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Abstract. In this paper, we study some types of η-Ricci solitons on Lorentzian para-
Sasakian manifolds and we give an example of η-Ricci solitons on a 3-dimensional
Lorentzian para-Sasakian manifold. We obtain the conditions for η-Ricci solitons on
ϕ-conformally flat, ϕ-conharmonically flat and ϕ-projectively flat Lorentzian para-
Sasakian manifolds. The existence of η-Ricci solitons implies that (M, g) is an η-Einstein
manifold. In these cases there is no Ricci soliton on M with the potential vector field
ξ.
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1. Introduction

In 1982, Hamilton [12] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics
on a Riemannian manifold:

∂

∂t
gij(t) = −2Rij.

A Ricci soliton is a natural generalization of an Einstein metric and is defined
on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a
Riemannian metric, V a vector field and λ a real scalar such that

LV g + 2S + 2λg = 0,

where S is a Ricci tensor of M and LV denotes the Lie derivative operator along
the vector field V . The Ricci soliton is said to be shrinking, steady and expanding
accordingly as λ is negative, zero and positive, respectively. Ricci solitons have
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been studied in many contexts: on Kähler manifolds [10], on contact and Lorentzian
manifolds [1, 7, 15, 21], on Sasakian [14], α-Sasakian [15], on Kenmotsu [2] etc. In
paracontact geometry, Ricci solitons firstly appeared in the paper of G. Calvaruso
and D. Perrone [8]. Ricci solitons on 3-dimensional normal paracontact manifolds
were studied by C. L. Bejan and M. Crasmareanu [3].

A more general notion is that of η-Ricci soliton introduced by J. T. Cho and
M. Kimura [9], which was treated by C. Calin and M. Crasmareanu on Hopf hyper-
surfaces in complex space forms [7]. Recently, η-Ricci solitons on para-Kenmotsu
manifolds were studied by A. M. Blaga [4] and η-Ricci solitons on Lorentzian para-
Sasakian manifolds were also studied by A. M. Blaga [5].

Let (M, g), n =dimM ≥ 3, be a connected semi-Riemannian manifold of class
C∞ and ∇ be its Levi-Civita connection. The Riemannian-Christoffel curvature
tensor R (see [20]), the Weyl conformal curvature tensor C (see [23]), the conhar-
monic curvature tensor H (see [16]) and the projective curvature tensor P (see [23])
of (M, g) are defined by

(1.1) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z −
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],(1.2)

H(X,Y )Z = R(X,Y )Z −
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ],(1.3)

(1.4) P (X,Y )Z = R(X,Y )Z −
1

(n− 1)
[g(Y, Z)QX − g(X,Z)QY ],

respectively, where Q is the Ricci operator, defined by S(X,Y ) = g(QX, Y ), S is
the Ricci tensor, r = tr(S) is the scalar curvature and X,Y, Z ∈ χ(M), χ(M) being
the Lie algebra of vector fields of M .

This paper is organized as follows: Section 2 consists of the basic definitions
of the Lorentzian para-Sasakian manifold. In Section 3, we define Ricci and η-
Ricci soliton on (M,ϕ, ξ, η, g) and also give an example of η-Ricci solitons on a
3-dimensional Lorentzian para-Sasakian manifold. In Section 4, we obtain the
conditions for η-Ricci solitons on ϕ-conformally flat, ϕ-conharmonically flat and
ϕ-projectively flat Lorentzian para-Sasakian manifolds. The existence of η-Ricci
solitons implies that (M, g) is an η-Einstein manifold. In these cases there is no
Ricci soliton on M with the potential vector field ξ.
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2. Lorentzian para-Sasakian manifolds

The notion of a Lorentzian para-Sasakian manifold was introduced by K. Mat-
sumoto [17].

An n-dimensional differential manifold Mn is a Lorentzian para-Sasakian (LP -
Sasakian) manifold if it admits a (1, 1)-tensor field ϕ, contravariant vector field ξ,
a covariant vector field η and a Lorentzian metric g, which satisfy

(2.1) ϕ2X = X + η(X)ξ, η(ξ) = −1,

which imply

(2.2) (a) ϕξ = 0, (b) η(ϕX) = 0, (c) rank(ϕ) = n− 1,

Then Mn admits a Lorentzian metric g, such that

(2.3) g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ),

and Mn is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, g). In
this case, we have

(2.4) (a) g(X, ξ) = η(X), (b) ∇Xξ = ϕX,

(2.5) (∇Xϕ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ,

where∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g.

If we put

(2.6) Ω(X,Y ) = g(X,ϕY ) = g(ϕX, Y ) = Ω(Y,X),

for any vector fields X and Y , then the tensor field Ω(X,Y ) is a symmetric (0, 2)-
tensor field.

Also, since the vector field is closed in an LP -Sasakian manifold, we have

(2.7) (∇Xη)(Y ) = Ω(X,Y ) = g(ϕX, Y ) = (∇Y η)(X), ∇ξη = 0,

for any vector fields X and Y .

Also, in an LP -Sasakian manifold (Mn, ϕ, ξ, η, g), for any X,Y, Z ∈ χ(Mn), the
following relations hold:

(2.8) η(∇Xξ) = 0, ∇ξξ = 0,
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(2.9) g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ),

(2.10) η(R(X,Y )ξ) = 0,

(2.11) R(X,Y )ξ = η(Y )X − η(X)Y,

(2.12) Lξϕ = 0, Lξη = 0, Lξg = 2g(ϕ·, ·),

where R is the Riemann curvature tensor field, L is the Lie derivatives and ∇ is the
Levi-Civita connection associated to g.

3. Ricci and η-Ricci Solitons on (M,ϕ, ξ, η, g)

Let (M,ϕ, ξ, η, g) be paracontact metric manifolds. Consider the equation

(3.1) Lξg + 2S + 2λg + 2µη ⊗ η = 0,

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, and λ and µ are real constants. Writing Lξg

in terms of the Levi-Civita connection ∇, we have:

(3.2) 2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− 2λg(X,Y )− 2µη(X)η(Y ),

for any X,Y ∈ χ(M), or equivalent:

(3.3) S(X,Y ) = −g(ϕX, Y )− λg(X,Y )− µη(X)η(Y ),

for any X,Y ∈ χ(M). The data (g, ξ, λ, µ) satisfying the equation (3.1) is said to
be an η-Ricci soliton on M [9]; in particular, if µ = 0, (g, ξ, λ) is a Ricci soliton
[13] and it is called shrinking, steady or expanding accordingly as λ is negative,
zero or positive, respectively [11]. In [18] and [19] the the authors proved that on a
Lorentzian para-Sasakian manifold (M,ϕ, ξ, η, g), the Ricci tensor field satisfies

(3.4) S(X, ξ) = (dim(M)− 1)η(X),

(3.5) S(ϕX,ϕY ) = S(X,Y ) + (dim(M)− 1)η(X)η(Y ).

Again putting X = ϕX and Y = ϕY in the equation (3.3), we get

(3.6) S(ϕX,ϕY ) = −g(X,ϕY )− λg(ϕX,ϕY ),

for any X,Y ∈ χ(M). From (3.3) and (3.4), we obtain

(3.7) µ− λ = n− 1.
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Putting X = Y = ei in (3.3) and summing over i = 1, 2, ..., n, we have

(3.8) r =
n
∑

i=1

S(ei, ei) = −ψ − λn− µ,

where ψ = trϕ.

Example 3.1. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3 : z > 0},

where (x, y, z) are standard coordinates in R
3. Let {E1, E2, E3} be a linearly independent

frame field on M given by [22]

E1 = e
z ∂

∂x
, E2 = e

z−ax ∂

∂y
, E3 =

∂

∂z
,

where a is a non-zero constant such that a 6= 1. Let g be the Lorentzian metric defined by

g(E1, E3) = g(E2, E3) = g(E1, E2) = 0,

g(E1, E1) = g(E2, E2) = 1, g(E3, E3) = −1.

Let η be the 1-form defined by η(U) = g(U,E3), for any U ∈ χ(M) and ϕ be the
(1, 1)-tensor field defined by

ϕE1 = −E1, ϕE2 = −E2 and ϕE3 = 0.

Then, using the linearity of ϕ and g, we have η(E3) = −1, ϕ2U = U + η(U)E3 and
g(ϕU,ϕW ) = g(U,W ) + η(U)η(W ), for any U,W ∈ χ(M). Thus for E3 = ξ, (ϕ, ξ, η, g)
defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then
we have

[E1, E2] = −ae
z
E2, [E1, E3] = −E1, [E2, E3] = −E2.

The Riemannian connection ∇ of the Lorentzian metric g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X,Y )− g(X, [Y,Z])

−g(Y, [X,Z]) + g(Z, [X, Y ]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate

∇E1
E1 = −E3, ∇E1

E2 = 0, ∇E1
E3 = −E1,

∇E2
E1 = ae

z
E2, ∇E2

E2 = −ae
z
E1 − E3, ∇E2

E3 = −E2,

∇E3
E1 = 0, ∇E3

E2 = 0, ∇E3
E3 = 0.

It can be easily seen that for E3 = ξ, (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure
on M . Consequently, (M,ϕ, ξ, η, g) is a Lorentzian para-Sasakian manifold.
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Also, the Riemannian curvature tensor R is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

R(E1, E2)E2 = (1− a
2
e
2z)E1, R(E1, E3)E3 = −E1, R(E2, E1)E1 = (1− a

2
e
2z)E2,

R(E2, E3)E3 = −E2, R(E3, E1)E1 = E3, R(E3, E2)E2 = E3 + ae
z
E1.

Then, the Ricci tensor S is given by

S(E1, E1) = S(E2, E2) = −a
2
e
2z
, S(E3, E3) = −2.

From (3.3), we obtain S(E1, E1) = 1−λ and S(E3,E3) = λ−µ, therefore λ = 1+a2e2z,

and µ = 3 + a2e2z. The data (g, ξ, λ, µ) for λ = 1 + a2e2z, and µ = 3 + a2e2z defines an
η-Ricci soliton on the Lorentzian para-Sasakian manifold M .

4. Main results

In this section, we consider an η-Ricci soliton on ϕ-conformally flat,
ϕ-conharmonically flat and ϕ-projectively flat Lorentzian para-Sasakian manifolds.

Let C be the Weyl conformal curvature tensor of Mn. Since at each point p ∈
Mn the tangent space Tp(M

n) can be decomposed into the direct sum Tp(M
n) =

ϕ(Tp(M
n))⊕L(ξp), where L(ξp) is a 1-dimensional linear subspace of Tp(M

n) gen-
erated by ξp, we have

C : Tp(M
n)× Tp(M

n)× Tp(M
n) → ϕ(Tp(M

n))⊕ L(ξp).

Let us consider the following particular cases:

(1) C : Tp(M
n) × Tp(M

n) × Tp(M
n) → L(ξp), i.e., the projection of the image

of C in ϕ(Tp(M
n)) is zero.

(2) C : Tp(M
n) × Tp(M

n) × Tp(M
n) → ϕ(Tp(M

n)), i.e., the projection of the
image of C in L(ξp) is zero.

(4.1) C(X,Y )ξ = 0.

(3) C : ϕ(Tp(M
n))×ϕ(Tp(M

n))×ϕ(Tp(M
n)) → L(ξp), i.e., when C is restricted

to ϕ(Tp(M
n)) × ϕ(Tp(M

n)) × ϕ(Tp(M
n)), the projection of the image of C in

ϕ(Tp(M
n)) is zero. This condition is equivalent to

(4.2) ϕ2C(ϕX,ϕY )ϕZ = 0,

(see[6]).
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Here the cases (1), (2) and (3) are conformally symmetric, ξ-conformally flat and
ϕ-conformally flat, respectively. The cases (1) and (2) were considered in [24] and
[25], respectively. The case (3) was considered in [6] for M a K-contact manifold.

Now we will study the condition (4.2) for η-Ricci solitons on Lorentzian para-
Sasakian manifolds.

Definition 4.1. A differentiable manifold (Mn, g), n > 3, satisfying the condition
(4.2) is called ϕ-conformally flat.

Suppose that (Mn, g), n > 3, is a ϕ-conformally flat Lorentzian para-Sasakian
manifold. It is easy to see that ϕ2C(ϕX,ϕY )ϕZ = 0 holds if and only if

g(C(ϕX,ϕY )ϕZ,ϕW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). So by the use of (1.2), ϕ-conformally flat means

g(R(ϕX,ϕY )ϕZ,ϕW ) =
1

n− 2
[g(ϕY, ϕZ)S(ϕX,ϕW )

−g(ϕX,ϕZ)S(ϕY, ϕW ) + g(ϕX,ϕW )S(ϕY, ϕZ)

−g(ϕY, ϕW )S(ϕX,ϕZ)]−
r

(n− 1)(n− 2)

[g(ϕY, ϕZ)g(ϕX,ϕW )− g(ϕX,ϕZ)g(ϕY, ϕW )].(4.3)

Let {e1, e2, ...., en−1, ξ} be a local orthonormal basis of vector fields in Mn; then
{ϕe1, ϕe2, ...., ϕen−1, ξ} is also a local orthonormal basis. Putting X = W = ei in
(4.3) and summing over i = 1, ....., n− 1, we get

n−1
∑

i=1

g(R(ϕei, ϕY )ϕZ,ϕei) =
1

n− 2

n−1
∑

i=1

[g(ϕY, ϕZ)S(ϕei, ϕei)

−g(ϕei, ϕZ)S(ϕY, ϕei) + g(ϕei, ϕei)S(ϕY, ϕZ)

−g(ϕY, ϕei)S(ϕei, ϕZ)]−
r

(n− 1)(n− 2)
n−1
∑

i=1

[g(ϕY, ϕZ)g(ϕei, ϕei)− g(ϕei, ϕZ)g(ϕY, ϕei)].(4.4)

It can be easy to verify that

(4.5)

n−1
∑

i=1

g(R(ϕei, ϕY )ϕZ,ϕei) = S(ϕY, ϕZ) + g(ϕY, ϕZ),

(4.6)

n−1
∑

i=1

S(ϕei, ϕei) = r + n− 1,



224 A. Singh and S. Kishor

(4.7)

n−1
∑

i=1

g(ϕei, ϕZ)S(ϕY, ϕei) = S(ϕY, ϕZ),

(4.8)

n−1
∑

i=1

g(ϕei, ϕei) = n+ 1,

and

(4.9)
n−1
∑

i=1

g(ϕei, ϕZ)g(ϕY, ϕei) = g(ϕY, ϕZ).

So applying (4.5)− (4.9) into (4.4), we obtain

(4.10) S(ϕY, ϕZ) =

(

r

n− 1
− 1

)

g(ϕY, ϕZ).

Using (3.6) and (3.8) in (4.10), we get

(4.11) (n− 1)g(Y, ϕZ) = (ψ + µ+ λ+ n− 1)g(ϕY, ϕZ),

for any Y, Z ∈ χ(Mn) and for Y 7→ ϕY, we get

(4.12) (n− 1)g(ϕY, ϕZ) = (ψ + µ+ λ+ n− 1)g(Y, ϕZ).

Adding the previous two equations, we have

(4.13) (ψ + µ+ λ+ 2n− 2)[g(Y, ϕZ)− g(ϕY, ϕZ)] = 0,

for any Y, Z ∈ χ(Mn) and follows

(4.14) ψ + µ+ λ+ 2n− 2 = 0.

Now using (3.7) in (4.24), we get

(4.15) λ =
3− ψ − 3n

2
and µ =

1− ψ − n

2
.

Hence, we can state the following:

Theorem 4.1. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

conformally flat, then

λ =
3− ψ − 3n

2
and µ =

1− ψ − n

2
.
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Corollary 4.1. If (ϕ, ξ, η, g) is a ϕ-conformally flat Lorentzian para-Sasakian struc-

ture on the n-dimensional manifold Mn, then there is no Ricci soliton with a po-

tential vector field ξ.

From (3.3), (3.7) and (4.11), we obtain

S(X,Y ) = −

(

ψ + nλ+ µ+ n− 1

n− 1

)

g(X,Y )(4.16)

−

(

ψ + λ+ µn+ n− 1

n− 1

)

η(X)η(Y ).

Hence, we can state the following:

Proposition 4.1. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

conformally flat, then (Mn, g) is an η-Einstein manifold.

Let H be the conharmonic curvature tensor of Mn.

Definition 4.2. A differentiable manifold (Mn, g), n > 3, satisfying the condition

ϕ2H(ϕX,ϕY )ϕZ = 0,

is called ϕ-conharmonically flat.

Now our aim is to find the characterization of η-Ricci solitons on Lorentzian
para-Sasakian manifolds satisfying the above condition.

Assume that (Mn, g), n > 3, is a ϕ-conharmonically flat Lorentzian para-Sasakian
manifold. It can be easily seen that ϕ2H(ϕX,ϕY )ϕZ = 0 holds if and only if

g(H(ϕX,ϕY )ϕZ,ϕW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). Using (1.3), ϕ-conharmonically flat means

g(R(ϕX,ϕY )ϕZ,ϕW ) =
1

n− 2
[g(ϕY, ϕZ)S(ϕX,ϕW )

−g(ϕX,ϕZ)S(ϕY, ϕW ) + g(ϕX,ϕW )S(ϕY, ϕZ)

−g(ϕY, ϕW )S(ϕX,ϕZ)].(4.17)

In a manner similar to the method in the proof of Theorem (4.1), choosing
{e1, e2, ...., en−1, ξ} the local orthonormal basis of vector fields in Mn, then
{ϕe1, ϕe2, ...., ϕen−1, ξ} is also a local orthonormal basis. Putting X = W = ei in
(4.17) and summing over i = 1, ....., n− 1, we get

n−1
∑

i=1

g(R(ϕei, ϕY )ϕZ,ϕei) =
1

n− 2

n−1
∑

i=1

[g(ϕY, ϕZ)S(ϕei, ϕei)

−g(ϕei, ϕZ)S(ϕY, ϕei) + g(ϕei, ϕei)S(ϕY, ϕZ)

−g(ϕY, ϕei)S(ϕei, ϕZ)].(4.18)
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So applying (4.5)− (4.9) into (4.18), we get

(4.19) S(ϕY, ϕZ) = −(r + 1)g(ϕY, ϕZ).

Using (3.6) and (3.8) in the above equation, we get

(4.20) g(Y, ϕZ) = (−ψ − λn− λ− µ+ 1)g(ϕY, ϕZ),

for any Y, Z ∈ χ(Mn) and for Y 7→ ϕY, we get

(4.21) g(ϕY, ϕZ) = (−ψ − λn− λ− µ+ 1)g(Y, ϕZ).

Adding the previous two equations, we have

(4.22) (−ψ − λn− λ− µ+ 2)[g(Y, ϕZ)− g(ϕY, ϕZ)] = 0,

for any Y, Z ∈ χ(Mn) and follows

(4.23) [ψ + λ(n+ 1) + µ− 2] = 0.

In view of (3.7) and (4.23), we obtain

(4.24) λ =
−(ψ + n− 3)

(n+ 2)
and µ =

−ψ + n2 + 1

(n+ 2)
.

Hence, we can state the following:

Theorem 4.2. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

conharmonically flat, then

λ =
−(ψ + n− 3)

(n+ 2)
and µ =

−ψ + n2 + 1

(n+ 2)
.

Corollary 4.2. If (ϕ, ξ, η, g) is a ϕ-conharmonically flat Lorentzian para-Sasakian

structure on the n-dimensional manifold Mn, then there is no Ricci soliton with the

potential vector field ξ.

From (3.3), (3.7) and (4.20), we obtain

S(X,Y ) = (ψ + nλ+ µ− 1)g(X,Y )(4.25)

+(ψ + nµ+ λ− 1)η(X)η(Y ).

Hence, we can state the following:
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Proposition 4.2. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

conharmonically flat, then (Mn, g) is η-Einstein manifold.

Let P be the projective curvature tensor of Mn.

Definition 4.3. A differentiable manifold (Mn, g), n > 3, satisfying the condition

ϕ2P (ϕX,ϕY )ϕZ = 0,

is called ϕ-projectively flat.

Assume that (Mn, g), n > 3, is a ϕ-projectively flat Lorentzian para-Sasakian
manifold. It can be easily seen that ϕ2P (ϕX,ϕY )ϕZ = 0 holds if and only if

g(P (ϕX,ϕY )ϕZ,ϕW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). Using (1.4), ϕ-projectively flat means

g(R(ϕX,ϕY )ϕZ,ϕW ) =
1

n− 1
[g(ϕY, ϕZ)S(ϕX,ϕW )

−g(ϕX,ϕZ)S(ϕY, ϕW ).(4.26)

Similar to the proof of Theorem (4.1), we can suppose that {e1, e2, ...., en−1, ξ}
is a local orthonormal basis of vector fields in Mn, then {ϕe1, ϕe2, ...., ϕen−1, ξ} is
also a local orthonormal basis. Putting X = W = ei in (4.26) and summing over
i = 1, ....., n− 1, we get

n−1
∑

i=1

g(R(ϕei, ϕY )ϕZ,ϕei) =
1

n− 1

n−1
∑

i=1

[g(ϕY, ϕZ)S(ϕei, ϕei)

−g(ϕei, ϕZ)S(ϕY, ϕei)].(4.27)

So applying (4.5)− (4.9) into (4.27), we get

(4.28) nS(ϕY, ϕZ) = rg(ϕY, ϕZ),

In view of (3.6), (3.8) and (4.28), we obtain

(4.29) ng(Y, ϕZ) = (ψ + µ)g(ϕY, ϕZ),

for any Y, Z ∈ χ(Mn) and for Y 7→ ϕY, we get

(4.30) ng(ϕY, ϕZ) = (ψ + µ)g(Y, ϕZ).

Adding the previous two equations, we have
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(4.31) (ψ + µ+ n)[g(Y, ϕZ)− g(ϕY, ϕZ)] = 0,

for any Y, Z ∈ χ(Mn) and follows

(4.32) ψ + µ+ n = 0.

In view of (3.7) and (4.32), we obtain

(4.33) λ = −ψ − 2n+ 1 and µ = −(ψ + n).

Hence, we can state the following:

Theorem 4.3. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

projectively flat, then

λ = −ψ − 2n+ 1 and µ = −(ψ + n).

Corollary 4.3. If (ϕ, ξ, η, g) is a ϕ-projectively flat Lorentzian para-Sasakian struc-

ture on the n-dimensional manifold Mn, then there is no Ricci soliton with the

potential vector field ξ.

From (3.3), (3.7) and (4.29), we obtain

S(X,Y ) =

(

ψ + µ− nλ

n

)

g(X,Y )(4.34)

+

(

ψ + µ− µn

n

)

η(X)η(Y ).

Hence, we can state the following:

Proposition 4.3. If (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure on the n-

dimensional manifold Mn, (g, ξ, λ, µ) is an η-Ricci soliton on Mn and Mn is ϕ-

projectively flat, then (Mn, g) is an η-Einstein manifold.
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conformally flat contact metric manifolds. Indian J. Pure Appl. Math, 28 (1997),
725–734.

Abhishek Singh

Department of Mathematics and Astronomy

University of Lucknow,

Lucknow-226007,

India.

lkoabhi27@gmail.com

Shyam Kishor

Department of Mathematics and Astronomy,

University of Lucknow,

Lucknow-226007,

India.

skishormath@gmail.com


