
FACTA UNIVERSITATIS (NIŠ)
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VECTOR BUNDLES AND PARACONTACT FINSLER
STRUCTURES

Esmaeil Peyghan and Esa Sharahi

Abstract. Almost paracontact and normal almost paracontact Finsler structures on
a vector bundle are defined. Finding some conditions, integrability of these structures
is studied. Moreover, we define paracontact metric, para- Sasakian and K-paracontact
Finsler structures and study some properties of these structures. For a K-paracontact
Finsler structure, we find vertical and horizontal flag curvatures. Then, defining the
vertical φ-flag curvature, we prove that every locally symmetric para-Sasakian Finsler
structure has a negative vertical φ-flag curvature. Finally, we define the horizontal and
vertical Ricci tensors of a para-Sasakian Finsler structure and study some curvature
properties of them.
Keywords: Finsler structure, paracontact structure, Sasakian structure, symmetry,
vector bundle.

1. Introduction

Contact geometry has a very close relationship with physical concepts. This ge-
ometry was introduced by Sophus Lie in his works on PDEs. Contact theory is in
contrast with foliation theory. In contact theory, the investigators try to study a
distribution which is no longer integrable (even locally). This does not occur for
any one-dimensional distribution, but in upper-dimensional distributions we can
find such structures whose vector fields are not tangent to any submanifold of the
main manifold.

If a notion can be investigated in the case of contact structures, it can be studied
for paracontact structures as well. These structures were first introduced by Sato
[11]. Then Sasaki focused on some interesting concepts of these structures when
he studied as for contact structures [9, 10]. Recently, many mathematician such as
Bejan, Calvaruso, Druţǎ-Romaniuc, Ivanov, Kaneyuki, Cappelletti-Montano and
Zamakovoy studied interesting properties of these structures [1, 2, 3, 4, 7, 8, 17, 18].
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The notion of vector bundle is one of many important geometric objects that
have interesting applications in physics [15, 16]. On vector bundles, Sinha, Prasad
and Yadav defined some structures similar to the almost contact (paracontact)
structures [12, 13, 14]. But the definitions presented by them are not well-defined
(see 4.1) and cannot be realized in practical situations. Recently, Yalınıs and
Çalışkan introduced and studied some concepts about the contact structure on
vector bundles based on the same definitions [19]. These incorrect definitions led
to some bugs in their study (see 4.1, 4.3, 4.2). After studying and modifying the
definitions, we submitted this paper to arxiv.org (see arXiv:1302.0647) in 2013.
But in 2014, Kazan and Karadağ (without considering our paper) submitted and
published a paper with similar results on paracontact structures on vector bundles.
Also, their study was based on incorrect definitions (see [5]). Moreover, their study
led to some pitfalls in numerous results and discussions. We mention these mistakes
as remarks in the current text.

In this paper, we define almost paracontact Finsler structures and normal almost
paracontact Finsler structures on a vector bundle E and introduce some conditions
for the integrability (normality) of these structures. We provide some equivalent
conditions for the normality of an almost paracontact Finsler structure. Then, using
a pseudo-metric G on E, similarly to [17], we consider the following compatibility
condition for this structure:

G(ϕX, ϕY ) = −G(X,Y ) + η(X)η(Y ).

We also define the paracontact metric Finsler structure, para-Sasakian Finsler struc-
ture and K-paracontact Finsler structure. We find some conditions under which a
paracontact metric Finsler structure is a K-paracontact structure. Then we get con-
ditions under which a paracontact metric Finsler structure on a vector bundle E
reduces to a K-paracontact Finsler structure. For a K-paracontact Finsler structure
on a vector bundle E, we find vertical and horizontal flag curvatures. We define
the vertical ϕ-flag curvature and prove that every locally symmetric para-Sasakian
Finsler structure has a vertical ϕ-flag curvature − 1

4 .

Finally, we define horizontal and vertical Ricci tensors of a para-Sasakian Finsler
manifold and study some of their curvature properties.

2. Preliminaries

Let E(M) = (E, π,M) be a vector bundle with an (n+m)-dimensional total space
E, n-dimensional base space M and the projection map π, such that π : E → M ,
u ∈ E → π(u) = x ∈ M where u = (x, y) and y = π−1(x) is the fibre of E(M) over
x. We denote by VuE the local fibre of the vertical bundle V E at u ∈ E and by
HuE the complementary space of VuE in the tangent space TuE at u to the total
space E. Thus we have

(2.1) TuE = HuE ⊕ VuE.
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A nonlinear connection N on the total space E of E(M) is a differentiable distri-
bution H : E → TuE, u ∈ E → Hu ⊂ TuE with the property (2.1) (see [6]).

We denote by (xi, ya), i = 1, . . . , n, a = 1, . . . ,m, the canonical coordinates of
a point u ∈ E. Then { ∂

∂xi ,
∂

∂ya } is the natural basis and {dxi, dya} is its dual basis

on E. It is easy to see that { δ
δxi ,

∂
∂ya } is the basis on E adapted to decomposition

(2.1) and {dxi, δya} is its basis (co-basis), where

δ

δxi
=

∂

∂xi
−Na

i

∂

∂ya
, δya = dya +Na

i dx
i,

and Na
i are the coefficients of a nonlinear connection N . Now, we consider the

horizontal and the vertical projectors h and v of the nonlinear connection, which
are determined by the direct decomposition (2.1). These projectors can be expressed
with respect to the adapted basis as follows:

h =
δ

δxi
⊗ dxi, v =

∂

∂ya
⊗ δya.

Using the above projectors, any vector field X on E can be uniquely written as
X = hX + vX. In the following, we adopt the notations

hX = XH , vX = XV

and we say XH and XV are horizontal and vertical components of X. Thus, any
vector field X on E can be uniquely written in the form

X = XH +XV .

In the adapted basis, we have X = Xi(x, y) δ
δxi + X̄a(x, y) ∂

∂ya and

(2.2) XH = Xi(x, y)
δ

δxi
, XV = X̄a(x, y)

∂

∂ya
.

Now, let ω be a 1-form on E. Then it can be uniquely written as ω = ωH +ωV . In
the adapted basis, we have ω = ωi(x, y)dx

i + ω̄a(x, y)δy
a and

(2.3) ωH = ωi(x, y)dx
i, ωV = ω̄a(x, y)δy

a.

A tensor field T on the vector bundle E is called a distinguished tensor field (briefly,

a d-tensor) of type

(
p r
q s

)
if it has the following property

T (ωi1 , . . . , ωip , ωa1 , . . . , ωar , Xj1 , . . . , Xjq , Xb1 , . . . , Xbs)

= T (ωH
i1 , . . . , ω

H
ip , ω

V
a1
, . . . , ωV

ar
, XH

j1 , . . . , X
H
jq , X

V
b1 , . . . , X

V
bs),

where ωik , ωal
, (k = 1, . . . , p, l = 1, . . . , r) are 1-forms on E and Xjv , Xbw , (v =

1, . . . , q, w = 1, . . . , s) are vector fields on E. For instance, the components XH and
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XV from (2.2) of a vector field X are d-vector fields. Also the components ωH and
ωV of an 1-form ω, from (2.3) are d-1-form fields. In the adapted basis { δ

δxi ,
∂

∂ya }
and adapted co-basis {dxi, δya}, T is expressed by

T = T
i1,...,ip,a1,...,ar

j1,...,jq,b1,...,bs

δ

δxi1
⊗ . . .⊗ δ

δxip
⊗ ∂

∂ya1
⊗ . . .⊗ ∂

∂yar

⊗ dxj1 ⊗ . . .⊗ dxjq ⊗ δyb1 ⊗ . . .⊗ δybs .

A linear connection D on E is called a distinguished connection (briefly, d-
connection) if it preserves by parallelism the horizontal distribution, that is Dh = 0.
Since Id = h+ v, then Dh = 0 implies that Dv = 0. Thus a d-connection preserves
by parallelism the vertical distribution. Therefore, we can write

DXY = (DXY H)H + (DXY V )V ,

DXω = (DXωH)H + (DXωV )V ,

where X,Y are vector fields on E and ω is a 1-form on E.

A d-connection with respect to the adapted basis has the following form{
D δ

δxi

δ
δxj = F k

ij
δ

δxk , D δ

δxi

∂
∂yb = F̄ c

ib
∂

∂yc ,

D ∂
∂ya

δ
δxj = Ck

aj
δ

δxk , D ∂
∂ya

∂
∂yb = C̄c

ab
∂

∂yc .

For this connection, there is an associated pair of operators in the algebra of d-tensor
fields. For any vector field X on E, set

DH
XY = DXHY, DV

XY = DXV Y DH
Xf = XH(f), DV

Xf = XV (f),

where Y is a vector field and f is a smooth function on E. We call DH (DV ) the
operator of h-covariant (v-covariant) derivation. If ω is a 1-form on E, we define

(DH
Xω)Y = XH(ω(Y ))− ω(DH

XY ),

(DV
Xω)Y = XV (ω(Y ))− ω(DV

XY ),

for any vector fields X,Y on E.

Now, we consider the pseudo-metric structure G on E which is symmetric and
non-degenerate as G = GH + GV , where GH(X,Y ) = G(XH , Y H) is of type(

0 0
2 0

)
, symmetric and non-degenerate on HuE and GV (X,Y ) = G(XV , Y V ) is

of type

(
0 0
0 2

)
, symmetric and non-degenerate on VuE. In the adapted basis,

we can write
G = gij(x, y)dx

i ⊗ dxj + hab(x, y)δy
i ⊗ δyj .

A d-connection D on E is called a metrical d-connection with respect to G if
DXG = 0 holds for every vector field X on E.
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For a d-connection D, we consider the torsion T defined by

T (X,Y ) = DXY −DY X − [X,Y ], ∀X,Y ∈ χ(E),

where χ(E) is the set of all vector fields on E. The torsion of a d-connection D on
E is completely determined by the following five tensor fields:

TH(XH , Y H) = DH
XY H −DH

Y XH − [XH , Y H ]H ,

TV (XH , Y H) = −[XH , Y H ]V ,

TH(XH , Y V ) = −DV
Y XH − [XH , Y V ]H ,

TV (XH , Y V ) = DH
XY V − [XH , Y V ]V ,

TV (XV , Y V ) = DV
XY V −DV

Y XV − [XV , Y V ]V ,

which are called (h)h-torsion, (v)h-torsion, (h)hv-torsion, (v)hv-torsion and (v)v-
torsion, respectively. A d-connection D is said to be symmetric if the (h)h-torsion
and (v)v-torsion vanish. In this paper, we use the symmetric metrical d-connection
and we call it Finsler connection. It is easy to see that the following relations hold
for the Finsler connection

2G(DH
XY H, ZH) = XHG(Y H , ZH) + Y HG(XH , ZH)− ZHG(XH , Y H)

+ G([XH , Y H ], ZH)−G([XH , ZH ], Y H)−G([Y H , ZH ], XH),(2.4)

2G(DV
XY V , ZV ) = XV G(Y V , ZV ) + Y V G(XV , ZV )− ZV G(XV , Y V )

+ G([XV , Y V ], ZV )−G([XV , ZV ], Y V )−G([Y V , ZV ], XV ).(2.5)

Finally, we consider the curvature of a Finsler connection D as follows

R(X,Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z, ∀X,Y, Z ∈ χ(E).

As D preserves by parallelism the horizontal and vertical distributions, from the
above equation, we see that the operator R(X,Y ) carries horizontal vector fields
into horizontal vector fields and vertical vector fields into verticals. Consequently,
we have the following

R(X,Y )Z = (R(X,Y )ZH)H + (R(X,Y )ZV )V ∀X,Y, Z ∈ χ(E).

Since R(X,Y ) is skew symmetric with respect to X and Y , then the curvature of
a Finsler connection D on E is completely determined by the following six tensor
fields

(2.6)



R(XH , Y H)ZH = DH
XDH

Y ZH −DH
Y DH

XZH −D[XH ,Y H ]Z
H ,

R(XH , Y H)ZV = DH
XDH

Y ZV −DH
Y DH

XZV −D[XH ,Y H ]Z
V ,

R(XV , Y H)ZH = DV
XDH

Y ZH −DH
Y DV

XZH −D[XV ,Y H ]Z
H ,

R(XV , Y H)ZV = DV
XDH

Y ZV −DH
Y DV

XZV −D[XV ,Y H ]Z
V ,

R(XV , Y V )ZH = DV
XDV

Y ZH −DV
Y DV

XZH −D[XV ,Y V ]Z
H ,

R(XV , Y V )ZV = DV
XDV

Y ZV −DV
Y DV

XZV −D[XV ,Y V ]Z
V .

In the sequel, the restriction of the tensor field R to the horizontal (respectively
vertical) distribution will be called horizontal (respectively vertical) curvature of
D.



236 E. Peyghan and E. Sharahi

3. Almost Paracontact Finsler Structure

We consider a tensor field ϕ, a 1-form η and a vector field ξ on E, given by:

ϕ = ϕi
j(x, y)

δ

δxi
⊗ dxj + ϕ̄a

b (x, y)
∂

∂ya
⊗ δyb,(3.1)

η = ηi(x, y)dx
i + η̄a(x, y)δy

a, ξ = ξi(x, y)
δ

δxi
+ ξ̄a(x, y)

∂

∂ya
.(3.2)

Definition 3.1. Suppose that ϕ, η and ξ are given by (3.1) and (3.2) on E such
that

(3.3) ϕ2 = I − ηH ⊗ ξH − ηV ⊗ ξV , ηH(ξH) = ηV (ξV ) = 1,

where

ηH = ηi(x, y)dx
i, ηV = η̄a(x, y)δy

a, ξH = ξi(x, y)
δ

δxi
, ξV = ξ̄a(x, y)

∂

∂ya
.

Then (ϕ, η, ξ) is called an almost paracontact Finsler structure on E and E is called
an almost paracontact Finsler vector bundle.

Now, we are going to consider some properties of an almost paracontact Finsler
structure. First, we prove the following.

Theorem 3.1. Suppose that E has an almost paracontact Finsler structure, then
the following holds

ϕ(ξH) = ϕ(ξV ) = 0, ηH ◦ ϕ = ηV ◦ ϕ = 0.

Proof. By (3.3) and ηV (ξH) = 0, we have

ϕ2(ξH) = ξH − ηH(ξH)ξH = 0.

Then ϕ(ξH) = 0 or ϕ(ξH) is a nontrivial eigenvector of ϕ corresponding to the
eigenvalue 0. Since ϕ(ξH) ∈ HE, then ηV (ϕ(ξH)) = 0. Using (3.3), we obtain

0 = ϕ2(ϕ(ξH)) = ϕ(ξH)− ηH(ϕ(ξH))ξH or ϕ(ξH) = ηH(ϕ(ξH))ξH .

Now, if ϕ(ξH) is nontrivial eigenvector of the eigenvalue 0, then ηH(ϕ(ξH)) ̸= 0.
Thus we have

0 = ϕ2(ξH) = ηH(ϕ(ξH))ϕ(ξH) = (ηH(ϕ(ξH)))2ξH ̸= 0,

which is a contradiction. Therefore ϕ(ξH) = 0. Similarly, we get ϕ(ξV ) = 0.

On the other hand, since ϕ(ξH) = 0 then we get

ηH(ϕ(X))ξH = ηH(ϕ(XH))ξH = ϕ(XH)− ϕ3(XH)

= ϕ(XH)− ϕ(XH) + ϕ(ηH(XH)ξH) = 0,

for any X ∈ χ(E). Hence ηH ◦ ϕ = 0. Similarly, we have ηV ◦ ϕ = 0.
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Remark 3.1. Let us put

ϕH = ϕi
j(x, y)

δ

δxi
⊗ dxj and ϕV = ϕ̄a

b

∂

∂ya
⊗ δyb.

Then by Theorem 3.1, we deduce that (ϕH , ηH , ξH) and (ϕV , ηV , ξV ) are almost
paracontact structures on sub-bundles HE and V E, respectively.

Proposition 3.1. Let E be endowed with an almost paracontact Finsler structure
(ϕ, η, ξ). Then rankϕ = (dimE)− 2.

Proof. It is sufficient to show that kerϕ =< ξH > ⊕ < ξV >. Since ϕξH = ϕξV = 0,
then we have < ξH > ⊕ < ξV >⊆ kerϕ. Now, let ξ̄ ∈ kerϕ. Then ϕξ̄ = 0 and (3.3)
give us

ξ̄ = ηH(ξ̄)ξH + ηV (ξ̄)ηV ∈< ξH > ⊕ < ξV >,

i.e., kerϕ ⊆< ξH > ⊕ < ξV >. Thus kerϕ =< ξH > ⊕ < ξV >.

We say that an almost paracontact Finsler structure (ϕ, η, ξ) on the vector bun-
dle E is normal, if the following holds

N (1)(X,Y ) = Nϕ(X,Y )− dηH(X,Y )ξH − dηV (X,Y )ξV = 0,

where X,Y are vector fields on E.

Now, we are going to give some equivalent conditions for the normality of struc-
ture (ϕ, η, ξ). For this reason, we introduce three tensors N (2), N (3) and N (4) and
show that the vanishing of N (1) implies the vanishing of these tensors. First, we
define the tensor N (2) on TuE as follows

N (2)(XH , Y H) = (£H
ϕXηH)(Y H)− (£H

ϕY η
H)(XH),

N (2)(XV , Y V ) = (£V
ϕXηV )(Y V )− (£V

ϕY η
V )(XV ),

N (2)(XV , Y H) = (£V
ϕXηH)(Y H) + (£V

ϕXηV )(Y H)

−(£H
ϕY η

H)(XV )− (£H
ϕY η

V )(XV ).

To define N (3) and N (4), we consider the following cases:

Case 1: For XH , ξH ∈ HuE, we define

N (3)(XH) = (£H
ξ ϕ)(XH), N (4)(XH) = (£H

ξ ηH)(XH).

Case 2: For XV , ξV ∈ VuE, we define

N (3)(XV ) = (£V
ξ ϕ)(X

V ), N (4)(XV ) = (£V
ξ η

V )(XV ).

Case 3: For XH ∈ HuE and ξV ∈ VuE, we define

N (3)(XH) = (£V
ξ ϕ)(X

H), N (4)(XH) = (£V
ξ η

H)(XH).

Case 4: For XV ∈ VuE and ξH ∈ HuE, we define

N (3)(XV ) = (£H
ξ ϕ)(XV ), N (4)(XV ) = (£H

ξ ηV )(XV ).
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Theorem 3.2. For any almost paracontact Finsler structure (ϕ, η, ξ) the vanishing
of N (1) implies the vanishing of N (2), N (3) and N (4).

Proof. If N (1) = 0, then for XH and ξH we have

0 = N (1)(XH , ξH)

= ϕ2[XH , ξH ] + [ϕXH , ϕξH ]− ϕ[ϕXH , ξH ]− ϕ[XH , ϕξH ]

− dηH(XH , ξH)ξH − dηV (XH , ξH)ξV

= ϕ2[XH , ξH ]− ϕ[ϕXH , ξH ]− dηH(XH , ξH)ξH − dηV (XH , ξH)ξV .

Applying ηH to (3.4), we obtain

dηH(XH , ξH) = 0,

which gives

N (4)(XH) = (£H
ξ ηH)(XH)= ξH

(
ηH(XH)

)
− ηH [ξH , XH ]

=−dηH(XH , ξH) = 0.

Since dηH(XH , ξH) = 0, then by (3.4) we have

(3.4) 0 = ϕ2[XH , ξH ]− ϕ[ϕXH , ξH ] = ϕ
(
(£H

ξ ϕ)XH
)
.

Similarly to (3.4), we obtain

0= ηH
(
N (1)(ϕXH , ξH)

)
= dηH(ξH , ϕXH),

0= ηV
(
N (1)(ϕXH , ξH)

)
= dηV (ξH , ϕXH),

which imply that

ηH([ξH , ϕXH ]) = 0, ηV ([ξH , ϕXH ]) = 0.

Applying ϕ to (3.4) and using the above equation, we have (£H
ξ ϕ)XH = 0, i.e.,

N (3)(XH) = 0. Applying ηH to the following

0=N (1)(ϕXH , Y H) = [XH , ϕY H ]− ηH(XH)[ξH , ϕY H ] + ϕY H
(
ηH(XH)

)
ξH

−ϕ[XH , Y H ]− ϕ[ϕXH , ϕY H ] + [ϕXH , Y H ]− ϕXH
(
ηH(Y H)

)
ξH

+ηH(XH)ϕ[ξH , Y H ] + ηV [ϕXH , Y H ]ξV ,

and using ηH([ξH , ϕXH ]) = 0, we get

0 = −ηH [ϕY H , XH ] + ϕY H(ηH(XH)) + ηH [ϕXH , Y H ]− ϕXH(ηH(Y H))

= (£H
ϕY η

H)XH − (£H
ϕXηH)Y H .
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Thus N (2)(XH , Y H) = 0. In a similar way, we can conclude the vanishing of N (2),
N (3) and N (4) from the vanishing of N (1), when XV and Y V belong to VuE. Now
we prove the result when one of them belongs to VuE and the other belongs to
HuE.

Similarly to (3.4), the vanishing of N (1) implies that

0=N (1)(XV , ξH)

=ϕ2[XV , ξH ]− ϕ[ϕXV , ξH ]− dηH(XV , ξH)ξH − dηV (XV , ξH)ξV .(3.5)

Applying ηV and ηH to (3.5), we get

(3.6) dηV (XV , ξH) = 0, dηH(XV , ξH) = 0.

But we have

N (4)(XV ) = (£H
ξ ηV )(XV ) = ξH(ηV (XV ))− ηV [ξH , XV ] = −dηV (XV , ξH).

Therefore the first part of (3.6) gives us N (4)(XV ) = 0. Using (3.5) and (3.6), we
obtain

0 = ϕ(N (1)(XV , ξH))=ϕ[XV , ξH ]− [ϕXV , ξH ]

= (£H
ξ ϕ)(XV )

=N (3)(XV ).

Therefore N (3)(XV ) = 0. In a similar way to (3.5), we obtain

0 = ηH
(
N (1)(ξV , ϕY H)

)
= −dηH(ξV , ϕY H),

0 = ηV
(
N (1)(ξV , ϕY H)

)
= −dηV (ξV , ϕY H)

which gives us

(3.7) ηH [ξV , ϕY H ] = 0, ηV [ξV , ϕY H ] = 0.

Using (3.7), we get

0 = η
(
N (1)(ϕXV , Y H)

)
= ηH([XV , ϕY H ]) + ηV ([XV , ϕY H ]) + ϕY H(ηV (XV )) + ηV ([ϕXV , Y H ])

− ϕXV (ηH(Y H)) + ηH([ϕXV , Y H ])

= −N (2)(XV , Y H),

i.e., N (2)(XV , Y H) = 0.
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4. Paracontact Finsler Structures

A pseudo-metric structure G on E satisfying the conditions

GH(ϕX, ϕY ) = −GH(X,Y ) + ηH(X)ηH(Y ),(4.1)

GV (ϕX, ϕY ) = −GV (X,Y ) + ηV (X)ηV (Y ),(4.2)

is said to be compatible with the structure (ϕ, η, ξ). In this case, the quadruplet
(ϕ, η, ξ,G) is called an almost paracontact metric Finsler structure and E is called
an almost paracontact metric Finsler vector bundle. From (4.1) and (4.2) we deduce

G(ϕX, ϕY ) = −G(X,Y ) + ηH(X)ηH(Y ) + ηV (X)ηV (Y ).

By (4.1) and (4.2) we have

(4.3) GH(X, ξ) = ηH(X), GV (X, ξ) = ηV (X),

which gives us G(X, ξ) = η(X). Using (4.1)-(4.3), one can also obtain

G(XH , ϕY H) = −G(ϕXH , Y H), G(XV , ϕY V ) = −G(ϕXV , Y V ).

Now, we define the fundamental 2-form Φ by

Φ(X,Y ) = G(X,ϕY ), ∀X,Y ∈ χ(E),

which gives

Φ(XH , Y H) = GH(X,ϕY ), Φ(XV , Y V ) = GV (X,ϕY ),

Φ(XV , Y H) = −Φ(Y H , XV ) = G(XV , ϕY H) = 0.
(4.4)

Remark 4.1. In [5, 12, 13, 14, 19], to define contact and paracontact Finsler struc-

tures the authors considered a tensor field ϕ of type

(
1 1
1 1

)
. According to (2.4),

ϕ has the following local expression

ϕ = ϕia
jb

δ

δxi
⊗ ∂

∂ya
⊗ dxj ⊗ δyb.

Thus for X = Xk(x, y) δ
δxk + X̄c(x, y) ∂

∂yc we have

ϕ(X) = ϕia
kbX

k δ

δxi
⊗ ∂

∂ya
⊗ δyb + ϕia

jcX̄
c δ

δxi
⊗ dxj ⊗ ∂

∂ya
.

This shows that ϕ(X) is not a vector field on E and so G(ϕX, ϕY ) is not well-

defined. Therefore, ϕ can not be a tensor field of type

(
1 1
1 1

)
. Also, in the

definition of contact and paracontact Finsler structures they considered the condition

ηH(ξH) + ηV (ξV ) = 1,(4.5)
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and using it, they deduced GH(X, ξ) = ηH(X) from GH(ϕX, ϕY ) = −GH(X,Y ) +
ηH(X)ηH(Y ) or GH(ϕX, ϕY ) = GH(X,Y ) − ηH(X)ηH(Y ) (see (3.9) of [5] and
(2.8) of [19]). But it is easy to see that this result is not true unless ηH(ξH) =
1. In a similar way, we can deduce that the condition ηV (ξV ) = 1 is necessary.
According to these reasons, definitions of contact and paracontact Finsler structures
in [5, 12, 13, 14, 19] are not true mathematically. Moreover, the condition (4.5)
breaks down the idea of inheritance properties by vertical and horizontal slices of
a paracontact structure on a vector bundle (obviously this idea needs the condition
ηH(ξH) = ηV (ξV ) = 1 to be different from the (4.5) one).

Definition 4.1. An almost paracontact metric Finsler structure (ϕ, η, ξ,G) is called
a paracontact metric Finsler structure if

(4.6) dηH(X,Y ) = Φ(XH , Y H), dηV (X,Y ) = Φ(XV , Y V ).

By (4.4) and (4.6), it follows that dη(X,Y ) = G(X,ϕY ). Then we get the
following

dη(XH , Y H) = G(XH , ϕY H) = GH(X,ϕY ) = dηH(X,Y ).

Similarly, we obtain

dη(XV , Y V ) = dηV (X,Y ) and dη(XV , Y H) = dη(XH , Y V ) = 0.

Thus we deduce that (ϕ, η, ξ,G) is a paracontact metric Finsler structure if and
only if the following holds

dη(XH , Y H) = dηH(X,Y ) = GH(X,ϕY ),

dη(XV , Y V ) = dηV (X,Y ) = GV (X,ϕY ),

dη(XH , Y V ) = dη(XV , Y H) = 0.

Moreover, if this structure is normal then it is called para-Sasakian Finsler structure.

Let (ϕ, η, ξ,G) be a paracontact metric Finsler structure on E. If ξH and ξV

are Killing vector fields with respect to GH and GV , respectively, then (ϕ, η, ξ,G)
is called a K-paracontact Finsler structure on E and E is called a K-paracontact
Finsler vector bundle.

Theorem 4.1. Let (ϕ, η, ξ,G) be a paracontact metric Finsler structure on E.
Then N (2) = N (4) = 0. Moreover, N (3) = 0 if and only if ξH and ξV are Killing
vector fields with respect to GH and GV , respectively.

Proof. Since (ϕ, η, ξ,G) is a paracontact metric Finsler structure on E, then we
have

0 = GH(ξH , ϕXH) = dηH(ξH , XH) = (£H
ξ ηH)(XH) = N (4)(XH).
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We also have

dηH(ϕXH , Y H) = GH(ϕXH , ϕY H) = −GH(XH , ϕ2Y H) = −dηH(XH , ϕY H),

which gives us N (2)(XH , Y H) = 0. Similarly, we obtain N (2)(XV , Y V ) = 0. Using
(4.1) and (4.6), we get

dηH(ϕXV , Y H) = dηH(ϕY H , XV ) = dηV (ϕXV , Y H) = dηV (ϕY H , XV ) = 0.

The above equations gives us N (2)(XV , Y H) = 0.

Now, we prove the second part of the Theorem. According to

£H
ξ dηH = iHξ (d2ηH) + d ◦ iHξ dηH = d ◦ iHξ dηH ,

Since N (4) = 0, then we obtain

(4.7) (iξHdηH)(XH) = dηH(ξH , XH) = N (4)(XH) = 0.

By assumption, we have

(4.8) dηH(ξH , XV ) = GH(ξH , ϕXV ) = 0.

By (4.8), it follows that

(4.9) (iξHdηH)(XV ) = dηH(ξH , XV ) = 0.

Then (4.7) and (4.9) imply that iξHdηH = 0 and consequently £H
ξ dηH = 0. Simi-

larly, we obtain £V
ξ dη

V = 0. Therefore, we get

0 = (£H
ξ dηH)(X,Y H) = (£H

ξ GH)(X,ϕY H) +GH(X, (£H
ξ ϕ)(Y H)),(4.10)

0 = (£H
ξ dηH)(X,Y V ) = (£H

ξ GH)(X,ϕY V ) +GH(X, (£H
ξ ϕ)(Y V )),(4.11)

0 = (£V
ξ dη

V )(X,Y H) = (£V
ξ G

V )(X,ϕY H) +GV (X, (£V
ξ ϕ)(Y

H)),(4.12)

0 = (£V
ξ dη

V )(X,Y V ) = (£V
ξ G

V )(X,ϕY V ) +GV (X, (£V
ξ ϕ)(Y

V )).(4.13)

By these equations, we conclude that if £H
ξ GH = £V

ξ G
V = 0, then N (3) = 0.

Conversely, let N (3) = 0. Then from (4.10)-(4.13) we get

(4.14) (i) (£H
ξ GH)(X,ϕY ) = 0, (ii) (£V

ξ G
V )(X,ϕY ) = 0.
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Now, we show that (£H
ξ GH)(X,Y ) = 0. It is easy to see that

(£H
ξ GH)(XV , Y V ) = 0.

Using part (i) of (4.14), we obtain

(£H
ξ GH)(XH , Y H) = (£H

ξ GH)(XH , ϕ2Y H) + ηH(Y H)(£H
ξ GH)(XH , ξH)

= ηH(Y H)(£H
ξ GH)(XH , ξH).

Since N (4) = 0, then we have

(4.15) (£H
ξ GH)(XH , ξH) = (£H

ξ ηH)(XH) = 0.

The relations (4.15) and (4.15) give us

(£H
ξ GH)(XH , Y H) = 0.

By part (i) of (4.14), we get

(£H
ξ GH)(XH , Y V ) = (£H

ξ GH)(XH , ϕ2Y V ) + ηV (Y V )(£H
ξ GH)(XH , ξV )

= −ηV (Y V )GH(XH , [ξH , ξV ]).

Again, using part (i) of (4.14), it follows that

0 = (£H
ξ GH)(ξV , ϕ2Y H) = −GH([ξH , ξV ], ϕ2Y H)

= −GH([ξH , ξV ], Y H) + ηH(Y H)GH([ξH , ξV ], ξH)

= −GH([ξH , ξV ], Y H) + ηH(Y H)ηH([ξH , ξV ]).

Since N (4) = 0, then we have

(4.16) 0 = (£ξV η
H)(ξH) = −ηH([ξV , ξH ]).

Plugging (4.16) in (4.16) implies that

GH([ξH , ξV ], Y H) = 0.

Then (4.16) reduces to the following

(£H
ξ GH)(XH , Y V ) = 0.

It follows that (£H
ξ GH)(X,Y ) = 0, where X,Y ∈ χ(E). Similarly, we can obtain

(£V
ξ G

V )(X,Y ) = 0. This completes the proof.

Remark 4.2. In [5], the authors used the equivalence between the Killing property
of ξ and the Killing properties of ξH and ξV several times (see Lemma 5.1 and
Corollary 5.2 of [5]). But it is not true. Indeed, if ξ is Killing then ξH and ξV are
not Killing, necessarily.
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In the next proposition, we explain an important relation as a big widget for our
next purposes.

Proposition 4.1. Let (ϕ, η, ξ,G) be an almost paracontact metric Finsler struc-
ture on E. Then the following hold

2G((D
XH ϕ)Y H ,ZH) = −dΦ(XH , ϕY H , ϕZH)− dΦ(XH , Y H , ZH)

−G
(
N (1)(Y H , ZH), ϕXH

)
+N (2)(Y H , ZH)η(XH)

+ dηH(ϕY H , XH)η(ZH)− dηH(ϕZH , XH)η(Y H),

2G((D
XV ϕ)Y V ,ZV ) = −dΦ(XV , ϕY V , ϕZV )− dΦ(XV , Y V , ZV )

−G(N (1)(Y V , ZV ), ϕXV ) +N (2)(Y V , ZV )η(XV )

+ dηV (ϕY V , XV )η(ZV )− dηV (ϕZV , XV )η(Y V ).

Proof. By a simple calculation, we get

dΦ(XH , ϕY H , ϕZH) = − XH(Φ(Y H , ZH))− ϕY H(g(ZH , XH))

+ ϕY H(η(ZH)η(XH)) + ϕZH(G(XH , Y H))

− ϕZH(η(XH)η(Y H))−G([XH , ϕY H ], ZH)

+ ηH([XH , ϕY H ])η(ZH)−G([ϕZH , XH ], Y H)

+ ηH([ϕZH , XH ]η(Y H)− Φ([ϕY H , ϕZH ], XH).

Also we have

G(N (1)(Y H , ZH), ϕXH) = Φ([Y H , ZH ], XH) + Φ([ϕY H , ϕZH ], XH)

+G([ϕY H , ZH ], XH)− ηH([ϕY H , ZH ])η(XH)

+G([Y H , ϕZH ], XH)− ηH([Y H , ϕZH ])η(XH).

Moreover, the following holds

dηH(ϕY H , XH)η(ZH) = ϕY H(η(XH))η(ZH)− ηH([ϕY H , XH ])η(ZH),

dηH(ϕZH , XH)η(Y H) = ϕZH(η(XH))η(Y H)− ηH([ϕZH , XH ])η(Y H).

If we denote the right-hand side of (4.17) by I, then using the above equations we
can obtain the following

I = ϕY H(G(ZH , XH))− ϕZH(G(XH , Y H)) +G([XH , ϕY H ], ZH)

+ G([ϕZH , XH ], Y H)− Y H(Φ(ZH , XH))− ZH(Φ(XH , Y H))

+ Φ([XH , Y H ], ZH) + Φ([ZH , XH ], Y H)−G([ϕY H , ZH ], XH)

− G([Y H , ϕZH ], XH).(4.17)
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Since D is a Finsler connection, then it is G-compatible and its (h)h-torsion van-
ishes. Thus (4.17) reduces to following

(4.18) I = G((∇XHϕ)Y H , ZH)−G(∇XHZH , ϕY H)−G(∇XHϕZH , Y H).

On the other hand, we have

XHG(ZH , ϕY H) = G(∇XHZH , ϕY H) +G(ZH ,∇XHϕY H),(4.19)

XHG(ϕZH , Y H) = G(∇XHϕZH , Y H) +G(ϕZH ,∇XHY H).(4.20)

Since G(ZH , ϕY H) = G(ϕZH , Y H), then by (4.19) and (4.20) we get

(4.21) G(∇XHZH , ϕY H) +G(∇XHϕZH , Y H) = −G((∇XHϕ)Y H , ZH).

Plugging (4.21) in (4.18) give us (4.17). Similarly, we can obtain (4.17).

Proposition 4.2. Let (ϕ, η, ξ,G) be a paracontact metric Finsler structure on E.
Then the following holds

2G((D
XH

ϕ)Y H , ZH) = −G(N (1)(Y H , ZH), ϕXH) + dηH(ϕY H , XH)η(ZH)

− dηH(ϕZH , XH)η(Y H),

2G((D
XV ϕ)Y V , ZV ) = −G(N (1)(Y V , ZV ), ϕXV ) + dηV (ϕY V , XV )η(ZV )

− dηV (ϕZV , XV )η(Y V ).(4.22)

Moreover, we get D
ξ
ϕ = 0.

Proof. By Proposition 4.1, we can get (4.22), (4.22). Thus we prove Dξϕ = 0. By
N (2) = 0, we obtain dηH(ϕXH , ξH) = 0. So plugging X = ξH in (4.22) we get the
following

G((DξHϕ)Y H , ZH) = 0,

which gives us
GH((DξHϕ)Y H , Z) = 0.

We also have GH((DξHϕ)Y V , Z) = 0. Therefore, we obtain

GH((DξHϕ)Y, Z) = 0.

It means that DξHϕ = 0. Similarly, we get DξV ϕ = 0. Therefore, Dξϕ = 0.
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Using Theorem 4.1, we conclude the following.

Theorem 4.2. Let (ϕ, η, ξ,G) is a paracontact metric Finsler structure on E.
Then this structure is a K-paracontact structure if and only if N (3) = 0.

Since a para-Sasakian Finsler structure is normal, then we have N (3) = 0. Thus
from the above proposition we deduce the following.

Corollary 4.1. Any para-Sasakian structure on E is a K-paracontact structure.

Now, we are going to find some conditions under which a paracontact metric Finsler
structure on a vector bundle E reduces to a K-paracontact Finsler structure. More
precisely, we prove the following theorem.

Theorem 4.3. Let (ϕ, η, ξ,G) be a paracontact metric Finsler structure on E.
Then this structure is a K-paracontact Finsler structure if and only if

(4.23)


(i) DH

XξH = −1

2
ϕXH , (ii) GH([ξH , XV ]H , Y H) = 0,

(iii) DV
XξV = −1

2
ϕXV , (iv) GV ([ξV , XH ]V , Y V ) = 0.

Proof. Let (ϕ, η, ξ,G) be a K-paracontact Finsler structure. Then the following
holds

£H
ξ GH = £V

ξ G
V = 0.

We have

0 = (£H
ξ GH)(XV , Y H) = −GH([ξH , XV ]H , Y H),

0 = (£V
ξ G

V )(XH , Y V ) = −GV ([ξV , XH ]V , Y V ),

which gives us (ii) and (iv) of (4.23).

It is easy to see that, the following holds

(£H
ξ
G)(XH , Y H) = (£H

ξ
GH)(XH , Y H).

Therefore

0 = (£H
ξ
G)(XH , Y H) = £H

ξ
G(XH , Y H)−G(£H

ξ
XH , Y H)−G(XH ,£H

ξ
Y H)

= £H
ξ
G(XH , Y H)−G([ξH , XH ]H , Y H)−G(XH , [ξH , Y H ]H).

Since D is symmetric, then we have

(4.24) [ξH , XH ]H = DH
ξ XH −DH

XξH .

Plugging (4.24) in (4.24) yields

0 = (DH
ξ
G)(XH , Y H) +G(DH

X
ξH , Y H) +G(XH , DH

Y
ξH).
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Since D is G-compatible, then DH
ξ
G = 0. Thus

(4.25) G(DH
X
ξH , Y H) = −G(XH , DH

Y
ξH).

Similarly, we get

(4.26) G(DV
X
ξV , Y V ) = −G(XV , DV

Y
ξV ).

Using (2.4), we obtain

(4.27) 2G(DH
X
ξH , Y H)− 2G(XH , DH

Y
ξH) = 2dη(XH , Y H).

By (4.25) and (4.27) we have

(4.28) 2G(DH
X
ξH , Y H)− 2G(XH , DH

Y
ξH) = 4G(DH

X
ξH , Y H).

(4.27) and (4.28) give us

2G(DH
X
ξH , Y H) = dη(XH , Y H) = G(XH , ϕY H) = −G(ϕXH , Y H).

Hence

DH
XξH = −1

2
ϕXH .

Similarly, using (4.26) we can deduce that DV
XξV = −1

2
ϕXV .

Conversely, suppose that (4.23) holds. Then from part (i) of (4.23) we have

0 = (£H
ξ
GH)(XH , Y H)

= G(DH
X
ξH , Y H) +G(XH , DH

Y
ξH)

= −1

2
[G(ϕXH , Y H) +G(XH , ϕY H)] = 0.

Also (ii) gives us
(£H

ξ GH)(XV , Y H) = 0.

Therefore, considering
(£H

ξ GH)(XV , Y V ) = 0,

we deduce £H
ξ GH = 0. By a similar method, we can obtain £V

ξ G
V = 0. This

completes the proof.

Lemma 4.1. Let (ϕ, η, ξ,G) be a K-paracontact Finsler structure on a vector bun-
dle E. Then the following holds

R(XV , ξV )ξV = −1

4
(XV − ηV (XV )ξV ),(4.29)

R(XH , ξH)ξH = −1

4
(XH − ηH(XH)ξH)−D[XH ,ξH ]V ξ

H .(4.30)
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Proof. Using [XV , ξV ]H = 0, Dξϕ = 0 and (2.6), we obtain

R(XV , ξV )ξV =
1

2
ϕ(DξV X

V + [XV , ξV ]V )

= −1

4
ϕ2(XV )

= −1

4

[
XV − ηV (XV )ξV

]
.

Similarly, we have

R(XH , ξH)ξH =
1

2
ϕ(DξHXH + [XH , ξH ]H)−D[XH ,ξH ]V ξ

H

= −1

4
ϕ2(XH)−D[XH ,ξH ]V ξ

H

= −1

4
(XH − ηH(XH)ξH)−D[XH ,ξH ]V ξ

H .

This completes the proof.

Theorem 4.4. Let (ϕ, η, ξ,G) be a K-paracontact Finsler structure on E. Then
the following holds

(i) the vertical flag curvature of all plane sections containing ξV is equal to −1
4 ;

(ii) the horizontal flag curvature of all plane sections containing ξH is equal to − 1
4

if and only if G(DV
[XH ,ξH ]ξ

H , XH) = 0.

Proof. Let XV be a unit vector field orthogonal to ξV . Then

ηV (XV ) = 0.

Consequently, (4.29) gives us

R(XV , ξV )ξV = −1

4
XV .

Therefore, we get

K(XV , ξV ) = GV (R(XV , ξV )ξV , XV ) = −1

4
G(XV , XV ) = −1

4
.

Similarly, if XH is a unit vector field orthogonal to ξH , then from (4.30) we get

K(XH , ξH) = GH(R(XH , ξH)ξH , XH)

= −1

4
G(XH , XH)−G(D[XH ,ξH ]V ξ

H , XH)

= −1

4
−G(D[XH ,ξH ]V ξ

H , XH).

Therefore K(XH , ξH) = −1
4 holds if and only if G(D[XH ,ξH ]V ξ

H , XH) = 0.
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Remark 4.3. In Theorem 6.1 of [5] and Theorem 4.2 from [19], the authors con-
sider only GH(R(XH , ξH)ξH , XH) and GV (R(XV , ξV )ξV , XV ) to compute the flag
curvature of a plane which contains ξ. But they forgot some terms such as
GH(R(XV , ξH)ξH , XH) and GH(R(XV , ξV )ξH , XH) in computing the flag curva-
ture. Indeed, they computed only vertical and horizontal flag curvatures.

Now, we are going to study some properties of the para-Sasakian Finsler struc-
ture on a vector bundle. First, we prove the following.

Theorem 4.5. Let (ϕ, η, ξ,G) be a para-Sasakian Finsler structure on a vector
bundle E. Then the following relations hold

(4.31) (DH
X
ϕ)Y H =

1

2
{ηH(Y H)XH −GH(XH , Y H)ξH},

(4.32) (DV
X
ϕ)Y V =

1

2
{ηV (Y V )XV −GV (XV , Y V )ξV }.

Moreover, the Riemannian curvature satisfies the following

R(XV , Y V )ξV =
1

4
{ηV (XV )Y V − ηV (Y V )XV },(4.33)

R(XH , Y H)ξH =
1

4
{ηH(XH)Y H − ηH(Y H)XH} −DV

[XH ,Y H ]ξ
H .(4.34)

Proof. Since (ϕ, η, ξ,G) is a para-Sasakian Finsler structure, then Φ = dη and
N (1) = N (2) = 0. Thus by (4.17), we obtain

2G((DH
Xϕ)Y H , ZH) = dηH(ϕY H , XH)η(ZH)− dηH(ϕZH , XH)η(Y H)

= G(ϕY H , ϕXH)η(ZH)−G(ϕZH , ϕXH)η(Y H)

= −G(XH , Y H)η(ZH) +G(XH , ZH)G(ξH , Y H)

= G(η(Y H)XH −G(XH , Y H)ξH , ZH).

This implies (4.31). With similar computations, one can obtain (4.32).

Using (2.6), Theorem 4.2 and Corollary 4.1, we have

R(XV , Y V )ξV = DV
XDV

Y ξV −DV
Y DV

XξV −DV
[XV ,Y V ]ξ

V

= DV
X
(−1

2
ϕY V )−DV

Y
(−1

2
ϕXV ) +

1

2
ϕ[XV , Y V ]V

= −1

2
(DV

Xϕ)Y V +
1

2
(DV

Y ϕ)XV .(4.35)

By (4.32) and (4.35) we get

R(XV , Y V )ξV =
1

4
{ηV (XV )Y V − ηV (Y V )XV }.
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Similarly, using (4.31) we obtain

R(XH , Y H)ξH = DH
XDH

Y ξH −DH
Y DH

XξH −DH
[XH ,Y H ]ξ

H −DV
[XH ,Y H ]ξ

H

= DH
X
(−1

2
ϕY H)−DH

Y
(−1

2
ϕXH) +

1

2
ϕ[XH , Y H ]H −DV

[XH ,Y H ]ξ
H

= −1

2
(DH

Xϕ)Y H +
1

2
(DH

Y ϕ)XH −DV
[XH ,Y H ]ξ

H

=
1

4
{ηH(XH)Y H − ηH(Y H)XH} −DV

[XH ,Y H ]ξ
H .

This completes the proof.

A plane section in VuE is called a vertical ϕ-section if there exists a unit vector
XV in VuE orthogonal to ξV such that {XV , ϕXV } span the section. The vertical
flag curvature K(XV , ϕXV ) is called vertical ϕ-flag curvature.

Proposition 4.3. Let (ϕ, η, ξ,G) be a para-Sasakian Finsler structure on E. Sup-
pose that E is locally symmetric. Then it has a vertical ϕ-flag curvature −1

4 .

Proof. Let XV ̸= 0 be a vector field on E orthogonal to ξV . Then we have
ηV (XV ) = GV (XV , ηV ) = 0. By direct conclusion we obtain

(DϕXV R)(XV , ϕXV )ξV =
1

2

[
ϕR(XV , ϕXV )ϕXV − 1

4
GV (XV , ϕXV )ϕ2XV

+
1

4
GV (ϕXV , ϕXV )ϕXV

]
.(4.36)

Considering G(XV , ϕXV ) = −G(ϕXV , XV ), we have G(XV , ϕXV ) = 0. Using this
equation and noting that E is locally symmetric (4.36) gives us

(4.37) ϕR(XV , ϕXV )ϕXV +
1

4
GV (ϕXV , ϕXV )ϕXV = 0.

By (4.37), we get

(4.38) G(ϕR(XV , ϕXV )ϕXV , ϕXV ) +
1

4
G(ϕXV , ϕXV )G(ϕXV , ϕXV ) = 0.

Since ηV (XV ) = 0, then (4.38) gives us

G(R(XV , ϕXV )ϕXV , XV ) =
1

4
G2(ϕXV , ϕXV ).

Therefore, we obtain

K(XV , ϕXV ) =
G(R(XV , ϕXV )ϕXV , XV )

G(XV , XV )G(ϕXV , ϕXV )
= −1

4
.

It means that E has a vertical ϕ-flag curvature − 1
4 .
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4.1. Horizontal and Vertical Ricci Tensors

The horizontal Ricci tensor SH of an (n + m)-dimensional para-Sasakian Finsler
manifold E is given by

SH(XH , Y H) =

n−1∑
i=1

G(R(XH , EH
i )EH

i , Y H) +G(R(XH , ξH)ξH , Y H)

=

n−1∑
i=1

G(R(EH
i , XH)Y H , EH

i ) +G(R(ξH , XH)Y H , ξH),

where {EH
1 , EH

2 , . . . , EH
n−1, ξ

H} is a local orthonormal frame of HuE. Similarly, the
vertical Ricci tensor of an (n +m)-dimensional para-Sasakian Finsler manifold E
is given by

SV (XV , Y V ) =
m−1∑
i=1

G(R(XV , EV
i )EV

i , Y V ) +G(R(XV , ξV )ξV , Y V )

=
m−1∑
i=1

G(R(EV
i , XV )Y V , EV

i ) +G(R(ξV , XV )Y V , ξV ),

where {EV
1 , EV

2 , . . . , EV
m−1, ξ

V } is a local orthonormal frame of VuE.

Proposition 4.4. The horizontal and vertical Ricci tensors SH and SV of a (n+
m)-dimensional para-Sasakian Finsler manifold satisfy the following equations:



(i) SH(XH , ξH) = 1−n
4 ηH(XH)−

n−1∑
i=1

G(DV
[EH

i ,XH ]
ξH , EH

i ),

(ii) SV (XV , ξV ) = 1−m
4 ηV (XV ),

(iii) SH(ξH , ξH) = 1−n
4 −

n−1∑
i=1

G(DV
[EH

i ,ξH ]
ξH , EH

i ),

(iv) SV (ξV , ξV ) = 1−m
4 .

(4.39)

Proof. Using (4.34) and (4.39), one can obtain the following:

SH(XH, ξH) =
n−1∑
i=1

G
(
R(EH

i , XH)ξH , EH
i

)
=

n−1∑
i=1

G
(1
4
ηH(EH

i )XH − 1

4
ηH(XH)EH

i −DV
[EH

i ,XH ]ξ
H , EH

i

)
.(4.40)

Since EH
i is orthogonal to ξH , then we have ηH(EH

i ) = G(EH
i , ξH) = 0. By (4.40)

and G(EH
i , EH

i ) = 1, we get part (i) of (4.39). Plugging XH = ξH in (i) and using
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ηH(XH) = 1 implies (iii). Similarly, (4.33) and (4.39) give us

SV (XV , ξV ) =

m−1∑
i=1

G
(
R(EV

i , XV )ξV , EV
i

)
=

1

4

m−1∑
i=1

G
(
ηV (EV

i )XV − ηV (XV )EV
i , EV

i

)
=

1−m

4
ηV (XV ).

By setting XV = ξV in (4.41), we get (iv).

According to parts (i) and (iii) of (4.39), one can deduce the following easily.

Corollary 4.2. For an (n+m)-dimensional para-Sasakian Finsler manifold, the
following holds

i) SH(XH , ξH) = 1−n
4 ηH(XH) is equivalent to vanishing of

n−1∑
i=1

G(DV
[EH

i ,XH ]ξ
H , EH

i );

ii) SH(ξH , ξH) = 1−n
4 is equivalent to vanishing of

n−1∑
i=1

G(DV
[EH

i ,ξH ]ξ
H , EH

i ).

Using Lemma 4.1, we have the following proposition.

Proposition 4.5. The horizontal and vertical Ricci tensors SH and SV of a (n+
m)-dimensional K-paracontact Finsler vector bundle satisfy the following equations:

SH(ξH , ξH) =
1− n

4
−

n−1∑
i=1

G(DV
[EH

i ,ξH ]ξ
H , EH

i ), SV (ξV , ξV ) =
1−m

4
.

Proposition 4.5 have an easy consequence as follows.

Corollary 4.3. For a (n + m)-dimensional K-paracontact Finsler vector bundle
E, SH(ξH , ξH) = 1−n

4 is equivalent to the vanishing of

n−1∑
i=1

G(DV
[EH

i ,ξH ]ξ
H , EH

i ).
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