SIMPSON’S TYPE INEQUALITY FOR F-CONVEX FUNCTION

Mehmet Zeki Sarikaya, Tuba Tunç and Hüseyin Budak

Abstract. In this paper, we obtain Simpson’s type inequality for the function whose second derivatives absolute values are F-convex. Then, we give some special cases of the mappings F.

Keywords: Simpson’s inequality, F-convex mapping

1. Introduction

The well-known [2] in the literatüre as Simpson’s inequality is described by the following theorem:

Theorem 1.1. Let $f : [a, b] \to \mathbb{R}$ be a four times continuously differentiable mapping on (a, b) and $\|f^{(4)}\|_{\infty} = \sup_{x \in (a, b)} |f^{(4)}(x)| < \infty$. Then, the following inequality holds:

$$\left| \frac{1}{3} \left(f(a) + f(b) \right) + 2f \left(\frac{a + b}{2} \right) \right| - \frac{1}{b - a} \int_{a}^{b} f(x)dx \leq \frac{1}{2880} \|f^{(4)}\|_{\infty} (b - a)^4.$$

For many years, many types of convexity have been defined, such as quasi-convex [1], pseudo-convex [5], strongly convex [6], ε-convex [4], s-convex [3], h-convex [9] and etc. Recently, a new convexity that depends on a certain function satisfying some axioms was defined by Samet in the paper [7] which generalizes different types of convexity, including ε-convex functions, α-convex functions, h-convex functions and many others.

Let us recall the family F of mappings $F : \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ satisfying the following axioms:

Received June 13, 2017; accepted October 23, 2017

2010 Mathematics Subject Classification. Primary 26D07, 26D10; Secondary 26D15, 26A33

747
(A1) If \(u_i \in L^1(0,1), \, i = 1, 2, 3 \), then for every \(\lambda \in [0, 1] \), we have
\[
\int_0^1 F(u_1(t), u_2(t), u_3(t), \lambda)dt = F \left(\int_0^1 u_1(t)dt, \int_0^1 u_2(t)dt, \int_0^1 u_3(t)dt, \lambda \right).
\]

(A2) For every \(u \in L^1(0,1) \), \(w \in L^\infty(0,1) \) and \((z_1, z_2) \in \mathbb{R}^2\), we have
\[
\int_0^1 F(w(t)u(t), w(t)z_1, w(t)z_2, t)dt = T_{F,w} \left(\int_0^1 w(t)u(t)dt, z_1, z_2 \right),
\]
where \(T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is a function that depends on \((F, w)\), and it is nondecreasing with respect to the first variable.

(A3) For any \((w, u_1, u_2, u_3) \in \mathbb{R}^4\), \(u_4 \in [0, 1] \), we have
\[
wF(u_1, u_2, u_3, u_4) = F(wu_1, wu_2, wu_3, u_4) + L_w
\]
where \(L_w \in \mathbb{R} \) is a constant that depends only on \(w \).

Definition 1.1. Let \(f : [a, b] \to \mathbb{R}, \, (a, b) \in \mathbb{R}^2, \, a < b \), be a given function. We say that \(f \) is a convex function with respect to some \(F \in \mathcal{F} \) (or \(F \)-convex function) iff
\[
F(f(tx + (1-t)y), f(x), f(y), t) \leq 0, \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].
\]

One can obtain many types of convexity with the special cases of \(F \). Some of them are listed below:

Remark 1.1. 1) If we choose the functions \(F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R} \) by
\[
F(u_1, u_2, u_3, u_4) = u_1 - u_4u_2 - (1 - u_4)u_3 - \varepsilon
\]
and \(T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by
\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\frac{1}{w} \int w(t)dt \right) u_2 - \left(\frac{1}{w} \int (1-t)w(t)dt \right) u_3 - \varepsilon,
\]
then it is clear that \(F \in \mathcal{F} \) for
\[
L_w = (1 - w)\varepsilon
\]
and
\[
F(f(tx + (1-t)y), f(x), f(y), t) = f(tx + (1-t)y) - tf(x) - (1-t)f(y) - \varepsilon \leq 0,
\]
that is, \(f \) is an \(\varepsilon \)-convex function. Particularly, if we take \(\varepsilon = 0 \), then \(f \) is a convex function.
2) Let \(h : J \to [0, \infty) \) be a given function which is not identical to 0, where \(J \) is an interval in \(\mathbb{R} \) such that \((0, 1) \subseteq J \). If we choose the functions \(F : \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R} \) by
\[
F(u_1, u_2, u_3, u_4) = u_1 - h(u_4)u_2 - h(1 - u_4)u_3
\]
and \(T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by
\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 h(t)w(t)dt \right) u_2 - \left(\int_0^1 h(1 - t)w(t)dt \right) u_3,
\]
then it is clear that \(F \in \mathcal{F} \) if and
\[
F(f(tx + (1 - t)y), f(x), f(y), t) = f(tx + (1 - t)y) - h(t)f(x) - h(1 - t)f(y) \leq 0,
\]
that is, \(f \) is an \(h \)-convex function.

The following lemma obtained by Sarikaya et. al. in the paper [8] which motivates our main result.

Lemma 1.1. Let \(f : I^0 \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^0 \), \(a, b \in I^0 \) with \(a < b \). If \(f'' \in L^1[a, b] \), then the following equality holds:
\[
\frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx = (b-a)^2 \int_0^1 k(t)f''(tb+(1-t)a)dt,
\]
where
\[
k(t) = \begin{cases} \frac{1}{2} \left(\frac{1}{2} - t \right), & t \in \left[0, \frac{1}{2} \right) \\ \left(1 - t \right) \left(\frac{1}{2} - \frac{1}{3} \right), & t \in \left[\frac{1}{2}, 1 \right]. \end{cases}
\]

2. A Simpson type inequality for \(F \)-convex function

In this part, we obtain Theorem related to Simpson’s type inequality for functions whose second derivatives absolute values are \(F \)-convex. Then, we give special cases of this.

Theorem 2.1. Let \(I \subseteq \mathbb{R} \) be an interval, \(f : I^0 \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^0 \), \((a, b) \in I^0 \times I^0 \), \(a < b \). If \(\left| f'' \right| \) is \(F \)-convex on \([a, b]\), for some \(F \in \mathcal{F} \) and the function \(t \in [0, 1] \to L_{w(t)} \) belongs to \(L^1[0, 1] \), then we have the following inequality
\[
T_{F,w} \left(\frac{1}{(b-a)^2} \left| f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right| - \frac{1}{b-a} \int_a^b f(x)dx \right., \left| f''(b) \right|, \left| f''(a) \right| \right)
+ \int_0^1 L_{w(t)}dt \leq 0,
\]
where \(w(t) = |k(t)| \).
Proof. Since $|f''|$ is F-convex, we have
\[F(|f''(tb + (1-t)a)|, |f''(b)|, |f''(a)|, t) \leq 0, \quad t \in [0,1]. \]
Multiplying this inequality by $w(t) = |k(t)|$ and using axiom (A3), we get
\[F(w(t)|f''(tb + (1-t)a)|, w(t)|f''(b)|, w(t)|f''(a)|, t) + L_{w(t)} \leq 0, \]
for $t \in [0,1]$. Integrating over $[0,1]$ with respect to the variable t and using axiom (A2), we obtain
\[T_{F,w} \left(\int_0^1 w(t)|f''(tb + (1-t)a)| dt, |f''(b)|, |f''(a)| \right) + \int_0^1 L_{w(t)} dt \leq 0 \]
for $t \in [0,1]$. On the other hand, using Lemma 1.1, we have
\[\frac{1}{(b-a)^2} \left| \frac{1}{6} [f(a) + 4f \left(\frac{a+b}{2} \right) + f(b)] - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{1}{0} \int |k(t)||f''(tb + (1-t)a)| dt. \]
Since $T_{F,w}$ is nondecreasing with respect to the first variable, we get
\[T_{F,w} \left(\frac{1}{(b-a)^2} \left| \frac{1}{6} [f(a) + 4f \left(\frac{a+b}{2} \right) + f(b)] - \frac{1}{b-a} \int_a^b f(x) dx \right|, |f''(b)|, |f''(a)| \right) \]
\[+ \int_0^1 L_{w(t)} dt \leq 0. \]
This completes the proof. \[\square \]

Corollary 2.1. Under assumptions of Theorem 2.1, if we choose $F(u_1, u_2, u_3, u_4) = u_1 - u_4 u_2 - (1 - u_4) u_3 - \varepsilon$, then the function $|f''|$ is ε-convex on $[a,b]$, $\varepsilon \geq 0$ and we have the inequality
\[\frac{1}{6} [f(a) + 4f \left(\frac{a+b}{2} \right) + f(b)] - \frac{1}{b-a} \int_a^b f(x) dx \]
\[\leq \frac{(b-a)^2}{162} (|f''(a)| + |f''(b)|) + \frac{1}{81} (b-a)^2 \varepsilon. \]

Proof. Using (1.3) with $w(t) = |k(t)|$, we obtain
\[\int_0^1 L_{w(t)} dt = \int_0^1 \frac{1}{(1 - |k(t)|)} dt = \varepsilon \left(\frac{1}{\int_0^1 (1 - |k(t)|) dt} + \int_0^1 (1 - |k(t)|) dt \right) = \frac{80}{81} \varepsilon. \]
From (1.2) with \(w(t) = |k(t)| \), we get

\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 t |k(t)| \, dt \right) u_2 - \left(\int_0^1 (1 - t) |k(t)| \, dt \right) u_3 - \varepsilon
\]

for \(u_1, u_2, u_3 \in \mathbb{R} \). Hence,

\[
0 \geq T_{F,w} \left(\frac{1}{(b-a)^2} \left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|, |f''(b)|, |f''(a)| \right)
+ \int_0^1 L_w \, dt
\]

\[
= \frac{1}{(b-a)^2} \left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|
- \frac{1}{162} [f''(a)] + [f''(b)] - \varepsilon + \frac{80}{81} \varepsilon
\]

that is

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|
\leq \frac{(b-a)^2}{162} [f''(a)] + [f''(b)] + \frac{1}{81} (b-a)^2 \varepsilon.
\]

This completes the proof. \(\square \)

Remark 2.1. Taking \(\varepsilon = 0 \) in Corollary 2.1, then the function \(|f''| \) is convex and we have the inequality

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{(b-a)^2}{162} [f''(a)] + [f''(b)]
\]

which is given by Sarikaya et al. in [8].

Corollary 2.2. Under the assumptions of Theorem 2.1, if we choose \(F(u_1, u_2, u_3, u_4) = u_1 - h(u_4)u_2 - h(1-u_4)u_3 \), then the function \(|f''| \) is \(h \)-convex on \([a, b]\) and we have
the inequality

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|
\leq (b - a)^2 \left(\int_0^1 h(t) |k(t)| \, dt \right) [\|f''(a)\| + |f''(b)|]
\]

Proof. From (1.5) with \(w(t) = |k(t)|\), we have

\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 h(t) |k(t)| \, dt \right) u_2 - \left(\int_0^1 h(1-t) |k(t)| \, dt \right) u_3
\]

\[
= u_1 - \left(\int_0^1 h(t) |k(t)| \, dt \right) u_2 - \left(\int_0^1 h(t) |k(1-t)| \, dt \right) u_3
\]

\[
= u_1 - \left(\int_0^1 h(t) |k(t)| \, dt \right) (u_2 + u_3)
\]

for \(u_1, u_2, u_3 \in \mathbb{R}\). Then, by Theorem 2.1,

\[
T_{F,w} \left(\frac{1}{(b-a)^2} \left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|, |f''(b)|, |f''(a)| \right)
\]

\[
= \frac{1}{(b-a)^2} \left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|
\]

\[
- \left(\int_0^1 h(t) |k(t)| \, dt \right) [\|f''(a)\| + |f''(b)|] \leq 0
\]

that is,

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x)dx \right|
\]

\[
\leq (b - a)^2 \left(\int_0^1 h(t) |k(t)| \, dt \right) [\|f''(a)\| + |f''(b)|]
\]

which completes the proof. □
Simpson’s Type Inequality for F-Convex Function

REFERENCES

Mehmet Zeki Sarikaya
Faculty of Science and Arts
Department of Mathematics
Düzce, Turkey
sarikayamz@gmail.com

Tuba Tunç
Faculty of Science and Arts
Department of Mathematics
Düzce, Turkey
tubatunc03@gmail.com

Hüseyin Budak
Faculty of Science and Arts
Department of Mathematics
Düzce, Turkey
hsyn.budak@gmail.com