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RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS ∗

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The aim of the paper is to study Ricci solitons in α-cosymplectic manifolds.
Projective, pseudo projective and Weyl conformal curvatures in an α-cosymplectic man-
ifolds admitting Ricci solitons have been studied under certain curvature conditions.
Also, gradient Ricci solitons in α-cosymplectic manifolds have been studied.
Keywords: Ricci soliton, gradient Ricci soliton, α-cosymplectic manifolds, cosympletic
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1. Introduction

The concept of Ricci soliton was introduced by Hamilton [8] while studying the
Ricci flow on surfaces. It is a generalization of an Einstein metric and is defined as
a triple (g, V, λ) with g a Riemannian metric, V a vector field, and λ a real scalar
such that

£V g + 2S + 2λg = 0,(1.1)

where S is the Ricci tensor of type (0, 2) and £ denotes the Lie derivative operator
along the vector field V .

The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ
is negative, zero and positive, respectively [6]. If the vector field V is the gradient
of a potential function −f , then g is called a gradient Ricci soliton and the equation
(1.1) assumes the form

∇∇f = S + λg.(1.2)

In 2008 Sinha and Sharma [17] started the study of Ricci solitons in contact
manifolds. Later Ricci solitons in contact and almost contact manifolds were studied
by many authors such as: Ricci solitons in contact metric manifolds by Tripathi
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[18], Ricci solitons in manifolds with a quasi-constant curvature by Bejan [2], Ricci
solitons in Lorentzian α-Sasakian manifolds by Bagewadi [1], Ricci solitons and
gradient Ricci solitons in three-dimensional trans-Sasakian manifolds by Turan, De
and Yildiz [19], Ricci solitons in Kenmotsu manifolds by Nagaraja [12], etc.

The paper is organized as follows: after the introduction and preliminaries, in
Section 3 we prove that the Ricci soliton in a Ricci semi-symmetric α-cosymplectic
manifold of dimension n (n ≥ 2), is steady. Section 4 is dedicated to the study of
the pseudo-projective semi-symmetric manifold and the projective semi-symmetric
manifold. In Section 5 we prove that a Weyl semi-symmetric α-Kenmotsu manifold
of dimension n (n ≥ 2), admitting a Ricci soliton is conformally flat. In Section 6
we study the α-cosymplectic manifold satisfying P (ξ,X) · S = 0. Finally, we prove
that if a gradient Ricci soliton in an α-cosymplectic manifold of dimension n (n ≥ 2)
is expanding, then it is an η-Einstein manifold.

2. Preliminaries

An n-dimensional smooth manifold M is said to be an almost contact metric mani-
fold if it admits an almost contact metric structure (φ, ξ, η, g) consisting of a tensor
field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian metric g com-
patible with (φ, ξ, η) satisfying [3]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

and

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

On such a manifold, the fundamental form Φ of M is defined as

Φ(X,Y ) = g(φX, Y ), X, Y ∈ Γ(TM).

In 1967 Blair [4] defined the cosymplectic structure as a quasi-Sasakian structure
satisfying dη = 0. It is to be noted that the notion of cosymplectic manifold
introduced by Libermann [11] is different from that of Blair [4]. An almost contact
metric manifold (M,φ, ξ, η, g) is said to be almost cosymplectic [7] if dη = 0 and
dΦ = 0, where d is the exterior differential operator. The manifold defined by
M = N × R, where N is an almost Kählerian manifold and R is the real line is
the simplest example of the almost cosymplectic manifold [13]. An almost contact
manifold (M,φ, ξ, η) is said to be normal if the Nijenhuis torsion

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2(X,Y ) + 2dη(X,Y )ξ

vanishes for any vector fields X and Y . A normal almost cosymplectic manifold is
a cosymplectic manifold.

An almost contact metric manifold M is said to be almost α-Kenmotsu if dη = 0
and dΦ = 2αη ∧ Φ, α being a non-zero real constant.
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Kim and Pak [10] combined almost α-Kenmotsu and almost cosymplectic man-
ifolds into a new class called almost α-cosymplectic manifolds, where α is a scalar.
If we join these two classes, we obtain a new notion of an almost α-cosymplectic
manifold, which is defined by the following formula

dη = 0, dΦ = 2αη ∧ Φ,

for any real number α. A normal almost α-cosymplectic manifold is called an α-
cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic under
the condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR.

On such an α-cosymplectic manifold, we have

(∇Xφ)Y = α
[
g(φX, Y )ξ − η(Y )φX

]
(2.1)

and

∇Xξ = −αφ2X = α[X − η(X)ξ].(2.2)

On an α-cosymplectic manifold M , the following relations are held ([14], [15])

R(ξ,X)Y = α2
[
η(Y )X − g(X,Y )ξ

]
,(2.3)

R(X,Y )ξ = α2
[
η(X)Y − η(Y )X

]
,(2.4)

S(ξ,X) = −α2(n− 1)η(X),(2.5)

η
(
R(X,Y )Z

)
= α2

[
η(Y )g(X,Z)− η(X)g(Y,Z)

]
.(2.6)

Using (2.2) we have

£ξg(X,Y ) = 2αg(X,Y )− 2αη(X)η(Y ).(2.7)

From (1.1) and (2.7) we get

S(X,Y ) = αη(X)η(Y )− (λ+ α)g(X,Y ).(2.8)

Equation (2.8) yields

QX = αη(X)ξ − (λ+ α)X,(2.9)

S(X, ξ) = −λη(X),(2.10)

r = (1− n)α− λn.(2.11)

Comparing (2.5) and (2.10) we get

λ = α2(n− 1).(2.12)

Since α2 ≥ 0, for α ∈ IR, from Equation (2.12) we get λ ≥ 0, for all n ≥ 2. Thus
we can state the following:
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Lemma 2.1. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is either steady or expanding.

We have already stated that an α-cosymplectic manifold is either cosymplectic
under the condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR.
Thus we can state the following lemmas:

Lemma 2.2. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is steady if and only if it is a cosymplectic manifold.

Lemma 2.3. A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,
is expanding if and only if it is an α-Kenmotsu manifold.

3. Ricci semi-symmetric α-cosymplectic manifold, n ≥ 2

Consider an α-cosymplectic manifold which is Ricci semi-symmetric. Then we have
[5]

R(X,Y ) · S = 0.

Now we assume that the condition

R(ξ,X) · S(Y,Z) = 0(3.1)

holds in M .

From (3.1) it follows that

S(R(ξ,X)Y,Z) + S(Y,R(ξ,X)Z) = 0.(3.2)

Using (2.3), (2.8) and (2.10), we get from (3.2)

α2
[
2αη(X)η(Y )η(Z)− αη(Y )g(X,Z)− αη(Z)g(X,Y )

]
= 0,

or

α3
[
2η(X)η(Y )η(Z)− η(Y )g(X,Z)− η(Z)g(X,Y )

]
= 0.(3.3)

Contracting (3.3) over X and Y we get

α3(n− 1)η(Z) = 0.(3.4)

In general, η(Z) 6= 0. Therefore, α = 0. Thus we can state the following:

Theorem 3.1. A Ricci semi-symmetric α-cosymplectic manifold, n ≥ 2, admit-
ting Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 3.1. A Ricci soliton in a Ricci semi-symmetric α-cosymplectic mani-
fold, n ≥ 2, is steady.
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4. Pseudo projective semi-symmetric α-cosymplectic manifold, n ≥ 2

We consider the pseudo projective curvature tensor P of type (1, 3) which is defined
by [16]

P (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n

( a

n− 1
+ b
)
[g(Y,Z)X − g(X,Z)Y ],(4.1)

where R is a Riemannian curvature tensor of type (1, 3), r is the scalar curvature
and a and b are a non-zero constant. From (4.1) we can define a (0, 4) type pseudo-
projective curvature tensor P̂ as follows

P̂ (X,Y, Z,W ) = aR̂(X,Y, Z,W ) + b[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )]

− r

n

( a

n− 1
+ b
)
[g(Y, Z)g(X,W )− g(Y, U)g(Y,W )].

where R̂ is a Riemannian curvature tensor of type (0, 4), from which it follows that

n∑
i=1

P̂ (ei, Y, Z, ei) = [a+ (n− 1)b]
[
S(Y,Z)− r

n
g(Y, Z)

]
.(4.2)

Again from (4.1) we obtain

η
(
P (X,Y )Z

)
=
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]
×
[
η(Y )g(X,Z)− η(X)g(Y, Z)

]
,

or

η
(
P (X,Y )Z

)
= β[η(Y )g(X,Z)− η(X)g(Y,Z)],(4.3)

where β =
[
aα2 + r

n

(
a

n−1 + b
)

+ (λ+ α)b
]
.

Now we assume that the condition

R(ξ,X) · P (Y,Z)W = 0(4.4)

holds in M .

From (4.4) it follows that

R(ξ,X)P (Y,Z)W − P (R(ξ,X)Y,Z)W − P (Y,R(ξ,X)Z)W

−P (Y, Z)R(ξ,X)W = 0.(4.5)

Using (2.3) in (4.5) we find

α2
[
η
(
P (Y,Z)W

)
X − P̂ (Y, Z,W,X)ξ − η(Y )P (X,Z)W

+g(X,Y )P (ξ, Z)W − η(Z)P (Y,X)W + g(X,Z)P (Y, ξ)W

−η(W )P (Y,Z)X + g(X,W )P (Y,Z)ξ
]

= 0,(4.6)
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where P̂ (Y,Z,W,X) = g
(
X,P (Y,Z)W

)
.

Taking the inner product of (4.5) with ξ we get

α2
[
η
(
P (Y, Z)W

)
η(X)− P̂ (Y,Z,W,X)− η(Y )η

(
P (X,Z)W

)
+g(X,Y )η

(
P (ξ, Z)W

)
− η(Z)η

(
P (Y,X)W

)
+ g(X,Z)η

(
P (Y, ξ)W

)
−η(W )η

(
P (Y,Z)X

)
+ g(X,W )η

(
P (Y,Z)ξ

)]
= 0.(4.7)

By virtue of (4.3), (4.7) yields

α2
[
P̂ (Y,Z,W,X) + β

{
g(X,Y )g(Z,W )− g(X,Z)g(Y,W )

}]
= 0.(4.8)

Contracting (4.8) over X and Y and using (4.2) we get

α2
[
[a+ (n− 1)b]

{
S(Z,W )− r

n
g(Z,W )

}
+ β(n− 1)g(Z,W )

]
= 0.(4.9)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Thus (4.9) can be written as

S(Z,W ) =
[ r
n
− β(n− 1)

a+ (n− 1)b

]
g(Z,W ),

or

S(Z,W ) = ρg(Z,W ),(4.10)

where ρ =
[
r
n −

β(n−1)
a+(n−1)b

]
.

Hence we have the following theorem:

Theorem 4.1. A pseudo-projective semi-symmetric α-Kenmotsu manifold, n ≥ 2,
admitting a Ricci soliton is an Einstein manifold.

Again, contracting (4.9) over Z and W , we get

n(n− 1)α2β = 0.(4.11)

From (4.11) it follows that

α2β = 0,

or

α2
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]

= 0.(4.12)
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If we put a = 1 and b = − 1
(n−1) then (4.1) takes the form

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[S(Y, Z)X − S(X,Z)Y ]

= P̃ (X,Y )Z,(4.13)

where P̃ (X,Y )Z is the projective curvature tensor and is a particular case of P .

Now putting a = 1 and b = − 1
(n−1) in (4.12) and making use of (2.12) we get

α3 = 0,

or

α = 0.(4.14)

Thus we can state the following:

Theorem 4.2. A projective semi-symmetric α-cosymplectic manifold, n ≥ 2, ad-
mitting a Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 4.1. A Ricci soliton in a projective semi-symmetric α-cosymplectic
manifold, n ≥ 2, is steady.

5. Weyl semi-symmetric α-cosymplectic manifold, n > 2

We consider the Weyl conformal curvature tensor C of type (1, 3) which is defined
by

C(X,Y )Z = R(X,Y )Z − 1

n− 2

[
g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X

−S(X,Z)Y
]

+
r

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ],(5.1)

where R is a Riemannian curvature tensor of type (1, 3). From (4.1) we can define
a (0, 4) type Weyl conformal curvature tensor Ĉ as follows:

Ĉ(X,Y, Z,W ) = R̂(X,Y, Z,W )− 1

n− 2

[
g(Y,Z)S(X,W )

− g(X,Z)S(Y,W ) + S(Y,Z)g(X,W )− S(X,Z)g(Y,W )
]

+
r

(n− 1)(n− 2)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )],

where R̂ is a Riemannian curvature tensor of type (0, 4). From which it follows that

n∑
i=1

Ĉ(ei, Y, Z, ei) = 0.(5.2)
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Again, from (5.1) we obtain

η
(
C(X,Y )Z

)
= 0.(5.3)

Now we assume that the condition

R(ξ,X) · C(Y,Z)W = 0(5.4)

holds in M .

From (5.4) it follows that

R(ξ,X)C(Y,Z)W − C(R(ξ,X)Y, Z)W − C(Y,R(ξ,X)Z)W

−C(Y,Z)R(ξ,X)W = 0.(5.5)

Using (2.3) in (5.5) we find

α2
[
η
(
C(Y, Z)W

)
X − Ĉ(Y,Z,W,X)ξ − η(Y )C(X,Z)W

+g(X,Y )C(ξ, Z)W − η(Z)C(Y,X)W + g(X,Z)C(Y, ξ)W

−η(W )C(Y, Z)X + g(X,W )C(Y,Z)ξ
]

= 0,(5.6)

where Ĉ(Y,Z,W,X) = g
(
X,C(Y, Z)W

)
.

Taking the inner product of (5.6) with ξ we get

α2
[
η
(
C(Y,Z)W

)
η(X)− Ĉ(Y, Z,W,X)− η(Y )η

(
C(X,Z)W

)
+g(X,Y )η

(
C(ξ, Z)W

)
− η(Z)η

(
C(Y,X)W

)
+ g(X,Z)η

(
C(Y, ξ)W

)
−η(W )η

(
C(Y, Z)X

)
+ g(X,W )η

(
C(Y, Z)ξ

)]
= 0.(5.7)

By virtue of Equation (5.3), (5.7) yields

α2Ĉ(Y,Z,W,X) = 0.(5.8)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Then we have

Ĉ(Y,Z,W,X) = 0.(5.9)

Thus we can state the following:

Theorem 5.1. A Weyl semi-symmetric α-Kenmotsu manifold, n > 2, admitting
a Ricci soliton is conformally flat.
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6. α-cosymplectic manifold, n ≥ 2 satisfying P (ξ,X) · S = 0

Making use of (2.3), (2.8) and (2.10) in (4.1) we get

P (ξ, Y )Z =
[
α2a+

r

n

( a

n− 1
+ b
)

+ λb
]
[η(Z)Y − g(Y,Z)ξ]

+αb[η(Y )η(Z)ξ − g(Y, Z)ξ],

or

P (ξ, Y )Z = β[η(Z)Y − g(Y,Z)ξ] + γ[η(Y )η(Z)ξ − g(Y,Z)ξ],(6.1)

where β =
[
α2a+ r

n

(
a

n−1 + b
)

+ λb
]

and γ = αb.

Now we consider that a given manifold satisfies

P (ξ,X) · S(Y,Z) = 0,

from which it follows that

S(P
(
ξ,X)Y,Z

)
+ S

(
Y, P (ξ,X)Z

)
= 0.(6.2)

Using (6.1) in (6.2) yields

βη(Y )S(X,Z)− βg(X,Y )S(ξ, Z) + γη(X)η(Y )S(ξ, Z)

−γg(X,Y )S(ξ, Z) + βη(Z)S(X,Y )− βg(X,Z)S(ξ, Y )

+γη(X)η(Z)S(ξ, Y )− γg(X,Z)S(ξ, Y ) = 0.(6.3)

Making use of (2.8) and (2.10) in (6.3) we get(
αβ − λγ

)
[2η(X)η(Y )η(Z)− g(X,Z)η(Y )

−g(X,Y )η(Z)] = 0.(6.4)

Contracting (6.4) over X and Y we get(
αβ − λγ

)
(1− n)η(Z) = 0.(6.5)

Putting Z = ξ in (6.5) yields(
αβ − λγ

)
(1− n) = 0,(6.6)

from which it follows that (
αβ − λγ

)
= 0,

or

α
[
α2a+

r

n

( a

n− 1
+ b
)]

= 0.(6.7)
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We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e.,
α 6= 0. Then (6.7) yields [

α2a+
r

n

( a

n− 1
+ b
)]

= 0,

or

α2 = − r
n

( 1

n− 1
+
b

a

)
.(6.8)

Thus we can state the following:

Theorem 6.1. If an α-cosymplectic manifold, n ≥ 2, admitting a Ricci soliton
and satisfying P (ξ,X) · S = 0 is an α-Kenmotsu manifold, then it satisfies α2 =
− r
n

(
1

n−1 + b
a

)
.

By virtue of Lemma 2.3 we have

Corollary 6.1. If a Ricci soliton in an α-cosymplectic manifold, n ≥ 2, satisfying
P (ξ,X) · S = 0 is expanding, then α2 = − r

n

(
1

n−1 + b
a

)
.

For a = 1 and b = − 1
(n−1) , from (6.6)

α3 = 0,

or

α = 0.(6.9)

Thus we can state the following:

Theorem 6.2. An α-cosymplectic manifold, n ≥ 2, admitting a Ricci soliton and
satisfying P̃ (ξ,X) · S = 0 is a cosymplectic manifold.

By virtue of Lemma 2.3 we have

Corollary 6.2. A Ricci solitons in an α-cosymplectic manifold, n ≥ 2, satisfying
P̃ (ξ,X) · S = 0 is steady.

7. Gradient Ricci soliton in α-cosymplectic manifolds

From Equation (1.2) we have

∇∇f = S + λg.(7.1)

This can be written as

∇YDf = QY + λY,(7.2)
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where D is the gradient operator of g. Using (7.2) we can obtain

R(X,Y )Df = (∇XQ)Y + (∇YQ)X.(7.3)

Taking the inner product of (7.3) with ξ we get

g
(
R(X,Y )Df, ξ

)
= g
(
(∇XQ)Y, ξ

)
+ g
(
(∇YQ)X, ξ

)
.(7.4)

Using (2.2) and (2.9) we have

g
(
(∇ξQ)Y, ξ

)
= 0,(7.5)

and

g
(
(∇YQ)ξ, ξ

)
= 0.(7.6)

By virtue of (7.5) and (7.6), Equation (7.4) yields

g
(
R(ξ, Y )Df, ξ

)
= 0.(7.7)

Again, using (2.3) in (7.7) we get

g
(
R(ξ, Y )Df, ξ

)
= α2

[
η(Y )η(Df)− g(Y,Df)

]
.(7.8)

From (7.7) and (7.8) we have

α2
[
η(Y )η(Df)− g(Y,Df)

]
= 0.(7.9)

Now we suppose that α 6= 0, i.e., the given manifold is an α-Kenmotsu manifold.
Equation (7.9) yields

η(Y )η(Df) = g(Y,Df).(7.10)

From (7.10) we obtain

Df = (ξf)ξ.(7.11)

Using (7.11) in (7.2)

Y (ξf)ξ + α(ξf)
[
Y − η(Y )ξ

]
= QY + λY.(7.12)

Taking the inner product of (7.12) with X, we obtain

Y (ξf)η(X) + α(ξf)
[
g(X,Y )− η(X)η(Y )

]
= S(X,Y ) + λg(X,Y ).(7.13)

Putting X = ξ and using (2.10) in (7.13) we get

Y (ξf) = S(ξ, Y ) + λη(Y ) = 0.(7.14)



386 J.P. Singh and C. Lalmalsawma

From (7.14) it is clear that ξf is constant. Thus (7.13) in (7.14) yields

α(ξf)
[
g(X,Y )− η(X)η(Y )

]
= S(X,Y ) + λg(X,Y ),

or

S(X,Y ) =
[
α(ξf)− λ

]
g(X,Y )− α(ξf)η(X)η(Y ).(7.15)

Hence we can state the following:

Theorem 7.1. If an α-cosymplectic manifold, n ≥ 2, admitting a gradient Ricci
soliton is an α-Ketmotsu manifold, then it is an η-Einstein manifold.

By virtue of Lemma 2.2 we have

Corollary 7.1. If a gradient Ricci soliton in an α-cosymplectic manifold, n ≥ 2,
is expanding, then it is an η-Einstein manifold.
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