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HYPERSURFACES OF A FINSLER SPACE WITH PROJECTIVE
GENERALIZED KROPINA CONFORMAL CHANGE METRIC

Akansha and P.N. Pandey

Abstract. In the present paper, we have studied a Finsler space whose metric is ob-
tained from the metric of a Finsler space by generalized Kropina conformal change and
obtained a necessary and sufficient condition for these Finsler spaces to be projectively
related. Apart from other results, the relation between the hypersurfaces of the two
Finsler spaces has been discussed.
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1. Introduction

In 1929, M. S. Knebelman[10] discussed the conformal geometry of generalized met-
ric spaces. In 1980, Makoto Matsumoto[7] discussed projective changes of Finsler
metrics. In 1984, C. Shibata[l] dealt with a change of Finsler metric known as
B- change of metric. In 1985, Makoto Matsumoto[8] discussed the induced and
intrinsic Finsler connections of a hypersurface and Finslerian projective geometry.
In 1986, T. Yamada[12] studied Finsler hypersurfaces satisfying certain conditions.
In 2008, M. K. Gupta and P. N. Pandey[3][4] studied hypersurface of a Finsler
space with Randers conformal metric and generalized Randers conformal metric.
In 2009, these authors[5] studied hypersurfaces of conformally and h-conformally
related Finsler spaces. In 2013, M. K. Gupta, Abhay Singh and P. N. Pandey[6]
studied a hypersurface of a Finsler space with Randers change of Matsumoto metric.

The aim of the present paper is to study a Finsler space whose metric is obtained
from the metric of the Finsler space by generalized Kropina conformal change and to
obtain a necessary and sufficient condition for these Finsler spaces to be projectively
related. Also planned is the study of the relation between the hypersurface of a
Finsler space and the hypersurface of a Finsler space whose metric is obtained by
the projective generalized Kropina conformal change.
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2. Preliminaries

Consider an n-dimensional smooth manifold M™. Let F™ be an n-dimensional
Finsler space equipped with a metric function L(x?,y*) satisfying the requisite con-
ditions (H. Rund [2] and P. L. Antonelli(ed.) [11]). Suppose 1, gij, 9, hij, Cijks
C]l:k and Gék denote the components of the corresponding normalized supporting
element, metric tensor, inverse metric tensor, angular metric tensor, Cartan tensor,
associate Cartan tensor and Berwald connection coefficients respectively. Then they
satisfy the following relations

(21) (@)l =dL, () gy = 30:9,L% () Cige = 30u9u
(d) Ciy, = Cinkg™, () hij = LOiO; L, (f) hij = gij — Lil;.

J

where g;5, hij, Cir and C;k are symmetric in their lower indices. Throughout the

paper, we use the symbols d; and 9; for the partial derivatives with respect to y*
and z°.

The Cartan connection for a Finsler space F™ is given by CT = (F},, G}, Chy).
The h— covariant and v— covariant derivatives of a covariant vector X;(z,y) with
respect to Cartan connection are given by

(2.2) (a) X;); = 0;X; — (3hXi)G;'L —FLX, () Xil; = 9; X — Ci; X,
and they satisfy the following

(a) If; =0, (0) gijix = 0, (¢) hijii =0,
23) () Lp=0, (e Ll =", (f) Lli = 1,

(9) Flp = Fi;, () Fhy’ =Gy =Gy, (i) Ghy? = 26"

J J

Let a(z,y) = v/aij(z)y'y? and B(z,y) = b;y’. Then the metric L = %:1 (n #
0,—1) is called a generaized Kropina metric[9].

Let us denote the symmetric and skew symmetric parts of the tensor b;; by ri;
and s;; respectively. Thus, we have

(2.4) (a) 2rij = by; +bj1i s (b) 2845 = bij — bjjs-

Let F*™ = (M™,L*) be another Finsler space over the same manifold M™. If
L*(z,y) = e@ L(z,y), then the change of metric is a conformal change and the
function o(x) is conformal factor [10].

If the conformal change is given by

n+1
(2.5) L) = e

, where B = bi(;v)yi,
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then it is called a generalized Kropina conformal change[9].

A hypersurface M~ ! of the underlying manifold M™ may be represented para-
metrically by the equations z¢ = 2%(u®), where u® are the Gaussian coordinates
on M"~! (Latin indices run from 1 to n, while Greek indices take values from 1 to
n —1). The rank of the matrix of projection factors B! = dz'/du® is supposed to
be n — 1. If the supporting element y® at a point u = (u®) of M™~! is assumed to
be tangential to M™ 1 then y* may be written as y* = B (u)v® so that v = (v%)
is thought of as the supporting element at the point u® of M™ . The function
L = L(x(u),y(u,v)) gives rise to a Finsler metric on M"~1. Thus, we get an
(n — 1)- dimensional Finsler space F"~! = (M™%, L(u,v)).

The unit normal vector N*(u,v) at each point u® of F"~1 is defined by
(2.6) (a) gijBLN? =0, (b) gijN'N/ =1.

Let us define By = B (u,v) by

(2.7) By = gaﬂgijBé'

This, in view of g;; B, B!, = g7, implies

2. BB = 5.

From (2.6), (2.7) and (2.8), we have

(2.9) (a) BEN; =0,  (b) NiB* =0, (¢) NiN; =1
' (d) BZIB;‘—FNZNJ :5;, (6) lengJ

The second fundamental h-tensor H,g and the normal curvature vector H, for the

induced Cartan connection ICT = (Fg‘,y, L Cg,y) on F"~1 are given by

(2.10) Hap = N; (Bl + F}yBLBj) + Mo Hg
and
(2.11) H, = N; (B}, +G.B}),

where M, = C;, Bi, NI N* Bl = 02" Jou*ou” and B}, = Béavﬁ.
From (2.10) and (2.11), we have

(2.12) (a) Hoo = Hpov® = Hy,  (b) Hoo = Hapv® = Hy + Mo H.
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3. Generalized Kropina Conformal Change
Let F*" = (M™, L*) be an n- dimensional Finsler space on the differentiable man-
ifold M™ whose metric L* is obtained from the metric of the Finsler space F" by

generalized Kropina conformal change (2.5).

Throughout the paper, the geometric objects associated with F*™ will be aster-
isked *.

Differentiating (2.5) partially with respect to y¢, we get

* o(x L Lt

where ¥ = d;L*.

Differentiating (3.1) partially with respect to y’/ and using (2.1)(e) and (2.1)(f),
we have

* 20 (x) L L L?
where hf; = L*0;1;.
Using (3.1), we find

. o 2" [2n+1 L2(n+l)
(3@lﬂjzé<>{m+ifﬁﬁug—mn+ngzgﬂh@+gmymﬂﬁﬂﬁﬁm@}
From (3.2), (3.3) and g;; = hj; + [;I7, we have
* o(x L2n o(x L2(n+1)
) g5 =¢*7 (n + 1)@9@‘ +e?7@n(2n + 1)Wbibj
3.
2n+1 L2n
_ 620(1)271(71 + I)W(libj + ljbi) + 620(90)2”(” 4 Uﬁmlilj'

Since g;; g% = 6F the inverse metric tensor g** is given by

1 .. L? o 2L
b’y +

g _];g” B 252 232
_ 20 B*(n+1) —nL?p? (i
p | B2(1 —n)+nL?b? ’

*1j

('t + 17b")

where p = e27(®) (n + 1)%, b = ¢gb; and b? = b'b;.
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Differentiating (3.4) partially with respect to y*, we find

. n n(2n + 1)L?
Cijr = p{cijk - E(gjkbi + gribj + gizbr) — %bibjbk
2n+ 1)L
(3.6) + %(gjkli + grils + gi5l) + %(bibg’lk + bibil; + brbily)
on?

on(n — 1
= 5 (bilidi byl - bidily) + %zizjkk}.

Transfecting (3.6) with g*/", we have

n

Cil =Ch + ALCy b (281" — Lb") 5 (67bs + 61by)
+ %(5;’;@ +070) — ABgirb" + A(B% +nB® — nL?b?)gul"
(3.7) — AL*B%(4n” 4 2n + 1)b"biby — 2n* A(B% + L*b?) (bily, + bili)I"
— AL[3nB* 4+ 2n* B + n(2n + 1) L*b*]1" biby
+ ALB*(4n — 4n® + 1)b" (bily, + bils)
+2A4(2n%B* — nB* — nL?b* — A"y,
Where A = WM

Thus, we have

Theorem 3.1. The components of the metric tensor, inverse metric tensor, Car-
tan tensor and associate Cartan tensor of a Finsler space with generalized Kropina
conformal changed metric are given by (3.4), (3.5), (5.6) and (3.7) respectively.

Let us denote the difference of Cartan connection coefficients F;k of the Finsler

space F™ and Cartan connection coeflicients F;}g of the Finsler space F*" by D;k
Thus, we have

(3.8) = Pl DY
Transvecting (3.8) by y* and using (2.3)(h), we get
(3.9) G}’ = Gj + Dy,
where D(i)j = D,ijyk.

Transvecting (3.9) by y? and using (2.3)(i), we get

(3.10) 2G*" = 2G" + D,
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where D}, = Déjyo
Differentiating (3.10) partially with respect to 7 and using (3.9), we have
(3.11) 9;Djyy = 2D},

The expressions for D, Déj and D; . are calculated as follows.
Differentiating (3.1) partially with respect to y/, we find

n—1

* o\xr L
(3.12) L} =(n+1)e"™ 3

nL nL?
{LLij +nll; — W(Zibj + ljbi) + Fbibj},
where L}, = 0,17 and Ly; = 0;1;.

Differentiating (3.12) partially with respect to 3*, we get

L =(n+ 1)e“<z>{%Lm +n(n— 1)%%@
+ ”zg ! (Lijle + Ligli + Liil;) — 5L+1 (Lijb + Likb; + Liib;)
3.13
o %(zizjbk + Ll + Llib,)
%(zibjbk + Libgb; + Libib;) — %bibjbk},

where L7, = 0y L}; and Lij, = OxLy;.

Differentiating (3.12) partially with respect to z*, we get

LZ + "L nLY L — 2L (1, + b,
akL;ﬁj :(TL+ 1) o(m){ J n+1 — B +1( ) or
+ 5n+2 b b
n L"*l n(n—1)L""2
Lii + l;l:
+ =—0pL;; + B " pn = L
g R . ;ﬁﬂl(zz) bi) + MOEDE g |
(3.14) [ BOEDLY (1, 4 b,) — AL
+ nL™ n2pmn—t akﬂ
L —gnrrLij — /3"“ lilj

+| 2Ly - By o+ | 2B — 2R ol

+ _—nBL::z_l bj ﬂn+1 }&cb + { Bnnj; b; — B"*l }&Cb }

do(z)
oz*

where o, =
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From (2.4)(a) and (2.4)(b), we have

(3.15) byj = rij + Sij,
which may be re-written as
(3.16) 0jb; = 71ij + 855 + bTFZ;-.

Transvecting (3.16) with y¢, we have

(3.17) (95b0)y" = roj + s0; + b,GY,

where /0" stands for the contraction with respect to y?, i.e. ro; = 7;;y* and so; =
Sijyz.

Since the h-covariant derivative of L and [; with respect to Cartan connection vanish
identically, we have

(3.18) Okli = Liy G, + 1. F}}..
and
(3.19) oL =1,.Gj.

Differentiating 3 = b;y* with respect to z* and using (3.17), we have
(3.20) OB = rok + Sok + bTGZ.

Since the h-covariant derivative of the tensor L; with respect to Cartan connection
vanishes identically, we have

(3.21) OuLY; — L, Gy — Ly Fi — LY, Fil = 0.

irt jk Jrti
Using (3.1), (3.8), (3.9), (3.10), (3.12), (3.13), (3.14), (3.16), (3.18), (3.19) and
(3.20) in (3.21) then transvecting the resulting equation with y*, we have

—nL" n(n+1)L"
wrr Lij + =7 libj + 150
L;’ijO‘F(n‘Fl)eg(m){ l S (b +1560)

n(n Lt T00
— g lily — ( ;313 b;b;
n n+1 n n n n+1 n n
(3.22) + [ﬁbj — #ZJ} (TiO + SiO) + [ﬁbl — #ll} (T‘jo + Sjo)
- Liy Dl - LoDl ~ Lo DG =0,

where o9 = o,y"* and o9 = r0iy’.

Differentiating (3.1) partially with respect to 27, we have

— o) [N+ 1L™ T n(n+ 1)L"
8jli :l1 g +e ( ){ B" lz — ﬁﬂ-i'l bZ 8jL

ooy [ (04 1)L n(n+1)L"
(3.23) + el >{ Gz 0T gar i 0if

1NL" Ln+1
+ e“@){%ajzi - ”ﬂnﬁajbi}.
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Since the h-covariant derivative of the vector I} with respect to Cartan connection
vanishes identically, we have

(3.24) Ol — LG —I*FfT = 0.

ir~j g

Using (3.1), (3.8), (3.10), (3.12) and (3.23) in (3.24), we have

. +1)L" + 1)Lt
ljoj + e"(””){ {— n(n +1) 4 +)2 bi| (roj + s0;)
(3.25) - .
) nLn+1 * * T
- Wbm} LiyDo; = 1z Dy =0

which implies

o(x nLn-i—l * A * DT
( ) @ Bl bijj =lio; — L +Doj =1 Dj;
3.26
ol n(n+1)L" n(n+1)L"+!
+e ( ){— (ﬁnJrl) l; + ( [3"22 bi}(T‘oj-f—Soj).

From (2.4)(a) and (3.26), we have

nLnJrl n n
260(1)—ﬁn+1 Tij = e”(m){ [(n + 1)é—nli - énillb } 0j
+ [(n + 1)L - nkrh| o
(3.27) n(n+1) | St — k] (roj + s05)

n+1
n + 1 [én+2 j Bn+ll :| (T01 + 501)}

— L5}, — L%, Dy, — 21D
Subtracting (3.27) from (3.22) and contracting with y'y’, we have

(3.28) (n+ 1)B8l.Dgy — nLb, Dy, = —nLrog + LBog.

Let us denote . Dy by R and b, D{, by S. Thus, we have

(3.29) (n+1)BR —nLS = —nLry + LBoy,
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From (2.4)(b) and (3.26), we have

o(x nLn+l o(x ntl
%2¢ (z) ﬂnJrl sij =¢€ ( ){ [(n + 1)ﬁ”l é/wrl b; } 0j
- [(n + 1)L—nl énii b]} Ti
(3.30) nn+1) {é:i; 6"“1 } (roj + s0;)

—n(n+1) {é:x i

ﬁn+1 l]i| (TOi + SOZ)}
— L}, Djy; + L, Dy,.

Adding (3.22) and (3.30), using LL; = gir —
have

I;1, and transvecting with by, we

n(n+ 1)L(L*b* — B%)reo + {(n +1)8% - nL2b2}LﬂUO — 2nL3Bs;ob’
(3.31)
+ L3B2%0b" = (n+ 1){(1 —n)B* + nL2b2} {LS - ﬂR}.

(3.29) and (3.31) constitute the system of algebraic equations in R and S. Solving
these equations, we have

n [L2b2 - 2ﬁ2] Too — 271L25$1'0bi + L2ﬂ20'ibi + 2530'0

3.32 =
(332 8 ()5 + %2
and
(3.33)
R —n(n+ 1)LBrog — 2n2L3s;0b* + nL3Bo;b* + L [(n +1)32 + nL2b2} 00

(n+1)[(1 —n)B2 + nL3b?]

Transvecting (3.30) with y7 and using LL;, = gi,

— l;l,., we have

Ln+1 L"*l Ln+1
2TLWs10 = |:(’I’L + 1) ﬁnl ﬁ7l+1 szl 0o — Wo—i
B Ln—l
+n(n+1) {énib gl } r00 — {(n +1) = gn Jir
(334) ) Ln—l L"
L L+t -
_”(”+1)ﬂn+1l rb; +n(n+1)ﬁ 2 bib; }Doo'
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Transvecting (3.34) with g%/, we have

LnJrl ) . " ) Ln+1 .
20 Gyt = |+ D0 = nt] o = S
o I ) Lnfl )
+ (TL+1) |:ﬂn+2bj_6n+1N:| Too — (TL+1) ﬁn 57J“
(3.35) i I
+ (7’L2 _ 1) ﬁn ZJZT — n(n+ 1)lebr
L LnJrl )
—n(n+ 1)Bn+1l A+ n(n+ l)ﬁ 2bjbr}D(T)07
where s% = 5;09" and 0/ = 0;g%.
From (3.35), we have
. J
Déo :z—ﬂ{ — ’n,LTQO — (n — 1)ﬁR+ nLS + LBUO}
nLb Lp
3.36 L R—LS— —
(3:36) o {imo+s ™)

L2, 2nL?

n+1)°  (m+1)po

Differentiating (3.36) partially with respect to y* and using (3.11), we have

i [ - — 1R nS i[ —nrok
DI =g nroo (n no | Jo J

nroo, (n—l)Rl _ (n—l) ns n 9k
2p2 * 2Lz " oL M T omt T otk
+ nbj{ LT()() L27'0k L T00 R L LR

+

7 Ik + I bk"‘%lk"‘ 6Rk_ ka
LS L*S L? L L?
TE T T T gy T e

L? Ll > 2nL ;
_ _ cIo— l.s
2ﬂ<n+1>"’“} mrn” " 7T B

(3.37)

n+1) (n+1) (n+1)p
an j an j t ~j
+ CERE brs) — T+ 1)B (sk - 2soCtk) ,

where sfc = sik9", Ry, = O R and S, = 9;S.



Hypersurfaces of a Finsler Space 773

Differentiating (3.37) partially with respect to y”, we have

(3.38)
a@&:a{

—nron . MToo (n—1)R (n—1) nsS n on
b In — —bp, —
5 Taomont o T gp B gt /35” 2

j ) —mrokr | nroo (n=1R _(n—l) ns i Zk
+5h{ 3 +252bk+ 37z Ik 7 Ry — 2ﬁzbk+265k+

= bry® (O Frs
+yj{ nﬁrhk_’_n y(ﬁh k)“!‘E(TOkbh“v‘TOhbk)

+ ("2L2 ) (Rl + Reln) — - bibn (ro0 — S) + %Skh 2[32 (Snbx + Skbn) }

n—1R
213

(20xln — LLyp)

3

2 2 s(a T 2

+ nb’ {52 (ronlk + roxln) + %Tkh - % + ﬂRkh 2Lﬁ2
LBoo :|

B (n+1)

] 1518 )

BR  LpPoo } L?

|:—2LT00 +2LS — - + ) — E (Skln + Snlk) + 53

gkh
(O'hbk- + O'kbh) } — m (BO' + 2n50)

(ronbr + roxbn) +

+ — (Riln + Rnly)

bkbh |:3L7'()() + B8R —3LS — ﬂ

53

Il

+ % {Too -5-
(kb + lnby)

+ T

— (Ribr + Rpbi)

(Skbn + Srbi)

L2
555+ 1)

(80" +2nsp) [L (9nC3, — 201.Ch) +2 (Cy + 1nC, )| -

- B(++1) (onli + oxln) +

N L onL?
B(n+1)

pn+1)
+ ﬂ2(n+ 1) Sy (lkbh +lhbk) ﬂ(n+ 1) (lksh +lh5k) =+ 62(n+ 1) (bksh -|—bh8k)

onL? ” ;i j onL?
~ R0 (RO ) +

bkbhsg

(Szcih + s,Tle:,c) ,
where Ry, = 3th and Sy, = 3hSk.
Differentiating (3.9) with respect to y* and using (3.8) and G;k = (8kF;T) Y+
F}y., we have
(3.39) 8,Di), = (a'kD;ir) y" + D,
Thus, we have
Theorem 3.2. The difference tensor D;k of the Cartan connection coefficients

F;}g of the Finsler space F*" with the generalized Kropina conformal changed metric

L* and the Cartan connection coefficients F}k of the Finsler space F™ with the
metric L is given by (3.39) together with (3.32), (3.33) and (3.38).
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4. Relation between Projective change and Generalized Kropina
Conformal Change

Definition 4.1. Let us consider two Finsler spaces F = (M™,L) and F*" =
(M™,L*) on the same manifold M™. Then the transformation from F™ to F*"
which maps every geodesic of F™ to some geodesic of F*™ is known as projective
change and the Finsler spaces F™ and F*" are called projectively related Finsler
spaces

It is well known that the change L — L* is projective if
(4.1) G* = G' + P(z,y)y',

where P(z,y) is a homogeneous scalar function of degree one in y?, called as pro-
jective factor.

Partial differentiation of (4.1) with respect to y’ gives
(4.2) G;' — G = Py’ + P,

A geodesic of F™ is given by the system of differential equations

Azt . -

7 o 7

(43) dt2 + 2G (l',y) =TY,
where 7 = %%, Yy = ddit and ¢ is the parameter.

The Euler-Lagrange equations for the Finsler space F*" is given

oL* d (OL*
(44) dxt  di (ayi ) =0
Using (2.5) in (4.4), we find
0 Lntt d| o Lt
o LN A9 [ o) _
) Oa (e 5" ) dt L?yi (e T ﬂ "

which implies

d o L""‘1 Jo(z)
o(z) _
e n+ l)ﬁ" |:(9$Z dt Oy* ] te g ozt

1o el V(%)H 0

o (e )Ln-i-l 66 B
prtl | Ot dt oy*
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which reduces to

(4.7)

[6L d 0L

where A; is the covariant vector defined as

(4.8)

n LJ[JB d 0p
(n—i—l)ﬁ L’?xi B dta_yi} '

Thus, we conclude

Theorem 4.1. A Finsler space F* = (M",L) and the Finsler space F*™ =
(M™,L*) whose metric L* is obtained from the generalized Kropina conformal
change of the metric L are projectively related if and only if the covariant vector A;
given by (4.8) vanishes identically.

5. Hypersurfaces given by projective Generalized Kropina Conformal
Change

Consider Finslerian hypersurfaces F"~! = (M"~!, L(u,v)) of F" and Frn=1) —
(M"_l,ﬁ(u,v)) of F**. The functions B’ (u) may be considered as the compo-
nents of n — 1 linearly independent vectors tangent to F"~'. Since N* is the unit
normal vector at a point u® of F”~', the unit normal vector N*(u,v) of F*"~1)
and the inverse projection factor B;* along F *(n=1) are uniquely determined by

(5.1) (a) g5;BLN* =0, (b) gi;N*'N* = 1.
and
(5.2) B = g**Pg;,BY,.

where g*®# is the inverse of metric tensor gap Of Frn=1),

From (5.1)(a), (5.1)(b) and (5.2), we have

(5.3)  (a) BLB® =6, (b) BAN; =0, (¢) N“B* =0, (d) N“N;=1.
From (5.3), we have

(5.4) BLB;* + N*'N; = 6.

Transvection of (2.6)(a) with v® gives

(5.5) y; N7 = 0.
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Transvecting (3.4) with N*N/ and using (2.6)(b) and (5.5), we have

. NiNG = 200@) L o) L2 iy
(5.6) g N'N7 = ¢ (n—|—1)67 + e n(2n+1)m(bﬂv )”
which implies that N is a unit vector.
\/82"@(n+1>gzi;‘+e%<m>n<2n+1> Ly (N2

Transvecting (3.4) with B, N7 and using (2.6)(a) and (5.5), we have

2(n+1)

e (i)

BN = (0N 7 an + 1)
(5.7) 2 i
—e U(I)Qn(n+ 1) 62 +1l Bl}

which shows that N7 is normal to F*("~1 iff

j 20(x) L (nt+1) i 20(z) Lt i
(5.8) (ijﬂ){e n(2n 4+ 1) Zargy (0BL) = €27 2m(n + 1) Sy Y }

L2(n+1) L2+l

This implies that either 70 (2n+1) ey (0i B ) =27 2n(n+1) G i B, = 0
or bjNJ = 0.

Transvecting 62‘7(1)11(211 + 1)52((::11;

v® and using y* = B! v®, we have

(b;BL) — e2?@2n(n + 1) 52n+1l B!, = 0 with

[2(n+1) ) [2n+1

(5.9) 620(1)71(271 +1)——+ [32(n+1) biy' — 620(55)2”(” +1) i 0,

320 GangT iy

which gives

o L2(n+l)
(5.10) —ne2o (@) T = 0,
which is not possible. Hence we have
(5.11) b; N7 = 0.

Thus, the vector N7 is normal to F*(~1 if and only if b; is tangent to F"~!. From

(5.5), (5.7) and (5.10), we can say that W is a unit normal vector of
e29(x) (n+
B2n

F*(=1) Therefore, in view of (5.1)(a) and (5.1)(b), we have

(5.12) N* =
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Transvecting (3.4) with N*/ and using (5.5), (5.11) and (5.12), we have

* * * 7 L2n
(5.13) N =g;N" = \/62‘7@)(714— DW N; .

Hence, we conclude

Theorem 5.1. Let F*™ be the Finsler space obtained from F™ by a generalized
Kropina conformal change. If F*™=Y and F*~! are the hypersurfaces of these
spaces then the vector b; is tangential to the hypersurface F™*~1 if and only if every
vector normal to F™~1 is also normal to F*(=1),

Suppose the generalized Kropina conformal change of metric is projective. We shall
call such change of metric as projective generalized Kropina conformal change of
metric.

From (3.9) and (4.2), we have

(5.14) Dy; = Pjy' + Po..

Transvecting (5.14) with N; B/ and using (2.9)(b), (2.9)(e) and (5.5), we have
(5.15) N;D},; B, = 0.

If each geodesic of the hypersurface F"~! with respect to the induced metric is also
a geodesic of a Finsler space F™ then F"~! is known as totally geodesic hypersur-
face [2]. A totally geodesic hypersurface is characterised by H, = 0.

The normal curvature vector H on F*("~1) is given by
(5.16) H} =N/ (B}, +G;'Bl),

Using (3.9), (5.13) in (5.16), we have

. L2n i . L2n

From (5.15) and (5.17), we have
L”l
(5.18) HY =e’@__\/(n+1)H,,

which in view of (2.5) gives

(5.19) H; = /(n+ 1)~ Ha.
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Since /(n + 1)% # 0, the vanishing of H, implies and implied by the vanishing
of H}.

This leads to:

Theorem 5.2. Let F*™ be the Finsler space obtained from the Finsler space F™(n >
3) by a projective generalized Kropina conformal change then the hypersurface F*("—1)
of F*™ is totally geodesic if and only if the hypersurface F™~! of F™ is totally
geodesic.

6. Hypersurfaces of projectively flat Finsler spaces

Consider a projective generalized Kropina conformal change. If there exists a pro-
jective change L — L* of a Finsler space F™ = (M™, L) such that the Finsler
space F** = (M™, L*) is a locally Minkowskian space then F™ is called projectively
flat space.

In 1986, Yamada[12] proved that if F™ is projectively flat then the totally geodesic
hypersurface F"~1 of F" is also projectively flat.

In 1980, Matsumoto[7] showed that a Finsler space F"(n > 2) is projectively flat
iff Weyl torsion tensor W;k and Douglas tensor Dj—kh vanish,i.e.

(6.1) (a) W), =0, (b) Diy, =0.

Under the projective change, Weyl torsion tensor W;k and Douglas tensor D;kh are
invariant, i.e.

(6.2) (a) ;‘;3 = W;ka (b) ;ih = D;‘kh'

From theorem 5.2 and equations (6.1) and (6.2), we conclude

Theorem 6.1. Let F*™ be the Finsler space obtained from the Finsler space F™(n >
3) by a projective generalized Kropina conformal change and F™ be projectively
flat. If F*"=1 and F*=' are the hypersurfaces of these spaces and F™~ ' is totally
geodesic then F*"=1) is projectively flat.
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