FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 33, No 3 (2018), 375-387 https://doi.org/10.22190/FUMI1803375S

RICCI SOLITONS IN α -COSYMPLECTIC MANIFOLDS *

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The aim of the paper is to study Ricci solitons in α -cosymplectic manifolds. Projective, pseudo projective and Weyl conformal curvatures in an α -cosymplectic manifolds admitting Ricci solitons have been studied under certain curvature conditions. Also, gradient Ricci solitons in α -cosymplectic manifolds have been studied. **Keywords:** Ricci soliton, gradient Ricci soliton, α -cosymplectic manifolds, cosympletic manifolds, α -Kenmatsu manifolds

1. Introduction

The concept of Ricci soliton was introduced by Hamilton [8] while studying the Ricci flow on surfaces. It is a generalization of an Einstein metric and is defined as a triple (g, V, λ) with g a Riemannian metric, V a vector field, and λ a real scalar such that

(1.1)
$$\pounds_V g + 2S + 2\lambda g = 0,$$

where S is the Ricci tensor of type (0, 2) and \pounds denotes the Lie derivative operator along the vector field V.

The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is negative, zero and positive, respectively [6]. If the vector field V is the gradient of a potential function -f, then g is called a gradient Ricci soliton and the equation (1.1) assumes the form

(1.2)
$$\nabla \nabla f = S + \lambda g.$$

In 2008 Sinha and Sharma [17] started the study of Ricci solitons in contact manifolds. Later Ricci solitons in contact and almost contact manifolds were studied by many authors such as: Ricci solitons in contact metric manifolds by Tripathi

Received August 11, 2017; accepted March 13, 2018

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53D15

^{*}The authors were supported in part by ...

[18], Ricci solitons in manifolds with a quasi-constant curvature by Bejan [2], Ricci solitons in Lorentzian α -Sasakian manifolds by Bagewadi [1], Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds by Turan, De and Yildiz [19], Ricci solitons in Kenmotsu manifolds by Nagaraja [12], etc.

The paper is organized as follows: after the introduction and preliminaries, in Section 3 we prove that the Ricci soliton in a Ricci semi-symmetric α -cosymplectic manifold of dimension n $(n \geq 2)$, is steady. Section 4 is dedicated to the study of the pseudo-projective semi-symmetric manifold and the projective semi-symmetric manifold. In Section 5 we prove that a Weyl semi-symmetric α -Kenmotsu manifold of dimension n $(n \geq 2)$, admitting a Ricci soliton is conformally flat. In Section 6 we study the α -cosymplectic manifold satisfying $P(\xi, X) \cdot S = 0$. Finally, we prove that if a gradient Ricci soliton in an α -cosymplectic manifold of dimension n $(n \geq 2)$ is expanding, then it is an η -Einstein manifold.

2. Preliminaries

An *n*-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type (1, 1), a vector field ξ , a 1-form η and a Riemannian metric g compatible with (ϕ, ξ, η) satisfying [3]

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0,$$

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

On such a manifold, the fundamental form Φ of M is defined as

$$\Phi(X,Y) = g(\phi X,Y), \qquad X,Y \in \Gamma(TM).$$

In 1967 Blair [4] defined the cosymplectic structure as a quasi-Sasakian structure satisfying $d\eta = 0$. It is to be noted that the notion of cosymplectic manifold introduced by Libermann [11] is different from that of Blair [4]. An almost contact metric manifold (M, ϕ, ξ, η, g) is said to be almost cosymplectic [7] if $d\eta = 0$ and $d\Phi = 0$, where d is the exterior differential operator. The manifold defined by $M = N \times \mathbb{R}$, where N is an almost Kählerian manifold and \mathbb{R} is the real line is the simplest example of the almost cosymplectic manifold [13]. An almost contact manifold (M, ϕ, ξ, η) is said to be normal if the Nijenhuis torsion

$$N_{\phi}(X,Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + \phi^{2}(X,Y) + 2d\eta(X,Y)\xi$$

vanishes for any vector fields X and Y. A normal almost cosymplectic manifold is a cosymplectic manifold.

An almost contact metric manifold M is said to be almost α -Kenmotsu if $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$, α being a non-zero real constant.

Kim and Pak [10] combined almost α -Kenmotsu and almost cosymplectic manifolds into a new class called almost α -cosymplectic manifolds, where α is a scalar. If we join these two classes, we obtain a new notion of an almost α -cosymplectic manifold, which is defined by the following formula

$$d\eta = 0, \quad d\Phi = 2\alpha\eta \wedge \Phi,$$

for any real number α . A normal almost α -cosymplectic manifold is called an α -cosymplectic manifold. An α -cosymplectic manifold is either cosymplectic under the condition $\alpha = 0$ or α -Kenmotsu under the condition $\alpha \neq 0$, for $\alpha \in \mathbb{R}$.

On such an α -cosymplectic manifold, we have

(2.1)
$$(\nabla_X \phi) Y = \alpha \left[g(\phi X, Y) \xi - \eta(Y) \phi X \right]$$

and

(2.2)
$$\nabla_X \xi = -\alpha \phi^2 X = \alpha [X - \eta(X)\xi].$$

On an α -cosymplectic manifold M, the following relations are held ([14], [15])

(2.3)
$$R(\xi, X)Y = \alpha^2 \big[\eta(Y)X - g(X, Y)\xi\big],$$

(2.4)
$$R(X,Y)\xi = \alpha^2 \big[\eta(X)Y - \eta(Y)X\big],$$

(2.5)
$$S(\xi, X) = -\alpha^2 (n-1)\eta(X),$$

(2.6)
$$\eta \big(R(X,Y)Z \big) = \alpha^2 \big[\eta(Y)g(X,Z) - \eta(X)g(Y,Z) \big].$$

Using (2.2) we have

(2.7)
$$\pounds_{\xi}g(X,Y) = 2\alpha g(X,Y) - 2\alpha \eta(X)\eta(Y)$$

From (1.1) and (2.7) we get

(2.8)
$$S(X,Y) = \alpha \eta(X)\eta(Y) - (\lambda + \alpha)g(X,Y)$$

Equation (2.8) yields

(2.9)
$$QX = \alpha \eta(X)\xi - (\lambda + \alpha)X,$$

(2.10)
$$S(X,\xi) = -\lambda\eta(X),$$

(2.11)
$$r = (1-n)\alpha - \lambda n.$$

Comparing (2.5) and (2.10) we get

(2.12)
$$\lambda = \alpha^2 (n-1).$$

Since $\alpha^2 \ge 0$, for $\alpha \in \mathbb{R}$, from Equation (2.12) we get $\lambda \ge 0$, for all $n \ge 2$. Thus we can state the following:

Lemma 2.1. A Ricci soliton in an n-dimensional α -cosymplectic manifold, $n \ge 2$, is either steady or expanding.

We have already stated that an α -cosymplectic manifold is either cosymplectic under the condition $\alpha = 0$ or α -Kenmotsu under the condition $\alpha \neq 0$, for $\alpha \in \mathbb{R}$. Thus we can state the following lemmas:

Lemma 2.2. A Ricci soliton in an n-dimensional α -cosymplectic manifold, $n \ge 2$, is steady if and only if it is a cosymplectic manifold.

Lemma 2.3. A Ricci soliton in an n-dimensional α -cosymplectic manifold, $n \ge 2$, is expanding if and only if it is an α -Kenmotsu manifold.

3. Ricci semi-symmetric α -cosymplectic manifold, $n \geq 2$

Consider an α -cosymplectic manifold which is Ricci semi-symmetric. Then we have [5]

$$R(X,Y) \cdot S = 0.$$

Now we assume that the condition

(3.1)
$$R(\xi, X) \cdot S(Y, Z) = 0$$

holds in M.

From (3.1) it follows that

(3.2)
$$S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0$$

Using (2.3), (2.8) and (2.10), we get from (3.2)

$$\alpha^{2} \Big[2\alpha \eta(X) \eta(Y) \eta(Z) - \alpha \eta(Y) g(X, Z) - \alpha \eta(Z) g(X, Y) \Big] = 0,$$

or

(3.3)
$$\alpha^{3} \Big[2\eta(X)\eta(Y)\eta(Z) - \eta(Y)g(X,Z) - \eta(Z)g(X,Y) \Big] = 0.$$

Contracting (3.3) over X and Y we get

(3.4)
$$\alpha^3(n-1)\eta(Z) = 0.$$

In general, $\eta(Z) \neq 0$. Therefore, $\alpha = 0$. Thus we can state the following:

Theorem 3.1. A Ricci semi-symmetric α -cosymplectic manifold, $n \geq 2$, admitting Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 3.1. A Ricci soliton in a Ricci semi-symmetric α -cosymplectic manifold, $n \geq 2$, is steady.

4. Pseudo projective semi-symmetric α -cosymplectic manifold, $n \ge 2$ We consider the pseudo projective curvature tensor P of type (1,3) which is defined by [16]

(4.1)
$$P(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y] - \frac{r}{n}(\frac{a}{n-1} + b)[g(Y,Z)X - g(X,Z)Y],$$

where R is a Riemannian curvature tensor of type (1,3), r is the scalar curvature and a and b are a non-zero constant. From (4.1) we can define a (0,4) type pseudoprojective curvature tensor \hat{P} as follows

$$\begin{split} \hat{P}(X,Y,Z,W) &= a\hat{R}(X,Y,Z,W) + b[S(Y,Z)g(X,W) - S(X,Z)g(Y,W)] \\ &- \frac{r}{n} \Big(\frac{a}{n-1} + b\Big)[g(Y,Z)g(X,W) - g(Y,U)g(Y,W)]. \end{split}$$

where \hat{R} is a Riemannian curvature tensor of type (0, 4), from which it follows that

(4.2)
$$\sum_{i=1}^{n} \hat{P}(e_i, Y, Z, e_i) = [a + (n-1)b] [S(Y, Z) - \frac{r}{n}g(Y, Z)].$$

Again from (4.1) we obtain

$$\eta \left(P(X,Y)Z \right) = \left[a\alpha^2 + \frac{r}{n} \left(\frac{a}{n-1} + b \right) + (\lambda + \alpha)b \right] \times \left[\eta(Y)g(X,Z) - \eta(X)g(Y,Z) \right],$$
 or

(4.3)
$$\eta \big(P(X,Y)Z \big) = \beta [\eta(Y)g(X,Z) - \eta(X)g(Y,Z)],$$

where $\beta = \left[a\alpha^2 + \frac{r}{n}\left(\frac{a}{n-1} + b\right) + (\lambda + \alpha)b\right].$

Now we assume that the condition

(4.4)
$$R(\xi, X) \cdot P(Y, Z)W = 0$$

holds in M.

From (4.4) it follows that

(4.5)
$$R(\xi, X)P(Y, Z)W - P(R(\xi, X)Y, Z)W - P(Y, R(\xi, X)Z)W - P(Y, Z)R(\xi, X)W = 0.$$

Using (2.3) in (4.5) we find

-

(4.6)
$$\alpha^{2} \Big[\eta \Big(P(Y,Z)W \Big) X - \hat{P}(Y,Z,W,X) \xi - \eta(Y) P(X,Z)W + g(X,Y) P(\xi,Z)W - \eta(Z) P(Y,X)W + g(X,Z) P(Y,\xi)W - \eta(W) P(Y,Z)X + g(X,W) P(Y,Z)\xi \Big] = 0,$$

where $\hat{P}(Y, Z, W, X) = g(X, P(Y, Z)W)$.

Taking the inner product of (4.5) with ξ we get

$$\alpha^{2} \Big[\eta \big(P(Y,Z)W \big) \eta(X) - \hat{P}(Y,Z,W,X) - \eta(Y)\eta \big(P(X,Z)W \big) + g(X,Y)\eta \big(P(\xi,Z)W \big) - \eta(Z)\eta \big(P(Y,X)W \big) + g(X,Z)\eta \big(P(Y,\xi)W \big) (4.7) \qquad -\eta(W)\eta \big(P(Y,Z)X \big) + g(X,W)\eta \big(P(Y,Z)\xi \big) \Big] = 0.$$

By virtue of (4.3), (4.7) yields

(4.8)
$$\alpha^2 \Big[\hat{P}(Y, Z, W, X) + \beta \big\{ g(X, Y) g(Z, W) - g(X, Z) g(Y, W) \big\} \Big] = 0.$$

Contracting (4.8) over X and Y and using (4.2) we get

(4.9)
$$\alpha^2 \Big[[a + (n-1)b] \{ S(Z,W) - \frac{r}{n}g(Z,W) \} + \beta(n-1)g(Z,W) \Big] = 0.$$

We suppose that the α -cosymplectic manifold is an α -Kenmotsu manifold i.e., $\alpha \neq 0$. Thus (4.9) can be written as

$$S(Z,W) = \left[\frac{r}{n} - \frac{\beta(n-1)}{a+(n-1)b}\right]g(Z,W),$$

or

$$(4.10) S(Z,W) = \rho g(Z,W),$$

where $\rho = \left[\frac{r}{n} - \frac{\beta(n-1)}{a+(n-1)b}\right]$.

Hence we have the following theorem:

Theorem 4.1. A pseudo-projective semi-symmetric α -Kenmotsu manifold, $n \geq 2$, admitting a Ricci soliton is an Einstein manifold.

Again, contracting (4.9) over Z and W, we get

(4.11)
$$n(n-1)\alpha^2\beta = 0.$$

From (4.11) it follows that

$$\alpha^2 \beta = 0,$$

or

(4.12)
$$\alpha^2 \left[a\alpha^2 + \frac{r}{n} \left(\frac{a}{n-1} + b \right) + (\lambda + \alpha)b \right] = 0.$$

If we put a = 1 and $b = -\frac{1}{(n-1)}$ then (4.1) takes the form

(4.13)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{(n-1)}[S(Y,Z)X - S(X,Z)Y] = \tilde{P}(X,Y)Z,$$

where $\tilde{P}(X,Y)Z$ is the projective curvature tensor and is a particular case of P. \mathbf{et}

Now putting
$$a = 1$$
 and $b = -\frac{1}{(n-1)}$ in (4.12) and making use of (2.12) we get

$$\alpha^3 = 0,$$

or

$$(4.14) \qquad \qquad \alpha = 0.$$

Thus we can state the following:

Theorem 4.2. A projective semi-symmetric α -cosymplectic manifold, $n \geq 2$, admitting a Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 4.1. A Ricci soliton in a projective semi-symmetric α -cosymplectic manifold, $n \ge 2$, is steady.

5. Weyl semi-symmetric α -cosymplectic manifold, n > 2

We consider the Weyl conformal curvature tensor C of type (1,3) which is defined by

$$C(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} \Big[g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y \Big] + \frac{r}{(n-1)(n-2)} \Big[g(Y,Z)X - g(X,Z)Y \Big],$$
(5.1)

where R is a Riemannian curvature tensor of type (1,3). From (4.1) we can define a (0,4) type Weyl conformal curvature tensor \hat{C} as follows:

$$\begin{split} \hat{C}(X,Y,Z,W) &= \hat{R}(X,Y,Z,W) - \frac{1}{n-2} \big[g(Y,Z)S(X,W) \\ &- g(X,Z)S(Y,W) + S(Y,Z)g(X,W) - S(X,Z)g(Y,W) \big] \\ &+ \frac{r}{(n-1)(n-2)} \big[g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \big], \end{split}$$

where \hat{R} is a Riemannian curvature tensor of type (0, 4). From which it follows that

(5.2)
$$\sum_{i=1}^{n} \hat{C}(e_i, Y, Z, e_i) = 0.$$

J.P. Singh and C. Lalmalsawma

Again, from (5.1) we obtain

(5.3)
$$\eta(C(X,Y)Z) = 0.$$

Now we assume that the condition

(5.4)
$$R(\xi, X) \cdot C(Y, Z)W = 0$$

holds in M.

From (5.4) it follows that

(5.5)
$$R(\xi, X)C(Y, Z)W - C(R(\xi, X)Y, Z)W - C(Y, R(\xi, X)Z)W - C(Y, Z)R(\xi, X)W = 0.$$

Using (2.3) in (5.5) we find

(5.6)

$$\alpha^{2} \Big[\eta \big(C(Y,Z)W \big) X - \hat{C}(Y,Z,W,X) \xi - \eta(Y) C(X,Z)W + g(X,Y) C(\xi,Z)W - \eta(Z) C(Y,X)W + g(X,Z) C(Y,\xi)W - \eta(W) C(Y,Z)X + g(X,W) C(Y,Z) \xi \Big] = 0,$$

where $\hat{C}(Y, Z, W, X) = g(X, C(Y, Z)W)$.

Taking the inner product of (5.6) with ξ we get

$$\alpha^{2} \Big[\eta \big(C(Y,Z)W \big) \eta(X) - \hat{C}(Y,Z,W,X) - \eta(Y) \eta \big(C(X,Z)W \big) + g(X,Y) \eta \big(C(\xi,Z)W \big) - \eta(Z) \eta \big(C(Y,X)W \big) + g(X,Z) \eta \big(C(Y,\xi)W \big) (5.7) \qquad -\eta(W) \eta \big(C(Y,Z)X \big) + g(X,W) \eta \big(C(Y,Z)\xi \big) \Big] = 0.$$

By virtue of Equation (5.3), (5.7) yields

(5.8)
$$\alpha^2 \hat{C}(Y, Z, W, X) = 0.$$

We suppose that the α -cosymplectic manifold is an α -Kenmotsu manifold i.e., $\alpha \neq 0$. Then we have

(5.9)
$$\hat{C}(Y, Z, W, X) = 0.$$

Thus we can state the following:

Theorem 5.1. A Weyl semi-symmetric α -Kenmotsu manifold, n > 2, admitting a Ricci soliton is conformally flat.

6. α -cosymplectic manifold, $n \ge 2$ satisfying $P(\xi, X) \cdot S = 0$ Making use of (2.3), (2.8) and (2.10) in (4.1) we get

$$P(\xi, Y)Z = \left[\alpha^2 a + \frac{r}{n} \left(\frac{a}{n-1} + b\right) + \lambda b\right] \left[\eta(Z)Y - g(Y, Z)\xi\right] + \alpha b \left[\eta(Y)\eta(Z)\xi - g(Y, Z)\xi\right],$$

or

(6.1)
$$P(\xi, Y)Z = \beta[\eta(Z)Y - g(Y, Z)\xi] + \gamma[\eta(Y)\eta(Z)\xi - g(Y, Z)\xi],$$

where $\beta = \left[\alpha^2 a + \frac{r}{n}\left(\frac{a}{n-1} + b\right) + \lambda b\right]$ and $\gamma = \alpha b$.

Now we consider that a given manifold satisfies

$$P(\xi, X) \cdot S(Y, Z) = 0,$$

from which it follows that

(6.2)
$$S(P(\xi, X)Y, Z) + S(Y, P(\xi, X)Z) = 0.$$

Using (6.1) in (6.2) yields

(6.3)

$$\beta\eta(Y)S(X,Z) - \beta g(X,Y)S(\xi,Z) + \gamma\eta(X)\eta(Y)S(\xi,Z) \\ -\gamma g(X,Y)S(\xi,Z) + \beta\eta(Z)S(X,Y) - \beta g(X,Z)S(\xi,Y) \\ +\gamma\eta(X)\eta(Z)S(\xi,Y) - \gamma g(X,Z)S(\xi,Y) = 0.$$

Making use of (2.8) and (2.10) in (6.3) we get

(6.4)
$$(\alpha\beta - \lambda\gamma) [2\eta(X)\eta(Y)\eta(Z) - g(X,Z)\eta(Y) - g(X,Y)\eta(Z)] = 0.$$

Contracting (6.4) over X and Y we get

(6.5)
$$(\alpha\beta - \lambda\gamma)(1-n)\eta(Z) = 0.$$

Putting $Z = \xi$ in (6.5) yields

(6.6)
$$(\alpha\beta - \lambda\gamma)(1-n) = 0,$$

from which it follows that

$$\left(\alpha\beta - \lambda\gamma\right) = 0,$$

 \mathbf{or}

(6.7)
$$\alpha \left[\alpha^2 a + \frac{r}{n} \left(\frac{a}{n-1} + b \right) \right] = 0.$$

We suppose that the α -cosymplectic manifold is an α -Kenmotsu manifold i.e., $\alpha \neq 0$. Then (6.7) yields

$$\left[\alpha^2 a + \frac{r}{n} \left(\frac{a}{n-1} + b\right)\right] = 0,$$

or

(6.8)
$$\alpha^2 = -\frac{r}{n} \left(\frac{1}{n-1} + \frac{b}{a} \right).$$

Thus we can state the following:

Theorem 6.1. If an α -cosymplectic manifold, $n \geq 2$, admitting a Ricci soliton and satisfying $P(\xi, X) \cdot S = 0$ is an α -Kenmotsu manifold, then it satisfies $\alpha^2 = -\frac{r}{n} \left(\frac{1}{n-1} + \frac{b}{a}\right)$.

By virtue of Lemma 2.3 we have

Corollary 6.1. If a Ricci soliton in an α -cosymplectic manifold, $n \ge 2$, satisfying $P(\xi, X) \cdot S = 0$ is expanding, then $\alpha^2 = -\frac{r}{n} \left(\frac{1}{n-1} + \frac{b}{a}\right)$.

For a = 1 and $b = -\frac{1}{(n-1)}$, from (6.6)

$$\alpha^3=0,$$

or

$$(6.9) \qquad \qquad \alpha = 0$$

Thus we can state the following:

Theorem 6.2. An α -cosymplectic manifold, $n \ge 2$, admitting a Ricci soliton and satisfying $\tilde{P}(\xi, X) \cdot S = 0$ is a cosymplectic manifold.

By virtue of Lemma 2.3 we have

Corollary 6.2. A Ricci solitons in an α -cosymplectic manifold, $n \ge 2$, satisfying $\tilde{P}(\xi, X) \cdot S = 0$ is steady.

7. Gradient Ricci soliton in α -cosymplectic manifolds

From Equation (1.2) we have

(7.1) $\nabla \nabla f = S + \lambda g.$

This can be written as

(7.2)
$$\nabla_Y Df = QY + \lambda Y,$$

where D is the gradient operator of g. Using (7.2) we can obtain

(7.3)
$$R(X,Y)Df = (\nabla_X Q)Y + (\nabla_Y Q)X.$$

Taking the inner product of (7.3) with ξ we get

(7.4)
$$g(R(X,Y)Df,\xi) = g((\nabla_X Q)Y,\xi) + g((\nabla_Y Q)X,\xi).$$

Using (2.2) and (2.9) we have

(7.5)
$$g((\nabla_{\xi}Q)Y,\xi) = 0,$$

and

(7.6)
$$g((\nabla_Y Q)\xi,\xi) = 0.$$

By virtue of (7.5) and (7.6), Equation (7.4) yields

(7.7)
$$g(R(\xi, Y)Df, \xi) = 0.$$

Again, using (2.3) in (7.7) we get

(7.8)
$$g(R(\xi,Y)Df,\xi) = \alpha^2 [\eta(Y)\eta(Df) - g(Y,Df)].$$

From (7.7) and (7.8) we have

(7.9)
$$\alpha^2 \left[\eta(Y) \eta(Df) - g(Y, Df) \right] = 0.$$

Now we suppose that $\alpha \neq 0$, i.e., the given manifold is an α -Kenmotsu manifold. Equation (7.9) yields

(7.10)
$$\eta(Y)\eta(Df) = g(Y, Df).$$

From (7.10) we obtain

$$(7.11) Df = (\xi f)\xi.$$

Using (7.11) in (7.2)

(7.12)
$$Y(\xi f)\xi + \alpha(\xi f)[Y - \eta(Y)\xi] = QY + \lambda Y.$$

Taking the inner product of (7.12) with X, we obtain

$$(7.13) Y(\xi f)\eta(X) + \alpha(\xi f) [g(X,Y) - \eta(X)\eta(Y)] = S(X,Y) + \lambda g(X,Y).$$

Putting $X = \xi$ and using (2.10) in (7.13) we get

(7.14)
$$Y(\xi f) = S(\xi, Y) + \lambda \eta(Y) = 0.$$

J.P. Singh and C. Lalmalsawma

From (7.14) it is clear that ξf is constant. Thus (7.13) in (7.14) yields

$$\alpha(\xi f) \left| g(X, Y) - \eta(X)\eta(Y) \right| = S(X, Y) + \lambda g(X, Y),$$

or

(7.15)
$$S(X,Y) = \left[\alpha(\xi f) - \lambda\right]g(X,Y) - \alpha(\xi f)\eta(X)\eta(Y).$$

Hence we can state the following:

Theorem 7.1. If an α -cosymplectic manifold, $n \geq 2$, admitting a gradient Ricci soliton is an α -Ketmotsu manifold, then it is an η -Einstein manifold.

By virtue of Lemma 2.2 we have

Corollary 7.1. If a gradient Ricci soliton in an α -cosymplectic manifold, $n \ge 2$, is expanding, then it is an η -Einstein manifold.

REFERENCES

- C. S. BAGEWADI and G. INGALAHALLI: *Ricci solitons in Lorentzian* α-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28(1) (2012), 59– 68.
- 2. C. L. BEJAN and M. CRASMAREANU: *Ricci solitons in manifolds with quasi-constant curvature*. Publ. Math. Debrecen **78**(1) (2011), 235–243.
- 3. D. E. BLAIR: Contact manifolds in Riemannian geometry Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 2006.
- D. E. BLAIR: The theory of quasi-Sasakian structures. J. Differ, Geom. 1(3-4) (1967), 331–345.
- 5. E. CARTAN: Lecons sur la Geometrie des Espaces de Riemann, 2nd edn. Gauthier-Villars, Paris, 1946.
- B. CHOW, P. LU, and L. NI: *Hamiltons Ricci Flow*. Graduate Studies in Mathematics, American Mathematical Society, vol. 77, Providence, RI, USA, 2006.
- S. I. GOLDBERG and K. YANO: Integrability of almost cosymplectic structure. Pac. J. Math. 31 (1969), 373–382.
- R. S. HAMILTON: The Ricci flow on surfaces, Contemporary Mathematics 71 (1988), 237–261.
- K. KENMOTSU: A class of contact Riemannian manifold. Tohoku Math. J. (2) 24(1) (1972), 93–103.
- T. W. KIM and H. K. PAK: Canonical foliations of certain classes of almost contact. Acta Math. Sinica 21(4) (2005), 841–846.
- P. LIBERMANN: Sur les automorphismes infinitesimaux des structures symplectiques et de structures de contact. Coll. Geom. Diff. Globale (Bruxelles 1958), Paris, 1959, 37–59.
- H. G. NAGARAJA and C. R. PREMALATHA: Ricci solitons in Kenmotsu manifolds. Journal of Mathematical Analysis 3(2) (2012), 18–24.

- 13. Z. OLSZAK: On almost cosymplectic manifolds. Kodai Math. 4(2) (1981), 239-250.
- H. OZTURK, N. AKTAN, and C. MURATHAN: On α-Kenmotsu Manifolds Satisfying Certain Conditions. APPS. Applied Sciences 12 (2010), 115–126.
- H. OZTURK: Some Curvature Condition on α-cosymplectic Manifolds. Mathematics and Statistics 1(4) (2013), 188–195.
- B. PRASAD: A pseudo-projective curvature tensor on a Riemannian manifolds. Bull. Cal. Math. Soc. 94 (2002), 163–166.
- B. B. SINHA and R. SHARMA: Certain results on K-contact and (k, μ)-contact. J. of Geom. 89 (2008), 138–147.
- M. M. TRIPATHI: Ricci solitons in contact metric manifolds. arXiv:0801, 4222v1, [math DG] (2008).
- 19. M. TURAN, U. C. DE, and A. YILDIZ: Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds. Filomat 26(2) (2012), 363–370.

JP Singh Department of Mathematics and Computer Science Mizoram University Tanhril, Aizawl-796004, India jpsmaths@gmail.com

C. Lalmalsawma Department of Mathematics and Computer Science Mizoram University Tanhril, Aizawl-796004, India sweezychawngthu@gmail.com