we get f ≡ f (n).

Since f ≡ f (n), then we have

(3.40) f = c0e
z + c1e

αz + c2e
α2z + · · ·+ cn−1e

αn−1z,

where ci(0 ≤ i ≤ n − 1) are constants and αi(0 ≤ i ≤ n − 1) are distinct roots of
zn = 1.



Entire Functions Sharing Polynomials With Their Derivatives 743

Now we put ρ = f−f(1)

f−a
= f(n)

−f(n+1)

f−a
. The by the lemma of logarithmic deriva-

tive we get m(r, ρ) = S(r, f) and by (3.1) and hypothesis N(r, ρ) ≤ NA(r, a; f) +
N(2(r, a; f | f (1) = a) = S(r, f). Therefore T (r, ρ) = S(r, f). We suppose that ρ 6≡ 0.
Then using (3.40) we get

(3.41) d0e
z + d1e

αz + d2e
α2z + · · ·+ dn−1e

αn−1z ≡ 1,

where d0 = c0
a

and dj =
cj(ρ−1+αj)

aρ
for j = 1, 2, · · · , n− 1.

We denote by dkj
(j = 0, 1, 2, · · · , u;u < n) the nonzero term of dk(k = 0, 1, 2, · · · , n−

1). Let fj = dkj
eα

kj z for j = 0, 1, 2, · · · , u. Then from (3.41) we get

(3.42) f0 + f1 + f2 + · · ·+ fu ≡ 1.

If the left hand side of (3.42) contains only one term, say f0, then we have

dk0e
αk0z ≡ 1 and so

T (r, eα
k0z) = T (r,

1

dk0

) = S(r, f) = S(r, eα
k0z),

a contradiction.

Next we suppose that the left hand side of (3.42) contains exactly two terms,
then we have f0 + f1 ≡ 1, say. So by Lemma 2.8 we have

T (r, eα
k1z) ≤ N(r, 0; eα

k1z) +N(r,∞; eα
k1z) +N(r,

1

dk1

; eα
k1z) + S(r, eα

k1z)

= N(r, 0; eα
k0z) + S(r, eα

k1z)

= S(r, eα
k1z),

a contradiction.

If the left hand side of (3.42) contains more than two terms, then by Lemma 2.9

we get dkj
eα

kj z ≡ 1 for some j ∈ {0, 1, · · · , u}.

Therefore

T (r, eα
kj z) = T (r,

1

dkj

) = S(r, f) = S(r, eα
kj z),

a contradiction.

Hence ρ ≡ 0 and so f ≡ cez for some constant c(6= 0).

Case 2. Let f (n) ≡ f (n+1). Since f is transcendental, we have f (n) 6≡ 0. After
integration we obtain f (n) = cez and so f = cez + Pn−1(z), where c(6= 0) is a
constant and Pn−1(z) is a polynomial of degree at most n− 1.

Sub-Case 2.1. If Pn−1 6≡ a, then by Lemma 2.8 we get

T (r, f) ≤ N(r, a; f) +N(r, Pn−1; f) +N(r,∞; f) + S(r, f)

= N(r, a; f) + S(r, f).(3.43)
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Since NA(r, a; f) = S(r, f) we see from (3.43) that E(a; f) ∩E(a; f (1)) contains
infinitely many points. Also since NA∪B(r, a; f

(1)) = S(r, f), but E(a; f)∩E(a; f (1))
contains infinitely many points so E(a; f (1))∩E(b; f (n+1)) contains infinitely many
points. Since f = cez+Pn−1(z) = f (n+1)+Pn−1(z), we get E(a; f)∩E(b; f (n+1)) =
E(a− Pn−1; f

(n+1)) ∩ E(b; f (n+1)).
This set contains infinitely many points only if a− Pn−1 ≡ b. Hence Pn−1 ≡ a− b.

We suppose that Pn−1 ≡ a− b 6≡ 0. Then

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f | f (1) = a)

≤ NA∪B(r, a; f
(1)) +N(r, a; f | f (n) = a, f (n+1) = b) + S(r, f)

= N(r, a; f | f (n) = a, f (n+1) = b) + S(r, f)

≤ N(r, a; f | f (n) = a) + S(r, f)

≤ N(r, 0; f − f (n)) + S(r, f)

= N(r, 0; f − f (n+1)) + S(r, f)

= N(r, 0;Pn−1) + S(r, f)

= S(r, f),

which contradicts (3.43). Therefore Pn−1 ≡ 0 and so a ≡ b and f = cez where
c(6= 0) is a constant.

Sub-Case 2.2. Next we suppose that Pn−1 ≡ a. Then f ≡ cez + a and f (n) =
f (n+1) = cez. Let z0 be a zero of f (n) − a , which is also a zero of f (n+1) − b. Then
z0 is a zero of a− b. If a− b 6≡ 0, then by Lemma 2.8 we get

T (r, f (n)) ≤ N(r, 0; f (n)) +N(r,∞; f (n) +N(r, 0; f (n) − a) + S(r, f)

= N(r, 0; a− b) + S(r, f)

= S(r, f).(3.44)

Also f = f (n) + a implies T (r, f (n)) = T (r, f) + S(r, f). Therefore by (3.44) we
get
T (r, f) = S(r, f) , a contradiction. Hence a ≡ b. This proves the theorem.

4. An open question

For further study, we propose the following question.

Is it possible to replace the set B = E(a; f (1)) \ {E(a; f (n)) ∩ E(b; f (n+1)) ∩
E(a; f (n+2))} in Theorem 1.8 by the set B = E(a; f (1))\{E(a; f (n))∩E(b; f (n+1))}
as in Theorem 1.6 ?
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