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HYPERSURFACES OF A FINSLER SPACE WITH PROJECTIVE

GENERALIZED KROPINA CONFORMAL CHANGE METRIC

Akansha and P.N. Pandey

Abstract. In the present paper, we have studied a Finsler space whose metric is ob-
tained from the metric of a Finsler space by generalized Kropina conformal change and
obtained a necessary and sufficient condition for these Finsler spaces to be projectively
related. Apart from other results, the relation between the hypersurfaces of the two
Finsler spaces has been discussed.
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1. Introduction

In 1929, M. S. Knebelman[10] discussed the conformal geometry of generalized met-
ric spaces. In 1980, Makoto Matsumoto[7] discussed projective changes of Finsler
metrics. In 1984, C. Shibata[1] dealt with a change of Finsler metric known as
β- change of metric. In 1985, Makoto Matsumoto[8] discussed the induced and
intrinsic Finsler connections of a hypersurface and Finslerian projective geometry.
In 1986, T. Yamada[12] studied Finsler hypersurfaces satisfying certain conditions.
In 2008, M. K. Gupta and P. N. Pandey[3][4] studied hypersurface of a Finsler
space with Randers conformal metric and generalized Randers conformal metric.
In 2009, these authors[5] studied hypersurfaces of conformally and h-conformally
related Finsler spaces. In 2013, M. K. Gupta, Abhay Singh and P. N. Pandey[6]
studied a hypersurface of a Finsler space with Randers change of Matsumoto metric.

The aim of the present paper is to study a Finsler space whose metric is obtained
from the metric of the Finsler space by generalized Kropina conformal change and to
obtain a necessary and sufficient condition for these Finsler spaces to be projectively
related. Also planned is the study of the relation between the hypersurface of a
Finsler space and the hypersurface of a Finsler space whose metric is obtained by
the projective generalized Kropina conformal change.
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2. Preliminaries

Consider an n-dimensional smooth manifold Mn. Let Fn be an n-dimensional
Finsler space equipped with a metric function L(xi, yi) satisfying the requisite con-
ditions (H. Rund [2] and P. L. Antonelli(ed.) [11]). Suppose li, gij , g

ij , hij , Cijk ,
Ci

jk and Gi
jk denote the components of the corresponding normalized supporting

element, metric tensor, inverse metric tensor, angular metric tensor, Cartan tensor,
associate Cartan tensor and Berwald connection coefficients respectively. Then they
satisfy the following relations

(2.1)

{

(a) li = ∂̇iL, (b) gij =
1
2 ∂̇i∂̇jL

2, (c) Cijk = 1
2 ∂̇kgij ,

(d) Ci
jk = Cjhkg

ih, (e) hij = L∂̇i∂̇jL, (f) hij = gij − lilj .

where gij , hij , Cijk and Ci
jk are symmetric in their lower indices.Throughout the

paper, we use the symbols ∂̇i and ∂i for the partial derivatives with respect to yi

and xi.

The Cartan connection for a Finsler space Fn is given by CΓ = (F i
jk , G

i
j , C

i
jk).

The h− covariant and v− covariant derivatives of a covariant vector Xi(x, y) with
respect to Cartan connection are given by

(2.2) (a) Xi|j = ∂jXi − (∂̇hXi)G
h
j − F r

ijXr, (b) Xi|j = ∂̇jXi − Cr
ijXr,

and they satisfy the following

(2.3)











(a) li|j = 0, (b) gij|k = 0, (c) hij|k = 0,

(d) L|i = 0, (e) li|j =
hij

L
, (f) L|i = li,

(g) F i
jk = F i

kj , (h) F i
jky

j = Gi
jky

j = Gi
k, (i) Gi

jy
j = 2Gi.

Let α(x, y) =
√

aij(x)yiyj and β(x, y) = biy
i. Then the metric L = αn+1

βn (n 6=

0,−1) is called a generaized Kropina metric[9].

Let us denote the symmetric and skew symmetric parts of the tensor bi|j by rij
and sij respectively. Thus, we have

(2.4) (a) 2rij = bi|j + bj|i , (b) 2sij = bi|j − bj|i.

Let F ∗n = (Mn, L∗) be another Finsler space over the same manifold Mn. If
L∗(x, y) = eσ(x)L(x, y), then the change of metric is a conformal change and the
function σ(x) is conformal factor [10].

If the conformal change is given by

(2.5) L∗(x, y) = eσ(x)
Ln+1

βn
, where β = bi(x)y

i,
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then it is called a generalized Kropina conformal change[9].

A hypersurface Mn−1 of the underlying manifold Mn may be represented para-
metrically by the equations xi = xi(uα), where uα are the Gaussian coordinates
on Mn−1 (Latin indices run from 1 to n, while Greek indices take values from 1 to
n− 1). The rank of the matrix of projection factors Bi

α = ∂xi/∂uα is supposed to
be n− 1. If the supporting element yi at a point u = (uα) of Mn−1 is assumed to
be tangential to Mn−1 then yi may be written as yi = Bi

α(u)v
α so that v = (vα)

is thought of as the supporting element at the point uα of Mn−1. The function
L = L (x(u), y(u, v)) gives rise to a Finsler metric on Mn−1. Thus, we get an
(n− 1)- dimensional Finsler space Fn−1 =

(

Mn−1, L(u, v)
)

.

The unit normal vector N i(u, v) at each point uα of Fn−1 is defined by

(2.6) (a) gijB
i
αN

j = 0, (b) gijN
iN j = 1.

Let us define Bα
i = Bα

i (u, v) by

(2.7) Bα
i = gαβgijB

j
β .

This, in view of gijB
j
βB

i
γ = gβγ , implies

(2.8) Bi
αB

β
i = δβα.

From (2.6), (2.7) and (2.8), we have

{

(a) Bi
αNi = 0, (b) N iBα

i = 0, (c) N iNi = 1,

(d) Bi
αB

α
j +N iNj = δij , (e) Ni = gijN

j .
(2.9)

The second fundamental h-tensor Hαβ and the normal curvature vector Hα for the

induced Cartan connection ICΓ =
(

Fα
βγ , G

α
β , C

α
βγ

)

on Fn−1 are given by

(2.10) Hαβ = Ni

(

Bi
αβ + F i

jkB
j
αB

k
β

)

+MαHβ

and

(2.11) Hα = Ni

(

Bi
0α +Gi

jB
j
α

)

,

where Mα = CijkB
i
αN

jNk, Bi
αβ = ∂2xi/∂uα∂uβ and Bi

0α = Bi
βαv

β .

From (2.10) and (2.11), we have

(2.12) (a) H0α = Hβαv
β = Hα, (b) Hα0 = Hαβv

β = Hα +MαH0.
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3. Generalized Kropina Conformal Change

Let F ∗n = (Mn, L∗) be an n- dimensional Finsler space on the differentiable man-
ifold Mn whose metric L∗ is obtained from the metric of the Finsler space Fn by
generalized Kropina conformal change (2.5).

Throughout the paper, the geometric objects associated with F ∗n will be aster-
isked *.

Differentiating (2.5) partially with respect to yi, we get

(3.1) l∗i = eσ(x)
{

(n+ 1)
Ln

βn
li − n

Ln+1

βn+1
bi

}

,

where l∗i = ∂̇iL
∗.

Differentiating (3.1) partially with respect to yj and using (2.1)(e) and (2.1)(f),
we have

(3.2) h∗
ij = (n+ 1)e2σ(x)

L2n

β2n

{

gij − n
L

β
(libj + ljbi) + n

L2

β2
bibj + (n− 1)lilj

}

,

where h∗
ij = L∗∂̇j l

∗
i .

Using (3.1), we find

(3.3) l∗i l
∗
j = e2σ(x)

{

(n+1)2
L2n

β2n
lilj−n(n+1)

L2n+1

β2n+1
(libj+ ljbi)+n2L

2(n+1)

β2(n+1)
bibj

}

.

From (3.2), (3.3) and g∗ij = h∗
ij + l∗i l

∗
j , we have

g∗ij =e2σ(x)(n+ 1)
L2n

β2n
gij + e2σ(x)n(2n+ 1)

L2(n+1)

β2(n+1)
bibj

− e2σ(x)2n(n+ 1)
L2n+1

β2n+1
(libj + ljbi) + e2σ(x)2n(n+ 1)

L2n

β2n
lilj .

(3.4)

Since g∗ijg
∗jk = δki , the inverse metric tensor g∗ij is given by

g∗ij =
1

p
gij −

L2

pβ2

{

L2b2

β2 + 1−n
n

}bibj +
2L

pβ

{

L2b2

β2 + 1−n
n

} (libj + ljbi)

−
2n

p

{

β2(n+ 1)− nL2b2

β2(1− n) + nL2b2

}

lilj ,

(3.5)

where p = e2σ(x)(n+ 1)L
2n

β2n , b
i = gijbj and b2 = bibi.
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Differentiating (3.4) partially with respect to yk, we find

C
∗

ijk = p

{

Cijk −

n

β
(gjkbi + gkibj + gijbk)−

n(2n+ 1)L2

β3
bibjbk

+
n

L
(gjkli + gkilj + gijlk) +

n(2n+ 1)L

β2
(bibjlk + bjbkli + bkbilj)

−

2n2

β
(biljlk + bj lkli + bklilj) +

2n(n− 1)

L
liljkk

}

.

(3.6)

Transfecting (3.6) with g∗jh, we have

C
∗h
ik =C

h
ik +ALCijkb

j(2βlh − Lb
h)−

n

β
(δhk bi + δ

h
i bk)

+
n

L
(δhk li + δ

h
i lk)−Aβgikb

h + A(β2 + nβ
2
− nL

2
b
2)gikl

h

− AL
2
β
2(4n2 + 2n+ 1)bhbibk − 2n2

A(β2 + L
2
b
2)(bilk + bkli)l

h

− AL[3nβ2 + 2n2
β
2 + n(2n+ 1)L2

b
2]lhbibk

+ ALβ
2(4n− 4n2 + 1)bh(bilk + bkli)

+ 2A(2n2
β
2
− nβ

2
− nL

2
b
2
− β

2)lhlilk,

(3.7)

where A = n
nL2b2+β2(1−n) .

Thus, we have

Theorem 3.1. The components of the metric tensor, inverse metric tensor, Car-
tan tensor and associate Cartan tensor of a Finsler space with generalized Kropina
conformal changed metric are given by (3.4), (3.5), (3.6) and (3.7) respectively.

Let us denote the difference of Cartan connection coefficients F i
jk of the Finsler

space Fn and Cartan connection coefficients F ∗i
jk of the Finsler space F ∗n by Di

jk.
Thus, we have

(3.8) F ∗i
jk = F i

jk +Di
jk.

Transvecting (3.8) by yk and using (2.3)(h), we get

(3.9) G∗i
j = Gi

j +Di
0j ,

where Di
0j = Di

kjy
k.

Transvecting (3.9) by yj and using (2.3)(i), we get

(3.10) 2G∗i = 2Gi +Di
00,
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where Di
00 = Di

0jy
0.

Differentiating (3.10) partially with respect to yj and using (3.9), we have

(3.11) ∂̇jD
i
00 = 2Di

0j,

The expressions for Di
00, D

i
0j and Di

jk are calculated as follows.

Differentiating (3.1) partially with respect to yj , we find

(3.12) L∗
ij = (n+ 1)eσ(x)

Ln−1

βn

{

LLij + nlilj −
nL

β
(libj + ljbi) +

nL2

β2
bibj

}

,

where L∗
ij = ∂̇j l

∗
i and Lij = ∂̇j li.

Differentiating (3.12) partially with respect to yk, we get

L∗
ijk =(n+ 1)eσ(x)

{

Ln

βn
Lijk + n(n− 1)

Ln−2

βn
liljlk

+
nLn−1

βn
(Lij lk + Ljkli + Lkilj)−

nLn

βn+1
(Lijbk + Ljkbi + Lkibj)

−
n2Ln−1

βn+1
(liljbk + ljlkbi + lklibj)

+
n(n+ 1)Ln

βn+2
(libjbk + ljbkbi + lkbibj)−

n(n+ 2)Ln+1

βn+3
bibjbk

}

,

(3.13)

where L∗
ijk = ∂̇kL

∗
ij and Lijk = ∂̇kLij .

Differentiating (3.12) partially with respect to xk, we get

∂kL
∗
ij =(n+ 1)eσ(x)

{

[

Ln

βn Lij +
nLn−1

βn lilj −
nLn

βn+1 (libj + ljbi)

+nLn+1

βn+2 bibj

]

σk

+
Ln

βn
∂kLij +

[

nLn−1

βn Lij +
n(n−1)Ln−2

βn lilj

−n2Ln−1

βn+1 (libj + ljbi) +
n(n+1)Ln

βn+2 bibj

]

∂kL

+

[

n(n+1)Ln

βn+2 (libj + ljbi)−
n(n+2)Ln+1

βn+3 bibj

− nLn

βn+1Lij −
n2Ln−1

βn+1 lilj

]

∂kβ

+
[

nLn−1

βn lj −
nLn

βn+1 bj

]

∂kli +
[

nLn−1

βn li −
nLn

βn+1 bi

]

∂klj

+
[

nLn+1

βn+2 bj −
nLn

βn+1 lj

]

∂kbi +
[

nLn+1

βn+2 bi −
nLn

βn+1 li

]

∂kbj

}

,

(3.14)

where σk = ∂σ(x)
∂xk .
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From (2.4)(a) and (2.4)(b), we have

(3.15) bi|j = rij + sij ,

which may be re-written as

(3.16) ∂jbi = rij + sij + brF
r
ij .

Transvecting (3.16) with yi, we have

(3.17) (∂jbi)y
i = r0j + s0j + brG

r
j ,

where ′0′ stands for the contraction with respect to yi, i.e. r0j = rijy
i and s0j =

sijy
i.

Since the h-covariant derivative of L and li with respect to Cartan connection vanish
identically, we have

(3.18) ∂kli = LirG
r
k + lrF

r
ik.

and

(3.19) ∂kL = lrG
r
k.

Differentiating β = biy
i with respect to xk and using (3.17), we have

(3.20) ∂kβ = r0k + s0k + brG
r
k.

Since the h-covariant derivative of the tensor L∗
ij with respect to Cartan connection

vanishes identically, we have

(3.21) ∂kL
∗
ij − L∗

ijrG
∗r
k − L∗

irF
∗r
jk − L∗

jrF
∗r
ik = 0.

Using (3.1), (3.8), (3.9), (3.10), (3.12), (3.13), (3.14), (3.16), (3.18), (3.19) and
(3.20) in (3.21) then transvecting the resulting equation with yk, we have

L∗
ijσ0 + (n+ 1)eσ(x)

{

[

−nLn

βn+1 Lij +
n(n+1)Ln

βn+2 (libj + ljbi)

−n2Ln−1

βn+1 lilj −
n(n+2)Ln+1

βn+3 bibj

]

r00

+
[

nLn+1

βn+2 bj −
nLn

βn+1 lj

]

(ri0 + si0) +
[

nLn+1

βn+2 bi −
nLn

βn+1 li

]

(rj0 + sj0)

− L∗
ijrD

r
00 − L∗

irD
r
0j − L∗

jrD
r
0i

}

= 0,

(3.22)

where σ0 = σky
k and r00 = r0iy

i.

Differentiating (3.1) partially with respect to xj , we have

∂j l
∗
i =l∗i σj + eσ(x)

{

n(n+ 1)Ln−1

βn
li −

n(n+ 1)Ln

βn+1
bi

}

∂jL

+ eσ(x)
{

n(n+ 1)Ln+1

βn+2
bi −

n(n+ 1)Ln

βn+1
li

}

∂jβ

+ eσ(x)
{

(n+ 1)Ln

βn
∂j li −

nLn+1

βn+1
∂jbi

}

.

(3.23)
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Since the h-covariant derivative of the vector l∗i with respect to Cartan connection
vanishes identically, we have

(3.24) ∂j l
∗
i − L∗

irG
∗r
j − l∗rF

∗r
ij = 0.

Using (3.1), (3.8), (3.10), (3.12) and (3.23) in (3.24), we have

l∗i σj + eσ(x)
{[

−
n(n+ 1)Ln

βn+1
li +

n(n+ 1)Ln+1

βn+2
bi

]

(r0j + s0j)

−
nLn+1

βn+1
bi|j

}

− L∗
irD

r
0j − l∗r D

r
ij = 0,

(3.25)

which implies

eσ(x)
nLn+1

βn+1
bi|j = l∗i σj − L∗

irD
r
0j − l∗r D

r
ij

+ eσ(x)
{

−
n(n+ 1)Ln

βn+1
li +

n(n+ 1)Ln+1

βn+2
bi

}

(r0j + s0j).

(3.26)

From (2.4)(a) and (3.26), we have

2eσ(x)
nLn+1

βn+1
rij = eσ(x)

{

[

(n+ 1)L
n

βn li − nLn+1

βn+1 bi

]

σj

+
[

(n+ 1)L
n

βn lj − nLn+1

βn+1 bj

]

σi

+ n(n+ 1)
[

Ln+1

βn+2 bi −
Ln

βn+1 li

]

(r0j + s0j)

+ n(n+ 1)
[

Ln+1

βn+2 bj −
Ln

βn+1 lj

]

(r0i + s0i)

}

− L∗
irD

r
0j − L∗

jrD
r
0i − 2l∗rD

r
ij .

(3.27)

Subtracting (3.27) from (3.22) and contracting with yiyj , we have

(n+ 1)βlrD
r
00 − nLbrD

r
00 = −nLr00 + Lβσ0.(3.28)

Let us denote lrD
r
00 by R and brD

r
00 by S. Thus, we have

(n+ 1)βR − nLS = −nLr00 + Lβσ0,(3.29)
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From (2.4)(b) and (3.26), we have

2eσ(x)
nLn+1

βn+1
sij = eσ(x)

{

[

(n+ 1)L
n

βn li − nLn+1

βn+1 bi

]

σj

−
[

(n+ 1)L
n

βn lj − nLn+1

βn+1 bj

]

σi

+ n(n+ 1)
[

Ln+1

βn+2 bi −
Ln

βn+1 li

]

(r0j + s0j)

− n(n+ 1)
[

Ln+1

βn+2 bj −
Ln

βn+1 lj

]

(r0i + s0i)

}

− L∗
irD

r
0j + L∗

jrD
r
0i.

(3.30)

Adding (3.22) and (3.30), using LLir = gir − lilr and transvecting with biyj, we
have

n(n+ 1)L(L2b2 − β2)r00 +

{

(n+ 1)β2 − nL2b2
}

Lβσ0 − 2nL3βsi0b
i

+ L3β2σib
i = (n+ 1)

{

(1− n)β2 + nL2b2
}{

LS − βR

}

.

(3.31)

(3.29) and (3.31) constitute the system of algebraic equations in R and S. Solving
these equations, we have

S =
n
[

L2b2 − 2β2
]

r00 − 2nL2βsi0b
i + L2β2σib

i + 2β3σ0

[(1− n)β2 + nL2b2]
(3.32)

and

R =
−n(n+ 1)Lβr00 − 2n2L3si0b

i + nL3βσib
i + L

[

(n+ 1)β2 + nL2b2
]

σ0

(n+ 1) [(1 − n)β2 + nL2b2]
.

(3.33)

Transvecting (3.30) with yj and using LLir = gir − lilr, we have

2n
Ln+1

βn+1
si0 =

[

(n+ 1)L
n

βn li − nLn+1

βn+1 bi

]

σ0 −
Ln+1

βn
σi

+ n(n+ 1)
[

Ln+1

βn+2 bi −
Ln

βn+1 li

]

r00 −

{

(n+ 1)
Ln−1

βn
gir

+ (n2 − 1)
Ln−1

βn
lilr − n(n+ 1)

Ln

βn+1
libr

− n(n+ 1)
Ln

βn+1
lrbi + n(n+ 1)

Ln+1

βn+2
bibr

}

Dr
00.

(3.34)



772 A. Shukla and P.N. Pandey

Transvecting (3.34) with gij , we have

2n
Ln+1

βn+1
sj0 =

[

(n+ 1)L
n

βn l
j − nLn+1

βn+1 b
j
]

σ0 −
Ln+1

βn
σj

+ n(n+ 1)
[

Ln+1

βn+2 b
j − Ln

βn+1 l
j
]

r00 −

{

(n+ 1)
Ln−1

βn
δjr

+ (n2 − 1)
Ln−1

βn
lj lr − n(n+ 1)

Ln

βn+1
ljbr

− n(n+ 1)
Ln

βn+1
lrb

j + n(n+ 1)
Ln+1

βn+2
bjbr

}

Dr
00,

(3.35)

where sj0 = si0g
ij and σj = σig

ij .

From (3.35), we have

Dj
00 =

yj

Lβ

{

− nLr00 − (n− 1)βR + nLS + Lβσ0

}

+
nLbj

β2

{

Lr00 + βR − LS −
Lβ

(n+ 1)
σ0

}

−
L2

(n+ 1)
σj −

2nL2

(n+ 1)β
sj0.

(3.36)

Differentiating (3.36) partially with respect to yk and using (3.11), we have

D
j

0k =δ
j

k

{

−nr00

2β
−

(n− 1)R

2L
+

nS

2β
+

σ0

2

}

+ y
j

{

−nr0k

β

+
nr00

2β2
bk +

(n− 1)R

2L2
lk −

(n− 1)

2L
Rk −

nS

2β2
bk +

n

2β
Sk +

σk

2

}

+ nb
j

{

Lr00

β2
lk +

L2r0k

β2
−

L2r00

β3
bk +

R

2β
lk +

L

2β
Rk −

LR

2β2
bk

−

LS

β2
lk +

L2S

β3
bk −

L2

2β2
Sk −

L

β(n+ 1)
σ0lk +

L2

2β2(n+ 1)
σ0bk

−

L2

2β(n+ 1)
σk

}

−

Llk

(n+ 1)
σ
j +

L2

(n+ 1)
σ
t
C

j

tk −

2nL

(n+ 1)β
lks

j
0

+
nL2

(n+ 1)β2
bks

j
0
−

nL2

(n+ 1)β

(

s
j

k − 2st0C
j

tk

)

,

(3.37)

where sjk = sikg
ij , Rk = ∂̇kR and Sk = ∂̇kS.
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Differentiating (3.37) partially with respect to yh, we have

∂̇hD
j

0k = δ
j

k

{

−nr0h

β
+

nr00

2β2
bh +

(n− 1)R

2L2
lh −

(n− 1)

2L
Rh −

nS

2β2
bh +

n

2β
Sh +

σh

2

}

+ δ
j

h

{

−nr0k

β
+

nr00

2β2
bk +

(n− 1)R

2L2
lk −

(n− 1)

2L
Rk −

nS

2β2
bk +

n

2β
Sk +

σk

2

}

+ y
j

{

−nrhk

β
+

nbry
s(∂̇hF

r
ks)

β
+

n

β2
(r0kbh + r0hbk)−

(n− 1)R

2L3
(2lklh − LLkh)

+
(n− 1)

2L2
(Rhlk +Rklh)−

n

β3
bkbh (r00 − S) +

n

2β
Skh −

n

2β2
(Shbk + Skbh)

}

+ nb
j

{

2L

β2
(r0hlk + r0klh) +

L2

β2
rkh −

L2bry
s(∂̇hF

r
ks)

β2
+

L

β
Rkh −

L2

2β2
Skh

−

2L2

β3
(r0hbk + r0kbh) +

L

β4
bkbh

[

3Lr00 + βR − 3LS −

Lβσ0

(n+ 1)

]

+
1

2β
(Rklh +Rhlk)

+
lklh

β2

[

r00 − S −

βσ0

(n+ 1)

]

+
Lkh

β2

[

Lr00 − LS +
βR

2
−

Lβσ0

(n+ 1)

]

−

L

2β2
(Rkbh +Rhbk)

+
(lkbh + lhbk)

β3

[

−2Lr00 + 2LS −

βR

2
+

Lβσ0

(n+ 1)

]

−

L

β2
(Sklh + Shlk) +

L2

β3
(Skbh + Shbk)

−

L

β(n+ 1)
(σhlk + σklh) +

L2

2β2(n+ 1)
(σhbk + σkbh)

}

−

gkh

β(n+ 1)

(

βσ
j + 2nsj

0

)

+
L

β(n+ 1)
(βσr + 2nsr0)

[

L
(

∂̇hC
j

rk − 2Ct
rhC

j

tk

)

+ 2
(

lkC
j

rh + lhC
j

rk

)]

−

2nL2

β3(n+ 1)
bkbhs

j
0

+
2nL

β2(n+ 1)
s
j
0
(lkbh + lhbk)−

2nL

β(n+ 1)

(

lks
j

h + lhs
j

k

)

+
nL2

β2(n+ 1)

(

bks
j

h + bhs
j

k

)

−

2nL2

β2(n+ 1)
s
r
0

(

bkC
j

rh + bhC
j

rk

)

+
2nL2

β(n+ 1)

(

s
r
kC

j

rh + s
r
hC

j

rk

)

,

(3.38)

where Rkh = ∂̇hRk and Skh = ∂̇hSk.

Differentiating (3.9) with respect to yk and using (3.8) and Gi
jk =

(

∂̇kF
i
jr

)

yr +

F i
jk, we have

(3.39) ∂̇jD
i
0k =

(

∂̇kD
i
jr

)

yr +Di
jk

Thus, we have

Theorem 3.2. The difference tensor Di
jk of the Cartan connection coefficients

F ∗i
jk of the Finsler space F ∗n with the generalized Kropina conformal changed metric

L∗ and the Cartan connection coefficients F i
jk of the Finsler space Fn with the

metric L is given by (3.39) together with (3.32), (3.33) and (3.38).
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4. Relation between Projective change and Generalized Kropina

Conformal Change

Definition 4.1. Let us consider two Finsler spaces Fn = (Mn, L) and F ∗n =
(Mn, L∗) on the same manifold Mn. Then the transformation from Fn to F ∗n

which maps every geodesic of Fn to some geodesic of F ∗n is known as projective
change and the Finsler spaces Fn and F ∗n are called projectively related Finsler
spaces

It is well known that the change L −→ L∗ is projective if

(4.1) G∗i = Gi + P (x, y)yi,

where P (x, y) is a homogeneous scalar function of degree one in yi, called as pro-
jective factor.

Partial differentiation of (4.1) with respect to yj gives

(4.2) G∗i
j −Gi

j = Pjy
i + Pδij ,

A geodesic of Fn is given by the system of differential equations

(4.3)
d2xi

dt2
+ 2Gi(x, y) = τyi,

where τ = 1
L

dL
dt
, yi = dxi

dt
and t is the parameter.

The Euler-Lagrange equations for the Finsler space F ∗n is given

(4.4)
∂L∗

∂xi
−

d

dt

(

∂L∗

∂yi

)

= 0.

Using (2.5) in (4.4), we find

(4.5)
∂

∂xi

(

eσ(x)
Ln+1

βn

)

−
d

dt

[

∂

∂yi

(

eσ(x)
Ln+1

βn

)]

= 0,

which implies

eσ(x)(n+ 1)
Ln

βn

[

∂L

∂xi
−

d

dt

∂L

∂yi

]

+ eσ(x)
Ln+1

βn

∂σ(x)

∂xi

− n(n+ 1)eσ(x)
Ln−1

βn−2

[

∂

∂yi

(

L

β

)][

d

dt

(

L

β

)]

− neσ(x)
Ln+1

βn+1

[

∂β

∂xi
−

d

dt

∂β

∂yi

]

= 0,

(4.6)
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which reduces to
[

∂L

∂xi
−

d

dt

∂L

∂yi

]

+Ai = 0.(4.7)

where Ai is the covariant vector defined as

Ai =
L

(n+ 1)

∂σ(x)

∂xi
− n

β2

L

[

∂

∂yi

(

L

β

)][

d

dt

(

L

β

)]

−
n

(n+ 1)

L

β

[

∂β

∂xi
−

d

dt

∂β

∂yi

]

.

(4.8)

Thus, we conclude

Theorem 4.1. A Finsler space Fn = (Mn, L) and the Finsler space F ∗n =
(Mn, L∗) whose metric L∗ is obtained from the generalized Kropina conformal
change of the metric L are projectively related if and only if the covariant vector Ai

given by (4.8) vanishes identically.

5. Hypersurfaces given by projective Generalized Kropina Conformal

Change

Consider Finslerian hypersurfaces Fn−1 =
(

Mn−1, L(u, v)
)

of Fn and F ∗(n−1) =
(

Mn−1, L∗(u, v)
)

of F ∗n. The functions Bi
α(u) may be considered as the compo-

nents of n − 1 linearly independent vectors tangent to Fn−1. Since N i is the unit
normal vector at a point uα of Fn−1, the unit normal vector N∗i(u, v) of F ∗(n−1)

and the inverse projection factor B∗α
i along F ∗(n−1) are uniquely determined by

(5.1) (a) g∗ijB
i
αN

∗j = 0, (b) g∗ijN
∗iN∗j = 1.

and

(5.2) B∗α
i = g∗αβg∗ijB

j
β .

where g∗αβ is the inverse of metric tensor g∗αβ of F ∗(n−1).

From (5.1)(a), (5.1)(b) and (5.2), we have

(5.3) (a) Bi
αB

∗β
i = δβα, (b) Bi

αN
∗
i = 0, (c) N∗iB∗α

i = 0, (d) N∗iN∗
i = 1.

From (5.3), we have

(5.4) Bi
αB

∗α
j +N∗iN∗

j = δij.

Transvection of (2.6)(a) with vα gives

(5.5) yjN
j = 0.
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Transvecting (3.4) with N iN j and using (2.6)(b) and (5.5), we have

(5.6) g∗ijN
iN j = e2σ(x)(n+ 1)

L2n

β2n
+ e2σ(x)n(2n+ 1)

L2(n+1)

β2(n+1)
(biN

i)2.

which implies that Ni

√

e2σ(x)(n+1)L2n

β2n +e2σ(x)n(2n+1)L2(n+1)

β2(n+1)
(biNi)2

is a unit vector.

Transvecting (3.4) with Bi
αN

j and using (2.6)(a) and (5.5), we have

g∗ijB
i
αN

j = (bjN
j)

{

e2σ(x)n(2n+ 1)
L2(n+1)

β2(n+1)
(biB

i
α)

− e2σ(x)2n(n+ 1)
L2n+1

β2n+1
liB

i
α

}

,

(5.7)

which shows that N j is normal to F ∗(n−1) iff

(bjN
j)

{

e2σ(x)n(2n+ 1)
L2(n+1)

β2(n+1)
(biB

i
α)− e2σ(x)2n(n+ 1)

L2n+1

β2n+1
liB

i
α

}

= 0.(5.8)

This implies that either e2σ(x)n(2n+1)L
2(n+1)

β2(n+1) (biB
i
α)−e2σ(x)2n(n+1)L

2n+1

β2n+1 liB
i
α = 0

or bjN
j = 0.

Transvecting e2σ(x)n(2n + 1)L
2(n+1)

β2(n+1) (biB
i
α) − e2σ(x)2n(n + 1)L

2n+1

β2n+1 liB
i
α = 0 with

vα and using yi = Bi
αv

α, we have

(5.9) e2σ(x)n(2n+ 1)
L2(n+1)

β2(n+1)
biy

i − e2σ(x)2n(n+ 1)
L2n+1

β2n+1
liy

i = 0,

which gives

(5.10) −ne2σ(x)
L2(n+1)

β2n+1
= 0,

which is not possible. Hence we have

(5.11) bjN
j = 0.

Thus, the vector N j is normal to F ∗(n−1) if and only if bj is tangent to Fn−1. From

(5.5), (5.7) and (5.10), we can say that Ni
√

e2σ(x)(n+1)L2n

β2n

is a unit normal vector of

F ∗(n−1). Therefore, in view of (5.1)(a) and (5.1)(b), we have

(5.12) N∗i =
N i

√

e2σ(x)(n+ 1)L
2n

β2n
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Transvecting (3.4) with N∗j and using (5.5), (5.11) and (5.12), we have

(5.13) N∗
i = g∗ijN

∗j =

√

e2σ(x)(n+ 1)
L2n

β2n
Ni .

Hence, we conclude

Theorem 5.1. Let F ∗n be the Finsler space obtained from Fn by a generalized
Kropina conformal change. If F ∗(n−1) and Fn−1 are the hypersurfaces of these
spaces then the vector bi is tangential to the hypersurface Fn−1 if and only if every
vector normal to Fn−1 is also normal to F ∗(n−1).

Suppose the generalized Kropina conformal change of metric is projective. We shall
call such change of metric as projective generalized Kropina conformal change of
metric.

From (3.9) and (4.2), we have

(5.14) Di
0j = Pjy

i + Pδij .

Transvecting (5.14) with NiB
j
α and using (2.9)(b), (2.9)(e) and (5.5), we have

(5.15) NiD
i
0jB

j
α = 0.

If each geodesic of the hypersurface Fn−1 with respect to the induced metric is also
a geodesic of a Finsler space Fn then Fn−1 is known as totally geodesic hypersur-
face [2]. A totally geodesic hypersurface is characterised by Hα = 0.

The normal curvature vector H∗
α on F ∗(n−1) is given by

(5.16) H∗
α = N∗

i

(

Bi
0α +G∗i

j Bj
α

)

,

Using (3.9), (5.13) in (5.16), we have

(5.17) H∗
α = Hα

√

e2σ(x)(n+ 1)
L2n

β2n
+NiD

i
0jB

j
α

√

e2σ(x)(n+ 1)
L2n

β2n
.

From (5.15) and (5.17), we have

(5.18) H∗
α = eσ(x)

Ln

βn

√

(n+ 1)Hα,

which in view of (2.5) gives

(5.19) H∗
α =

√

(n+ 1)
L∗

L
Hα.
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Since
√

(n+ 1)L
∗

L
6= 0, the vanishing of Hα implies and implied by the vanishing

of H∗
α.

This leads to:

Theorem 5.2. Let F ∗n be the Finsler space obtained from the Finsler space Fn(n >
3) by a projective generalized Kropina conformal change then the hypersurface F ∗(n−1)

of F ∗n is totally geodesic if and only if the hypersurface Fn−1 of Fn is totally
geodesic.

6. Hypersurfaces of projectively flat Finsler spaces

Consider a projective generalized Kropina conformal change. If there exists a pro-
jective change L −→ L∗ of a Finsler space Fn = (Mn, L) such that the Finsler
space F ∗n = (Mn, L∗) is a locally Minkowskian space then Fn is called projectively
flat space.

In 1986, Yamada[12] proved that if Fn is projectively flat then the totally geodesic
hypersurface Fn−1 of Fn is also projectively flat.

In 1980, Matsumoto[7] showed that a Finsler space Fn(n > 2) is projectively flat
iff Weyl torsion tensor W i

jk and Douglas tensor Di
jkh vanish,i.e.

(6.1) (a) W i
jk = 0, (b) Di

jkh = 0.

Under the projective change, Weyl torsion tensor W i
jk and Douglas tensor Di

jkh are
invariant, i.e.

(6.2) (a) W ∗i
jk = W i

jk, (b) D∗i
jkh = Di

jkh.

From theorem 5.2 and equations (6.1) and (6.2), we conclude

Theorem 6.1. Let F ∗n be the Finsler space obtained from the Finsler space Fn(n >
3) by a projective generalized Kropina conformal change and Fn be projectively
flat. If F ∗(n−1) and Fn−1 are the hypersurfaces of these spaces and Fn−1 is totally
geodesic then F ∗(n−1) is projectively flat.
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