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TOTALLY REAL SUBMANIFOLDS OF (LCS)n-MANIFOLDS
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Abstract. The present paper deals with the study of totally real submanifolds and
C-totally real submanifolds of (LCS)n-manifolds with respect to the Levi-Civita con-
nection and the quarter symmetric metric connection. It is proved that the scalar
curvatures of C-totally real submanifolds of (LCS)n-manifold with respect to both the
said connections are the same.
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1. Introduction

As a generalization of LP-Sasakian manifold, Shaikh [13] recently introduced the
notion of Lorentzian concircular structure manifolds (briefly, (LCS)n-manifolds)
with an example. Such manifolds have many applications in the general theory of
relativity and cosmology ([15], [16]).

The notion of semisymmetric linear connection on a smooth manifold was in-
troduced by Friedmann and Schouten [4]. Then Hayden [6] introduced the idea of
metric connection with torsion on a Riemannian manifold. Thereafter Yano [19]
studied the semisymmetric metric connection on a Riemannian manifold systemat-
ically. As a generalization of the semisymmetric connection, Golab [5] introduced
the idea of quarter symmetric linear connection on smooth manifolds. A linear con-
nection ∇̄ in an n-dimensional smooth manifold M̃ is said to be a quarter symmetric
connection [5] if its torsion tensor T is of the form

T (X,Y ) = ∇̄XY − ∇̄Y X − [X,Y ](1.1)

= η(Y )φX − η(X)φY,

where η is a 1-form and φ is a tensor of type (1, 1). In particular, if φX = X then
the quarter symmetric connection reduces to a semisymmetric connection. Further,
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if the quarter symmetric connection ∇̄ satisfies the condition (∇̄Xg)(Y, Z) = 0, for
all X, Y, Z ∈ χ(M̃), then ∇̄ is said to be a quarter symmetric metric connection.

Due to important applications in applied mathematics and theoretical physics,
the geometry of submanifolds has become a subject of growing interest. Analogous
to almost Hermitian manifolds, the invariant and anti-invariant submanifolds [2] are
dependent on the behaviour of almost contact metric structure φ. A submanifold
M of a (LCS)n-manifold manifold M̃ is said to be anti-invariant (or totally real)
if for any X ∈ T (M), φX ∈ T⊥M i.e., φ(TM) ⊂ T⊥M at every point of M .
A totally real submanifold M of M̃ is a C-totally real submanifold if ξ is normal
to M [18]. Consequently, C-totally real submanifolds are anti-invariant. Recently
Hui et al. ([1], [7], [8], [9], [17]) studied submanifolds of (LCS)n-manifolds. The
present paper deals with the study of totally real submanifolds and C-totally real
submanifolds of (LCS)n-manifolds with respect to the Levi-Civita connection and
the quarter symmetric metric connection. It is shown that the scalar curvature of
a C-totally real submanifold of (LCS)n-manifold with respect to the Levi-Civita
connection and the quarter symmetric metric connection is the same. However, in
the case of totally real submanifolds of (LCS)n-manifolds with respect to the Levi-
Civita connection and the quarter symmetric metric connection, they are different.
An inequality for the square length of the shape operator in the case of a totally real
submanifold of (LCS)n-manifold is derived. The equality case is also considered.

2. Preliminaries

Let M̃ be an n-dimensional Lorentzian manifold [12] admitting a unit time-like
concircular vector field ξ, called the characteristic vector field of the manifold. Then
we have

(2.1) g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

(2.2) g(X, ξ) = η(X),

satisfies [20]

(2.3) (∇̃Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, α 6= 0,

(2.4) ∇̃Xξ = α{X + η(X)ξ}, α 6= 0,

for X, Y ∈ χ(M̃), where ∇̃ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a non-zero scalar function that satisfies

(2.5) ∇̃Xα = (Xα) = dα(X) = ρη(X),
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ρ being a certain scalar function given by ρ = −(ξα). Let us take

(2.6) φX =
1

α
∇̃Xξ,

then from (2.4) and (2.6), we have

(2.7) φX = X + η(X)ξ,

(2.8) g(φX, Y ) = g(X,φY ),

from which it follows that φ is a symmetric (1,1) tensor called the structure tensor
of the manifold. Thus the Lorentzian manifold M̃ together with the unit time-
like concircular vector field ξ, its associated 1-form η and a (1,1) tensor field φ is
said to be a Lorentzian concircular structure manifold (briefly, (LCS)n-manifold),
[13]. Especially, if we take α = 1, then we can obtain the LP-Sasakian structure of
Matsumoto [11]. In a (LCS)n-manifold (n > 2), the following relations hold ([13],
[14]):

(2.9) η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

(2.10) φ2X = X + η(X)ξ,

(2.11) R̃(X,Y )Z = φR̃(X,Y )Z + (α2 − ρ){g(Y, Z)η(X)− g(X,Z)η(Y )}ξ

for all X, Y, Z ∈ χ(M̃). Using (2.8) in (2.11), we get

R̃(X,Y, Z,W ) = R̃(X,Y, Z, φW ) + (α2 − ρ){g(Y, Z)η(X)(2.12)

−g(X,Z)η(Y )}η(W ).

Let M be a submanifold of dimension m of a (LCS)n-manifold M̃ (m < n) with
induced metric g. Also, let ∇ and ∇⊥ be the induced connection on the tangent
bundle TM and the normal bundle T⊥M of M , respectively. Then the Gauss and
Weingarten formulae are given by

(2.13) ∇̃XY = ∇XY + h(X,Y )

and

(2.14) ∇̃XV = −AV X +∇⊥
XV

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are the second funda-
mental form and the shape operator (corresponding to the normal vector field V ),
respectively, for the immersion of M into M̃ and they are related by [21]

(2.15) g(h(X,Y ), V ) = g(AV X,Y )
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for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). The equation of Gauss is given by

(2.16) R̃(X,Y, Z,W ) = R(X,Y, Z,W )+g(h(X,Z), h(Y,W ))−g(h(X,W ), h(Y, Z))

for any vectors X, Y, Z, W tangent to M .
Let {ei : i = 1, 2, · · · , n} be an orthonormal basis of the tangent space M̃ such

that refracting to Mm, {e1, e2, · · · , em} is the orthonormal basis to the tangent
space TxM with respect to the induced connection.
We write

hr
ij = g(h(ei, ej), er), i, j ∈ {1, 2, · · · ,m} and r ∈ {m+ 1, · · · , n}.

Then the square length of h is

||h||2 =

m
∑

i,j=1

g(h(ei, ej), h(ei, ej))

and the mean curvature H of M associated to ∇ is H = 1

m

m
∑

i=1

h(ei, ei).

The quarter symmetric metric connection ¯̃∇ and the Riemannian connection ∇̃ on
a (LCS)n-manifold M̃ are related by [10]

(2.17) ¯̃∇XY = ∇̃XY + η(Y )φX − g(φX, Y )ξ.

If ¯̃
R and R̃ are the curvature tensors of an (LCS)n-manifold M̃ with respect to the

quarter symmetric metric connection ¯̃∇ and the Riemannian connection ∇̃, then

¯̃
R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + (2α− 1)[g(φX,Z)g(φY,W )(2.18)

−g(φY, Z)g(φX,W )] + α[η(Y )g(X,W )

−η(X)g(Y,W )]η(Z) + α[g(Y, Z)η(X)

−g(X,Z)η(Y )]η(W )

for all X, Y, Z, W ∈ χ(M̃).
We now recall the following [3]:

Let L be a k-plane section of TxM and X be a unit vector in L. We choose an
orthonormal basis {e1, e2, · · · , ek} of L such that e1 = X . Then the Ricci curvature
RicL of L at X is defined by [3]

(2.19) RicL(X) = K12 +K13 + · · ·+K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej .
Such a curvature is called a k-Ricci curvature.

The scalar curvature τ of the k-plane section L is given by [3]

(2.20) τ(L) =
∑

1≤i<j≤k

Kij .
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For each integer k, 2 ≤ k ≤ n, the invariant Θk on M is defined by [3]

(2.21) Θk(x) =
1

k − 1
inf
L.X

RicL(X), x ∈ M,

where L runs over all k-plane sections in TxM and X runs over all unit vectors in
L.
The relative null space for M at a point x ∈ M is defined by [3]

(2.22) Nx = {X ∈ TxM |h(X,Y ) = 0, Y ∈ TxM}.

3. Theorem-like Environments

This section deals with the study of totally real submanifolds of (LCS)n-manifolds
with respect to the Levi-Civita and quarter symmetric metric connection. We prove
the following:

Theorem 3.1. Let M be a totally real submanifold of dimension m (m < n) of a
(LCS)n-manifold M̃ . Then

(3.1) m2||H ||2 = 2τ + ||h||2 + (m− 1)(α2 − ρ),

where τ is the scalar curvature of M .

Proof. Let M be a totally real submanifold of a (LCS)n-manifold M̃ . Now from
(2.12) and (2.16), we get

R(X,Y, Z,W ) = R̃(X,Y, Z, φW ) + (α2 − ρ){g(Y, Z)η(X)(3.2)

−g(X,Z)η(Y )}η(W ) + g(h(X,W ), h(Y, Z))

−g(h(X,Z), h(Y,W ))

for any X, Y, Z, W ∈ Γ(TM).
Since M is a totally real submanifold i.e., anti-invariant, so

R̃(X,Y, Z, φW ) = g(R̃(X,Y )Z, φW ) = 0

as R̃(X,Y )Z is tangent to M and φW is normal to M and hence (3.2) yields

R(X,Y, Z,W ) = (α2 − ρ){g(Y, Z)η(X)− g(X,Z)η(Y )}η(W )(3.3)

+g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))

for any X, Y, Z, W ∈ Γ(TM). Putting X = W = ei and Y = Z = ej in (3.3) and
taking summation over 1 ≤ i < j ≤ m, we get
∑

1≤i<j≤m

R(ei, ej , ej, ei) = (α2 − ρ)
∑

1≤i<j≤m

[g(ej, ej)η(ei)η(ei)− g(ei, ej)η(ej)η(j)]

+
∑

1≤i<j≤m

g(h(ei, ei), h(ej , ej))

−
∑

1≤i<j≤m

g(h(ei, ej), h(ej , ei))
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i.e.,

(3.4) 2τ = −(m− 1)(α2 − ρ) +m2||H ||2 − ||h||2,

which implies (3.1).

Corollary 3.1. Let M be a C-totally real submanifold of dimension m (m < n)
of a (LCS)n-manifold M̃ . Then

m2||H ||2 = 2τ + ||h||2.

Proof. In a C-totally real submanifold, since ξ ∈ Γ(T⊥M) so, η(X) = 0 for all
X ∈ Γ(TM). Then (3.3) yields

R(X,Y, Z,W ) = g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )),

from which, similarly to the above, we can prove that m2||H ||2 = 2τ + ||h||2.

Now let M be a submanifold of dimension m (m < n) of a (LCS)n-manifold M̃

with respect to the quarter symmetric metric connection ¯̃∇ and ∇̄ be the induced
connection of M associated to the quarter symmetric metric connection. Also let h̄
be the second fundamental form of M with respect to ∇̄. Then the Gauss formula
can be written as

(3.5) ¯̃∇XY = ∇̄XY + h̄(X,Y )

and hence by virtue of (2.13) and (2.17), we get

∇̄XY + h̄(X,Y ) = ∇XY + h(X,Y ) + η(Y )φX − g(φX, Y )ξ(3.6)

If M is a totally real submanifold of M̃ then φX ∈ T⊥M for any X ∈ TM and
hence g(φX, Y ) = 0 for X, Y ∈ TM . So, equating the normal part from (3.6), we
get

(3.7) h̄(X,Y ) = h(X,Y ) + η(Y )φX.

Further, if M is C-totally real submanifold of M̃ then ξ ∈ T⊥M and hence η(Y ) = 0
for all Y ∈ TM . So, (3.7) yields

(3.8) h̄(X,Y ) = h(X,Y ).

Let U be a unit tangent vector at x ∈ M̃ and {ei : i = 1, 2, · · · , n} be an orthonormal
basis of the tangent space M̃ such that e1 = U refracting to Mm, {e1, e2, · · · , em}
is the orthonormal basis to the tangent space TxM with respect to the induced
quarter symmetric metric connection. Then we have the following:
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Theorem 3.2. Let M be a totally real submanifold of a (LCS)n-manifold M̃ with
respect to the quarter symmetric metric connection, then

(3.9) m2||H ||2 = 2τ̄ + ||h||2 + (2m− 1)α+mαη2(U),

where τ̄ is the scalar curvature of M with respect to the induced connection associ-
ated to the quarter symmetric metric connection.

Proof. In the case of an (LCS)n-manifold M̃ with respect to the quarter symmetric
metric connection, the relation (2.16) becomes

¯̃
R(X,Y, Z,W ) = R̄(X,Y, Z,W ) + g(h̄(X,Z), h̄(Y,W ))(3.10)

−g(h̄(X,W ), h̄(Y, Z)).

In view of (2.7) and (2.8), (3.10) yields

R̄(X,Y, Z,W ) = R̃(X,Y, Z, φW ) + (α2 − ρ){g(Y, Z)η(X)(3.11)

−g(X,Z)η(Y )}η(W ) + (2α− 1)[g(φX,Z)g(φY,W )

−g(φY, Z)g(φX,W )] + α[η(Y )g(X,W )

−η(X)g(Y,W )]η(Z) + α[g(Y, Z)η(X)

−g(X,Z)η(Y )]η(W )

+g(h̄(X,W ), h̄(Y, Z))− g(h̄(X,Z), h̄(Y,W )).

Since M is totally real, therefore g(φX, Y ) = 0 for all X, Y ∈ TM and (3.7) holds.
Thus (3.11) becomes

R̄(X,Y, Z,W ) = (α2 − ρ){g(Y, Z)η(X)− g(X,Z)η(Y )}η(W )(3.12)

+α[η(Y )g(X,W )− η(X)g(Y,W )]η(Z)

+α[g(Y, Z)η(X)− g(X,Z)η(Y )]η(W )

+g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))

−η(Z)g(h(X,W ), φY )− η(W )g(φX, h(Y, Z))

+η(Z)g(φX, h(Y,W )) + η(W )g(h(X,Z), φY ).

Putting X = W = ei and Y = Z = ej in (3.12) and taking summation over
1 ≤ i < j ≤ m, we get

2τ̄ = −(m− 1)(α2 − ρ)− α(1 + η2(U))m− α(m− 1)(3.13)

+m2||H ||2 − ||h||2,

from which (3.9) follows.

Corollary 3.2. Let M be a C-totally real submanifold of an (LCS)n-manifold M̃

with respect to the quarter symmetric metric connection. Then

(3.14) m2||H ||2 = 2τ̄ + ||h||2.



148 S. K. Hui and T. Pal

Proof. If M is a C-totally real submanifold then η(Y ) = 0 for all Y ∈ TM and
hence (3.12) implies that

(3.15) R̄(X,Y, Z,W ) = g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z))

from which, similarly to the above, (3.14) follows.

From Corollary 3.1 and Corollary 3.2 we get τ = τ̄ i.e., the scalar curvatures of
a C-totally real submanifold of a (LCS)n-manifold with respect to the induced
Levi-Civita connection and the induced quarter symmetric metric connection are
identical. Thus we can state the following:

Theorem 3.3. Let M be a C-totally real submanifold of a (LCS)n-manifold M̃ .
Then the scalar curvatures of M with respect to the induced Levi-Civita connection
and induced quarter symmetric metric connection are the same.

Next, we prove the following:

Theorem 3.4. Let M be a totally real submanifold of a (LCS)n-manifold M̃ .
Then
(i) for each unit vector X ∈ TxM ,

(3.16) 4Ric(X) ≤ m2||H ||2 + 2(α2 − ρ)(m− 2) + 4(m− 2)(α2 − ρ)η2(X);

(ii) in the case of H(x)=0, a unit tangent vector X at x satisfies the equality case
of (3.16) if and only if X lies in the relative null space Nx at x.
(iii) the equality case of (3.16) holds identically for all unit tangent vectors at x if
and only if either x is a totally geodesic point or m = 2 and x is a totally umbilical
point.

Proof. Let X ∈ TxM be a unit tangent vector at x. We choose an orthonormal
basis {e1, e2, · · · , em, em+1, · · · , en} such that {e1, · · · , em} are tangent to M at x

and e1 = X . Then from (3.1), we have

m2‖H‖2 = 2τ +

n
∑

r=m+1

{(hr
11)

2 + (hr
22 + · · ·+ hr

mm)2)}

−2
n
∑

r=m+1

∑

2≤i<j≤n

hr
iih

r
jj + (m− 1)(α2 − ρ)

= 2τ +
1

2

n
∑

r=m+1

{(hr
11 + · · ·+ hr

mm)2 + (hr
11 − hr

22 − · · · − hr
mm)2}(3.17)

+2

n
∑

r=m+1

∑

i<j

(hr
ij)

2 − 2

n
∑

r=m+1

∑

2≤i<j≤n

hr
iih

r
jj + (m− 1)(α2 − ρ).
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From the equation of Gauss, we find

Kij =
n
∑

r=m+1

[hr
iih

r
jj − (hr

ij)
2] + (α2 − ρ)η2(ei),

and consequently

∑

2≤i<j≤m

Kij =

n
∑

r=m+1

∑

2≤i<j≤m

[hr
iih

r
jj − (hr

ij)
2] + (α2 − ρ)[m− 2 + η2(X)].(3.18)

Using (3.18) in (3.17), we get

m2||H ||2 ≥ 2τ +
m2

2
||H ||2 + 2

n
∑

r=m+1

m
∑

j=2

(hr
1j)

2 − 2
∑

2≤i<j≤m

Kij(3.19)

−(m− 3)(α2 − ρ)− 2(m− 2)(α2 − ρ)η2(X).

Therefore,

1

2
m2||H ||2 ≥ 2Ric(X)− (m− 3)(α2 − ρ)− 2(m− 2)(α2 − ρ)η2(X),

from which we get (3.16).
Let us assume that H(x) = 0. Then the equality holds in (3.16) if and only if

hr
11 = hr

22 = · · · = hr
1m = 0 and hr

11 = hr
22 + · · ·+ hr

mm, r ∈ {m+ 1, · · · , n}.

Then hr
1j = 0 for every j ∈ {1, · · ·m}, r ∈ {m+ 1 · · ·n}, i.e., X ∈ Nx.

(iii) The equality case of (3.16) holds for every unit tangent vector at x if and
only if

hr
ij = 0, i 6= j and hr

11 + hr
22 + · · ·+ hr

mm − 2hr
ii = 0.

We distinguish two cases:
(a) m 6= 2, then x is a totally geodesic point;
(b) m = 2, it follows that x is a totally umbilical point.
The converse is trivial.

Next we obtain the following:

Theorem 3.5. Let M be a totally real submanifold of a (LCS)n-manifold M̃ .
Then

||H ||2 ≥
2τ

m(m− 1)
+

1

m
(α2 − ρ).(3.20)

Proof. We choose an orthonormal basis {e1, · · · em, em+1, · · · , en} at x such that
em+1 is parallel to the mean curvature vector H(x), and e1, · · · , em diagonalise the



150 S. K. Hui and T. Pal

shape operator Am+1. Then the shape operator takes the form

Am+1 =











a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
...

...
...

0 0 0 · · · an











,(3.21)

Ar = (hr
ij), i, j = 1, · · · ,m; r = m+ 2, · · · , n, traceAr =

m
∑

i=1

hr
ii = 0

and from (3.1), we get

(3.22) m2||H ||2 = 2τ +
m
∑

i=1

a2i +
n
∑

r=m+2

m
∑

i,j=1

(hr
ij)

2 + (m− 1)(α2 − ρ).

On the other hand, since

(3.23) 0 ≤
∑

i<j

(ai − aj)
2 = (m− 1)

∑

i

a2i − 2
∑

i<j

aiaj ,

we obtain

(3.24) m2||H ||2 =

(

m
∑

i=1

ai

)2

+ 2
∑

i

a2i − 2
∑

i<j

aiaj ≤ m

m
∑

i=1

a2i ,

which implies that

(3.25)
∑

i

a2i ≥ m‖H‖2.

In view of (3.25), (3.22) yields

(3.26) m2‖H‖2 ≥ 2τ +m‖H‖2 + (m− 1)(α2 − ρ),

which implies (3.20).

Theorem 3.6. Let M be a totally real submanifold of an (LCS)n-manifold M̃ .
Then for any integer k, 2 ≤ k ≤ m and for any point x ∈ M

(3.27) ‖H‖2(x) ≥ Θk(x) +
1

m
(α2 − ρ).

Proof. Let {e1, e2, · · · , em} be an orthonormal basis of TxM . Denote by Li1,··· ,ik

the k-plane section spanned by ei1 , · · · , eik . Then, we have [3]

(3.28) τ(x) ≥
m(m− 1)

2
Θk(x).

Using (3.28) in (3.20), (3.27) follows.
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