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Ser. Math. Inform. Vol. 33, No 4 (2018), 539–546

https://doi.org/10.22190/FUMI1804539P

ON A KÄHLER MANIFOLD EQUIPPED WITH LIFT OF

QUARTER SYMMETRIC NON-METRIC CONNECTION

Pankaj Pandey and Braj Bhushan Chaturvedi

Abstract. The aim of the present paper is to study Kähler manifolds equipped with
the lift of a quarter-symmetric non-metric connection. In this paper, a condition on the
manifold for being a Kähler manifold with respect to the lift of the quarter-symmetric
non-metric connection is obtained. It is further shown that the Nijenhuis tensor with
respect to the lift of the quarter-symmetric non-metric connection vanishes. Also, a
necessary and sufficient condition for a contravariant almost analytic vector field in a
Kähler manifold equipped with the lift of a quarter-symmetric non-metric connection
has been found.
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1. Introduction

In 1975, a linear connection was introduced by S. Golab [5] called quarter-symmetric
connection.

A linear connection ∇ is said to be a quarter-symmetric connection if the torsion
tensor T of ∇ has the form

T (X,Y ) = ω(Y )φX − ω(X)φY,

where φ is the tensor field of type (1,1) and X,Y are arbitrary vector fields. A
linear connection ∇ is said to be a non-metric connection if the covariant derivative
of the metric tensor g with respect to ∇ does not vanish i.e. ∇g 6= 0.

The lift function plays an important role in the study of differentiable manifolds.
In the last few decades, the theory of lift has been studied by several authors. Fur-
thermore, the study of tangent bundles has been continued by L. S. Das and M. N.
I. Khan [3] (2005). They [3] considered a manifold with an almost r-contact struc-
ture and obtained an almost complex structure on the tangent bundle. Recently,
M. Tekkoyun and S. Civelek [8] (2008) studied and extended the concept of lifts by
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considering the structures on complex manifolds. In 2014, the lift was studied with
a quarter-symmetric semi-metric connection on tangent bundles by M. N. I. Khan
[6]. The same author [7] (2015) also studied the lift equipped with a semi-symmetric
non-metric connection on a Kähler manifold. The semi-symmetric non-metric con-
nection has also been considered by B. B. Chaturvedi and P. N. Pandey [2] (2008)
in a Kähler manifold. In [2] they showed that the Nijenhuis tensor vanishes in a
Kähler manifold equipped with a semi-symmetric non-metric connection. In the
same paper, they [2] also proved that if V is a contra-variant almost analytic vector
field in a Kähler manifold then V is also a contra-variant almost analytic vector
field in a Kähler manifold equipped with a semi-symmetric non-metric connection.
Recently, B. B. Chaturvedi and P. Pandey [1] (2015) studied a new type of the met-
ric connection in an almost Hermitian manifold. In that paper, they [1] obtained a
condition for a vector field V to be a contravariant almost analytic vector field in
an almost Hermitian manifold equipped with a new type of the metric connection.

1.1. Kähler manifold

Let M be an n-(even) dimensional differentiable manifold. If for a tensor field F of
type (1,1) and a Riemannian metric g the conditions

F 2(X) +X = 0, g(FX,FY ) = g(X,Y ), (∇XF )Y = 0,

hold then M is called Kähler manifold, X,Y are arbitrary vector fields.

1.2. Quarter-symmetric non-metric connection

Let F be a tensor field of type (1,1) then a linear connection ∇ defined by

∇XY = ∇XY + ω(Y )FX,(1.1)

is called quarter-symmetric non-metric connection, ∇ is the Riemannian connection,
ω is 1-form defined by g(X, ρ) = ω(X) for the associated vector field ρ.
The torsion tensor T and the metric tensor g of ∇ are given respectively by

T (X,Y ) = ω(Y )FX−ω(X)FY and (∇Xg)(Y, Z) = ω(Y )g(X,FZ)+ω(Z)g(X,FY ),

for arbitrary vector fields X and Y .

1.3. Tangent Bundle

let M be a differentiable manifold and TpM denotes the tangent space of M at
any point p ∈ M then the collection of all tangent spaces at p ∈ M is called the
tangent bundle of M and denoted by T (M) = ∪p∈MTpM . Let p̃ ∈ T (M) then the
projection π : T (M) → M defined by π(p̃) = p is called the bundle projection of
T (M) over M and the set π−1(p) is called the fiber over p ∈ M and M the base
space.
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Vertical lift: The composition of two maps π : T (M) → M and f : M → R defined
by fV = foπ is called the vertical lift of f , where f is a smooth function in M . For
p̃ ∈ π−1(U) with induced coordinates (xh, yh), the value of fV (p̃) is constant along
each fiber Tp(M) and equal to f(p) i.e. fV (p̃) = fV (x, y) = foπ(p̃) = f(p) = f(x).
Complete lift: For a smooth function f in M , a function fC defined by fC = i(df)
on T (M) is called the complete lift of f . If ∂f is denoted locally by yi∂if then the
complete lift of f is locally denoted by fC = yi∂if = ∂f .
Let X be a vector field, then for a smooth function f on M , a vector field XC ∈

T (M) defined by XCfC = (Xf)
C

is called the complete lift of X in T (M). If X
has the component xh in M then the component of the complete lift XC in T (M)
is given by XC : (xh, ∂xh) with respect to the induced coordinates in T (M).
For a 1-form ω in M and an arbitrary vector field X , the complete lift of ω is
denoted by ωC and defined by ωC(XC) = (ω(X))C [7].

1.4. Induced metric and connection

Let τ : S → M be the immersion of an (n− 1)-dimensional manifold S in M . If we
denote the differentiable map dτ : T (S) → T (M) of τ by B called the tangent map
of τ , T (S) and T (M) being the tangent bundles of S and M , respectively, then the
tangent map of B is denoted by B̃ : T (T (S)) → T (T (M)) [7].
Let g be a Riemannian metric in M and the complete lift of g is gC in T (M). If g̃
denotes the induced metric of gC on T (S) then we have g̃(X,Y ) = gC(B̃XC , B̃Y C),
where X,Y are vector fields in S. If ∇ denotes a Riemannian connection on M then
∇C , the complete lift of ∇, is also a Riemannian connection satisfying ∇C

XCY
C =

(∇XY )
C

and ∇C
XCY

V = (∇XY )
V
, for the vector fields X,Y in M .

From [7], we know that the lift function has the following properties,

ωV (B̃XC) = ωV (B̃X)C = #(ωV (XC)) = #((ω(X))V )

= (ω(BX))V , ωC(B̃XC) = ωC(B̃X)C

= #(ωC(XC)) = #((ω(X))C) = (ω(BX))C , [XC , Y C ]

= [X,Y ]C , FC(XC) = (F (X))C , ωV (XC) = (ω(X))V , ωC(XC)

= (ω(X))C , gC(XV , Y C) = gC(XC , Y V ) = (g(X,Y ))V ,(1.2)

where XC , ωC , FC , gC and XV , ωV , FV , gV are the complete and vertical lifts of
X,ω, F, g. #, V and C denote the operation of restriction, vertical lift and complete
lift on π−1

M (τ(S)) respectively, X,Y are vector fields in S.

2. Lift of quarter-symmetric non-metric connection on a Kähler

manifold

Taking the complete lift of the equation (1.1), we get

(∇BXBY )C = (∇BXBY )C + (ω(BY )B(FX))C .(2.1)
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Simplifying (2.1), we have

∇
C

B̃XC B̃Y C = ∇C

B̃XC
B̃Y C + ωC(B̃Y C)B̃(FX)V + ωV (B̃Y C)B̃(FX)C .(2.2)

A connection ∇
C

defined by (2.2) is called the lift of a quarter-symmetric non-
metric connection ∇.
Replacing Y by FY , the equation (2.2) gives

∇
C

B̃XC B̃(FY )C = ∇C

B̃XC
B̃(FY )C + ωC(B̃(FY )C)B̃(FX)V

+ωV (B̃(FY )C)(B̃(FX))C .(2.3)

Also, operating FC on the equation (2.2), we get

FC(∇
C

B̃XC B̃Y C) = FC(∇C

B̃XC
B̃Y C)− ωC(B̃Y C)B̃XV − ωV (B̃Y C)B̃XC .(2.4)

Subtracting (2.4) from (2.3), we have

(∇
C

B̃XC B̃FC)(B̃Y C) = ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC .(2.5)

Thus, we can state

Theorem 2.1. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then M is a Kähler manifold with respect to

∇
C

if and only if

ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC = 0.(2.6)

Now, if we denote

H
C
(B̃XC , B̃Y C) = ωC(B̃Y C)B̃(FX)V + ωV (B̃Y C)B̃(FX)C .(2.7)

and define a tensor ′H
C

of type (0,3) by

′H
C
(B̃XC , B̃Y C , B̃ZC) = gC(H

C
(B̃XC , B̃Y C), B̃ZC),(2.8)

then, the equations (2.7) and (2.8) together give

′H
C
(B̃XC , B̃Y C , B̃ZC) = ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)

+ωV (B̃Y C)gC(B̃(FX)C , B̃ZC)(2.9)

Replacing Y and Z by FY and FZ in (2.9), respectively, we get

′H
C
(B̃XC , B̃(FY )C , B̃(FZ)C) = ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C)

+ ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)(2.10)
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Subtracting (2.9) from (2.10), we find

′H
C
(B̃XC , B̃(FY )C , B̃(FZ)C)−′ H

C
(B̃XC , B̃Y C , B̃ZC)

= ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C)

+ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)

−ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)− ωV (B̃Y C)gC(B̃(FX)C , B̃ZC),(2.11)

which shows that ′H
C
is a hybrid in the last two slots if and only if the right hand

side of (2.11) vanishes.
We also know that a necessary and sufficient condition to be a Kähler manifold
with respect to the connection D defined by DXY = ∇XY +H(X,Y ) is that ′H

defined by ′H(X,Y, Z) = g(H(X,Y ), Z) is a hybrid in the last two slots [4].
Hence from the above discussions, we conclude the following

Theorem 2.2. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then a necessary and sufficient condition for

M to be a Kähler manifold with respect to the connection ∇
C

is that

ωC(B̃(FY )C)gC(B̃(FX)V , B̃(FZ)C) + ωV (B̃(FY )C)gC(B̃(FX)C , B̃(FZ)C)

−ωC(B̃Y C)gC(B̃(FX)V , B̃ZC)− ωV (B̃Y C)gC(B̃(FX)C , B̃ZC) = 0.(2.12)

Corollary 2.1. Also, replacing X by FX in (2.12), we have

ωC(B̃(FY )C)B̃(FX)V + ωV (B̃(FY )C)B̃(FX)C

+ωC(B̃Y C)B̃XV + ωV (B̃Y C)B̃XC = 0,(2.13)

which verifies the condition of the Kähler manifold obtained in (2.6). ✷

Let ′F denotes the 2-form of the Riemannian metric g defined by ′F (Y, Z) =
g(FY,Z) then the complete lift of ′F is denoted and defined by

′FC(B̃Y C , B̃ZC) = gC(B̃(FY )C , B̃ZC).(2.14)

Taking the covariant differentiation of (2.14), we get

Corollary 2.2.

(∇
C

B̃XC
′FC)(B̃Y C , B̃ZC) = (∇C

B̃XC

′FC)(B̃Y C , B̃ZC)

+ωC(B̃Y C)gC(B̃XV , B̃ZC) + ωV (B̃Y C)gC(B̃XC , B̃ZC)

−ωC(B̃ZC)gC(B̃Y C , B̃XV )− ωV (B̃ZC)gC(B̃Y C , B̃XC).

By taking the cyclic sum over X,Y, Z of the equation (2.15), we obtain

(∇
C

B̃XC
′FC)(B̃Y C , B̃ZC) + (∇

C

B̃Y C
′FC)(B̃ZC , B̃XC)
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+(∇
C

B̃ZC
′FC)(B̃XC , B̃Y C)

= ωC(B̃Y C)gC(B̃XV , B̃ZC) + ωV (B̃Y C)gC(B̃XC , B̃ZC)

+ωC(B̃ZC)gC(B̃Y V , B̃XC) + ωV (B̃ZC)gC(B̃Y C , B̃XC)

+ωC(B̃XC)gC(B̃ZV , B̃Y C) + ωV (B̃XC)gC(B̃ZC , B̃Y C)

−ωC(B̃ZC)gC(B̃Y C , B̃XV )− ωV (B̃ZC)gC(B̃Y C , B̃XC)

−ωC(B̃XC)gC(B̃ZC , B̃Y V )− ωV (B̃XC)gC(B̃ZC , B̃Y C)

−ωC(B̃Y C)gC(B̃XC , B̃ZV )− ωV (B̃Y C)gC(B̃XC , B̃ZC).(2.15)

Thus, we can state the following

Theorem 2.3. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then the relation (2.16) holds.

Also, it is well known that the Nijenhuis tensor N with respect to the Riemannian
connection ∇ is given by

N(X,Y ) = [FX,FY ]− [X,Y ]− F [FX, Y ]− F [X,FY ](2.16)

= ∇FXFY −∇FY FX −∇XY +∇Y X(2.17)

−F∇FXY + F∇Y FX − F∇XFY + F∇FY X.(2.18)

If NC denotes the complete lift of the Nijenhuis tensor N then the equation (2.17)

gives the Nijenhuis tensor N
C

with respect to the connection ∇
C
as follows

N
C
(B̃XC , B̃Y C) = ∇

C

B̃(FX)C B̃(FY )C −∇
C

B̃(FY )C B̃(FX)C

−∇
C

B̃XC B̃Y C +∇
C

B̃Y C B̃XC − FC(∇
C

B̃(FX)C B̃Y C)

+FC(∇
C

B̃Y C B̃(FX)C)− FC(∇
C

B̃XC B̃(FY )C)(2.19)

+FC(∇
C

B̃(FY )C B̃XC).(2.20)

By help of (2.2), the equation (2.18) reduces to

N
C
(B̃XC , B̃Y C) = 0.(2.21)

Hence, we have

Theorem 2.4. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C
then the Nijenhuis tensor N

C
with respect to

the connection ∇
C

vanishes.

3. Contravariant almost analytic vector field on a Kähler manifold

We know that in an almost Hermitian manifold, a necessary and sufficient condition
for a vector field W to be a contravariant almost analytic vector field is that

∇FXW = (∇WF )X + F (∇XW ).(3.1)
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For a Kähler manifold the equation (3.1) reduces to

∇FXW − F (∇XW ) = 0.(3.2)

Now, replacing X by FX and Y by W in (2.2) we have

∇
C

B̃(FX)C B̃WC = ∇C

B̃(FX)C
B̃WC − ωC(B̃WC)B̃XV − ωV (B̃WC)B̃XC .(3.3)

Again, replacing Y by W and then taking FC in (2.2), we get

FC(∇
C

B̃XC B̃WC) = FC(∇C

B̃XC
B̃WC)− ωC(B̃WC)B̃XV − ωV (B̃WC)B̃XC .(3.4)

Subtracting (3.4) from (3.3), we obtain

∇
C

B̃(FX)C B̃WC − FC(∇
C

B̃XC B̃WC) = ∇C

B̃(FX)C
B̃WC − FC(∇C

B̃XC
B̃WC).(3.5)

Thus, we have the following theorem

Theorem 3.1. Let M be a Kähler manifold equipped with the lift of a quarter-

symmetric non-metric connection ∇
C

then a necessary and sufficient condition for
a vector field W to be a contravariant almost analytic vector field with respect to the

connection ∇
C

is that it is a contravariant almost analytic vector field with respect
to the connection ∇C . ✷
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