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MULTIDISKCYCLIC OPERATORS ON BANACH SPACES

Nareen Bamerni

Abstract. In this paper, we define and study multidiskcyclic operators and find some
of their properties. Peris (2001) proved that every multihypercyclic operator is hyper-
cyclic. We show the corresponding result for multidiskcyclic operators. In particular,
we show that every multidiskcyclic operator is diskcyclic too.
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1. Introduction

An operator T is called hypercyclic if there is a vector x ∈ H such thatOrb(T, x) =
{T nx : n ∈ N} is dense in H, such a vector x is called hypercyclic for T . The first
example of hypercyclic operators in a Banach space was constructed by Rolewicz in
1969 [13]. He proved that if B is a backward shift on the Banach space ℓp(N) then
λB is hypercyclic for any complex number λ; |λ| > 1. Motivated by Rolewicz’s
example, supercyclic operators and diskcyclic operators were defined. An opera-
tor T is supercyclic if there is a vector x ∈ H such that COrb(T, x) = {λT nx :
λ ∈ C, n ∈ N} is dense in H, where x is called supercyclic vector [9]. An op-
erator T is called diskcyclic if there is a vector x ∈ H such that the disk orbit
DOrb(T, x) = {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1} is dense in H, such a vector x is
called diskcyclic for T [15]. For more information on these concepts, one may refer
to [5, 4, 2].

Recently, these operators were extended to subspaces of Banach spaces, which
are called subspace-hypercyclic, subspace-supercyclic and subspace-diskcyclic. For
more details on these operators, we refer the reader to [10, 1, 14, 3].

In 1992, Herrero [8] generalized the concepts of hypercyclicity and supercyclicity
to multihypercyclicity and multisupercyclicity, respectively as follows:
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Definition 1.1. An operator T ∈ B(X ) is called multihypercyclic (or multisuper-
cyclic), if there exists a finite subset {x1, x2, · · · , xn} of X such that

⋃n

k=1 Orb(T, xk)
(or C

⋃n

k=1 Orb(T, xk), respectively) is dense in X .

Herrero [8] posed the following conjecture:

if T is multihypercyclic (or multisupercyclic), then T is hypercyclic (or
supercyclic, respectively)

Costakis [7] and Peris [12] independently proved Herrero’s conjecture positively.
For more information on these concepts, the reader may be refered to [8, 6, 7, 12, 11].

Now, since both multihypercyclic operators and multisupercyclic operators have
been defined and studied, then it is natural to define and study multidiskcyclic op-
erators as well. Therefore, the purpose of this section is to define multidiskcyclic
operators and find some of their properties which are similar to those of multihyper-
cyclicity and multisupercyclicity. We show that if T is multidiskcyclic, then every
positive integer power of T is multidiskcyclic and T ∗ has at most one eigenvalue;
and that one has to have a modulus greater than one. Finally, we show that every
multidiskcyclic operator is diskcyclic.

2. Main results

Definition 2.1. Let L = {x1, · · · , xm} ⊂ X , T ∈ B(X ) and DOrb(T, L) =
⋃m

i=1 DOrb(T, xi). If L is minimal such that DOrb(T, L) is dense, then T is called
a multidiskcyclic operator and L is called a diskcyclic set for T .

It is clear form the above definition, that every diskcyclic operator is multidiskcyclic.

The following two results give the common properties between multidiskcyclic
operators and diskcyclic operators.

Theorem 2.1. If T is multidiskcyclic, then T n is multidiskcyclic for all n > 2.

Proof. Let L be a diskcyclic set for T , then it is clear that

m
⋃

i=1

n−1
⋃

j=0

DOrb(T n, T jxi) =

m
⋃

i=1

DOrb(T, xi).

It follows that T n is multidiskcyclic with a multidiskcyclic set {T jxi : 1 6 i 6

m, 0 6 j 6 n− 1}.

Proposition 2.1. If T is a multidiskcyclic operator on a Hilbert space H, then T ∗

has at most one eigenvalue. If σp(T
∗) = {λ}, then λ has a modulus greater than

one.
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Proof. Since each multidiskcyclic operator is multisupercyclic, then the adjoint of a
multidiskcyclic operator has at most one eigenvalue [11, Theorem 5]. Now, suppose
that σp(T

∗) = {λ}. Towards a contradiction assume that |λ| 6 1.
Let L = {x1, · · · , xm} be diskcyclic set for T . Then there exists a unit vector z in
which T ∗z = λz and

{

m
⋃

i=1

|〈µT nxi, z〉| : n > 0, µ ∈ D, xi ∈ L

}

is dense in R
+ ∪ {0} .(2.1)

Since |〈µT nxi, z〉| 6 |µ| |λ|n ‖xi‖‖z‖ for all 1 6 i 6 m, and since |λ| 6 1, then

|〈µT nxi, z〉| 6 ‖xi‖‖z‖,

that is, {
⋃m

i=1 |〈µT
nxi, z〉| : n > 0, µ ∈ D, xi ∈ L} is bounded above, a contradiction

to the equation (2.1).

Miller [11] proved that if T is multihypercyclic (or multisupercyclic) then there
exists a vector x such that Orb(T, x) (or COrb(T, x), respectively) is somewhere
dense. Later on, Bourdon and Feldman [6] showed that the somewhere density
of orbit and dense orbit imply to everywhere density of them. It follows that ev-
ery multihypercyclic (or multisupercyclic) operator is hypercyclic (or supercyclic,
respectively). The next theorem shows the analogue of Miller’s result for multi-
diskcyclicity.

Proposition 2.2. If T is multidiskcyclic, then there exists a vector x ∈ X such
that the disk orbit of x under T is somewhere dense.

Proof. Let L be a diskcyclic set for T . Towards a contradiction, suppose that
DOrb(T, x) is nowhere dense for all x ∈ X . Then, there is xk ∈ L such that
DOrb(T, xk) is nowhere dense. It follows that,

⋃m
i=1

i6=k
DOrb(T, xi) is dense in X ,

which is contradiction to the minimality of L. Thus, there exists a vector x ∈ X
such that DOrb(T, x) is somewhere dense.

Since the somewhere density of disk orbit does not imply to everywhere density of
it [4, Example 3.14], then we can not apply Bourdon’s and Feldman’s result [6] to
show that every multidiskcyclic is diskcyclic. However, we follow Peris’ approach
[12] to show that every multidiskcyclic operator is diskcyclic. First, we need the
following lemmas.

Lemma 2.1. [12] If p is a polynomial and α is an eigenvalue of T ∗, then p(T )
has a dense range if and only if p(α) 6= 0.

The following lemma can be proved by the same way of proving [12, Lemma 3].

Lemma 2.2. If the interior closure of two disk orbits intersect each other, then
they coincide.
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Theorem 2.2. Let T be a multidiskcyclic operator, then T is diskcyclic.

Proof. Let n be a positive integer and L = {x1, · · · , xn} be a diskcyclic set for T ,
then

X =

n
⋃

i=1

DOrb(T, xi).

Let n > 1 (otherwise T is diskcyclic) and x ∈ X with int(DOrb(T, x)) 6= φ, then
there exists xh ∈ L such that int(DOrb(T, x)) ∩ int(DOrb(T, xh)) 6= φ. It follows
by Lemma (2.2) that

int(DOrb(T, x)) = int(DOrb(T, xh)).

Claim. Orb(T, x) ⊂ int(DOrb(T, x)).
Proof of Claim:

Towards a contradiction, suppose that there exists Tmx ∈ Orb(T, x) such that
Tmx /∈ int(DOrb(T, x)). It follows that Tmx /∈ int(DOrb(T, xh)), thus there exists
1 6 k 6 n; k 6= h such that Tmx ∈ DOrb(T, xk). Since DOrb(T, xk) is T -invariant,
then

int(D {Tm+qx : q > 0}) ⊂ int(DOrb(T, xk)).(2.2)

Now, we get

int(DOrb(T, xh)) = int(DOrb(T, x)) = int(D {Tm+qx : q > 0}) ⊂ int(DOrb(T, xk)).

By Lemma 2.2, it follows that

int(DOrb(T, xh)) = int(DOrb(T, xk)).

which is a contradiction. Thus the claim is proved.

To prove the theorem, by applying Proposition 2.1 and Lemma 2.1, we have

X = P (T )(X ) =

n
⋃

i=1

P (T )(DOrb(T, xi)).

for every polynomial P with P (α) 6= 0 (if σp(T
∗) = α). Now, since

P (T )(DOrb(T, xi)) = DOrb(T, P (T )xi),

and since L is minimal, then

int
(

DOrb(T, P (T )xi)
)

6= φ, for all xi ∈ L.

Thus, for each i ∈ {1, · · · , n} there exists j ∈ {1, · · · , n} such that

Orb(T, P (T )xi) ⊂ int
(

DOrb(T, P (T )xi)
)

= int
(

DOrb(T, xj)
)
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Let

B =
⋃

P (λ) 6=0

Orb(T, P (T )x1) ⊂

n
⋃

i=1

int
(

DOrb(T, xi)
)

Moreover, B = span (Orb(T, x1)) \(T − λI) (X ). It follows that B is connected and

hence B ⊂ int
(

DOrb(T, x1)
)

. By [12, Lemma 2], we have B is dense, thus

X = DOrb(T, x1),

which means that, T is diskcyclic.

Corollary 2.1. An operator is diskcyclic if and only if it is multidiskcyclic.
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