PROJECTIVE CHANGE BETWEEN RANDERS METRIC AND EXPONENTIAL (α, β)-METRIC

Ganga Prasad Yadav and Paras Nath Pandey

Abstract

In this paper, we find conditions to characterize the projective change between two (α, β)-metrics, such as exponential (α, β)-metric, $L=\alpha e^{\frac{\beta}{\alpha}}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a manifold with $\operatorname{dim} n>2$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1-forms. We also discuss special curvature properties of two classes of (α, β)-metrics.

Keywords: Finsler space, (α, β)-metric, projective change, Randers metric, Berwlad, Riemannian metric.

1. Introduction

M. Matsumoto [10] introduced the concept of (α, β)-metric on a differentiable manifold with local coordinates x^{i}, where $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M^{n}. M. Hashiguchi and Y. Ichijyo [6] studied some special (α, β)-metrics and obtained interesting results. In the projective Finsler geometry, there is a remarkable theorem called Rapcsak [14] theorem, which plays an important role in the projective geometry of Finsler spaces. In fact, this theorem gives the necessary and sufficient condition for a Finsler space to be projective to another Finsler space.

The projective change between two Finsler spaces has been studied by many authors ([2], [5], [8], [11], [12], [16]). In 1994, S. Bacso and M. Matsumoto [2] studied the projective change between Finsler spaces with (α, β)-metric. In 2008, H. S. Park and Y. Lee [11] studied the projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric. The authors Z. Shen and Civi Yildirim [16] studied a class of projectively flat metrics with a constant flag curvature. In 2009, Ningwei Cui and Yi-Bing Shen [5] studied projective change between two classes of (α, β)-metrics. Also the author N. Cui [4] studied the S curvature of some (α, β)-metrics. In this paper, we find conditions to characterize

[^0]the projective change between two (α, β)-metrics, such as the exponential (α, β) metric, $L=\alpha e^{\frac{\beta}{\alpha}}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a manifold with $\operatorname{dim} n>2$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1-forms. In addition, we discuss special curvature properties of two classes of (α, β)-metrics.

2. Preliminaries

The terminology and notation are referred to ([15], [9], [1]). Let M^{n} be a real smooth manifold of dimension n and let $F^{n}=\left(M^{n}, L\right)$ be a Finsler space on the differentiable manifold M^{n} endowed with the fundamental function $L(x, y)$. We use the following notation:

$$
\left\{\begin{array}{l}
g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, \tag{2.1}\\
C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}, \\
h_{i j}=g_{i j}-l_{i} l_{j}, \\
\gamma_{j k}^{i}=\frac{1}{2} g^{i r}\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k}\right), \\
G^{i}=\frac{1}{2} \gamma_{j k}^{i} y^{j} y^{k}, G_{j}^{i}=\dot{\partial}_{j} G^{i} \\
G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i}, \quad G_{j k l}^{i}=\dot{\partial}_{l} G_{j k}^{i},
\end{array}\right.
$$

where $\dot{\partial}_{i} \equiv \frac{\partial}{\partial y^{2}}$.
Definition 2.1. A change $L \rightarrow \bar{L}$ of a Finsler metric on the same underlying manifold M is called projective change if any geodesic in (M, L) remains to be geodesic in (M, \bar{L}) and vice versa.

A Finsler metric is projectively related to another metric if they have the same geodesic as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [5]

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\lambda_{x^{k}} y^{k} y^{i}, \tag{2.2}
\end{equation*}
$$

where $\lambda=\lambda(x)$ is a scalar function on the based manifold.
Two Finsler metric F and \bar{F} are projectively related if and only if their spray coefficients have the relation [5]

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P(y) y^{i}, \tag{2.3}
\end{equation*}
$$

where $P(y)$ is a scalar function and homogeneous of degree one in y^{i}.
Definition 2.2. A Finsler metric is called a projectively flat metric if it is projectively related to a locally Minkowskian metric.

For a given Finsler metric $L=L(x, y)$, the geodesic of L is given by

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}\left(x, \frac{d x}{d t}\right)=0 \tag{2.4}
\end{equation*}
$$

where $G^{i}=G^{i}(x, y)$ are called geodesic coefficients, which are given by

$$
\begin{equation*}
G^{i}=\frac{g^{i l}}{4}\left\{\left[L^{2}\right]_{x^{m} y^{l}} y^{m}-\left[L^{2}\right]_{x^{l}}\right\} . \tag{2.5}
\end{equation*}
$$

Let $\phi=\phi(s),|s|<b_{0}$, be a positive C^{∞} satisfying the following

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0,\left(|s| \leq b<b_{0}\right) . \tag{2.6}
\end{equation*}
$$

Let $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ be a Riemannian metric, $\beta=b_{i} y^{i}$ is a 1-form satisfying $\left\|\beta_{x}\right\|_{\alpha}<b_{0}$ for all $x \in M$, then $L=\alpha \phi(s), s=\frac{\beta}{\alpha}$, is called an (regular) (α, β) metric. In this case, the fundamental form of the metric tensor induced by L is positive definite. Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ be the covariant derivative of β with respect to α.
Denote

$$
r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right) s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right) .
$$

β is closed if and only if $s_{i j}=0[17]$. Let $s_{j}=b^{i} s_{i j}, s_{j}^{i}=a^{i l} s_{l j}, s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}$ and $r_{00}=r_{i j} y^{i} y^{j}$.

The relation between the geodesic coefficient G^{i} of L and the geodesic coefficient G_{α}^{i} of α is given by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\left\{r_{00}-2 Q \alpha s_{0}\right\}\left\{\psi b^{i}+\Theta \alpha^{-1} y^{i}\right\} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\Theta & =\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)}{2 \phi\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)}, \\
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\psi & =\frac{1}{2} \frac{\phi^{\prime \prime}}{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}} .
\end{aligned}
$$

Definition 2.3. [5] Let

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G^{i}-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}\right) \tag{2.8}
\end{equation*}
$$

where G^{i} is the spray coefficient of L. The tensor $D=D_{j k l}^{i} \partial_{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l}$ is called the Douglas tensor. A Finsler metric is called a Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant [13]. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes (2.8). This shows that the Douglas tensor is a nonRiemannian quantity. In what follows, we use quantities with a bar to denote the
corresponding quantities of metric \bar{L}. We compute the Douglas tensor of a general (α, β)-metric. Let

$$
\begin{equation*}
\widehat{G}^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\psi\left\{r_{00}-2 Q \alpha s_{0}\right\} b^{i} . \tag{2.9}
\end{equation*}
$$

Using (2.9) in (2.7), we have

$$
\begin{equation*}
G^{i}=\widehat{G}^{i}+\Theta\left\{r_{00}-2 Q \alpha s_{0}\right\} \alpha^{-1} y^{i} \tag{2.10}
\end{equation*}
$$

Clearly, G^{i} and \widehat{G}^{i} are projective equivalents according to (2.3). They have the same Douglas tensor. Let

$$
\begin{equation*}
T^{i}=\alpha Q s_{0}^{i}+\psi\left\{r_{00}-2 Q \alpha s_{0}\right\} b^{i} \tag{2.11}
\end{equation*}
$$

Then $\widehat{G}^{i}=G_{\alpha}^{i}+T^{i}$, thus

$$
\begin{align*}
D_{j k l}^{i} & =\widehat{D}_{j k l}^{i} \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G_{\alpha}^{i}-\frac{1}{n+1} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i}+T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) . \tag{2.12}
\end{align*}
$$

To simplify (2.12), we use the following identities

$$
\alpha_{y^{k}}=\alpha^{-1} y_{k}, \quad s_{y^{k}}=\alpha^{-2}\left(b_{k} \alpha-s y_{k}\right),
$$

where $y_{i}=a_{i l} y^{l}, \alpha_{y^{k}}=\frac{\partial \alpha}{\partial y^{k}}$. Then

$$
\begin{aligned}
{\left[\alpha Q s_{0}^{m}\right]_{y^{m}} } & =\alpha^{-1} y_{m} Q s_{0}^{m}+\alpha^{-2} Q^{\prime}\left[b_{m} \alpha^{2}-\beta y_{m}\right] s_{0}^{m} \\
& =Q^{\prime} s_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\psi\left(r_{00}-2 Q \alpha s_{0}\right) b^{m}\right]_{y^{m}} & =\psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right]
\end{aligned}
$$

where $r_{j}=b^{i} r_{i j}$ and $r_{0}=r_{i} y^{i}$. Thus from (2.11), we get

$$
\begin{align*}
T_{y^{m}}^{m} & =Q^{\prime} s_{0}+\psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right] . \tag{2.13}
\end{align*}
$$

We assume that the (α, β)-metrics L and \bar{L} have the same Douglas tensor, i.e., $D_{j k l}^{i}=\widehat{D}_{j k l}^{i}$. Thus from (2.8) and (2.12), we get

$$
\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i}\right)=0 .
$$

Then there exists a class of scalar functions $H_{j k}^{i}=H_{j k}^{i}(x)$, such that

$$
\begin{equation*}
H_{00}^{i}=T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i} \tag{2.14}
\end{equation*}
$$

where $H_{00}^{i}=H_{j k}^{i} y^{j} y^{k}$.
Theorem 2.1. [4] For the special form of (α, β)-metric, $L=\alpha+\epsilon \beta+k\left(\frac{\beta^{2}}{\alpha}\right)$, where ϵ, k are non-zero constant, the following are equivalent:

- L has an isotropic S-curvature, i.e., $S=(n+1) c(x) L$ for some scalar function $c(x)$ on M.
- L has an isotropic mean Berwald curvature.
- β is a killing one form of constant length with respect to α. This is equivalent to $r_{00}=s_{0}=0$.
- L has a vanished S-curvature, i.e., $S=0$.
- L is a weak Berwald metric, i.e., $E=0$.

3. Projective Change between Randers Metric and Exponential (α, β)-metric

In this section, we find the projective relation between two (α, β)-metrics on the same underlying manifold M of dimension $n>2$. For (α, β)-metric $L=\alpha e^{\frac{\beta}{\alpha}}$, one can prove by (2.6) that L is a regular Finsler metric if and only if 1 -form β satisfies the condition $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficient are given by (2.7) with

$$
\left\{\begin{array}{l}
\Theta=\frac{1-2 s}{2\left(1+b^{2}-s-s^{2}\right)} \tag{3.1}\\
Q=\frac{1}{1-s}, \\
\psi=\frac{1}{2\left(1+b^{2}-s-s^{2}\right)}
\end{array}\right.
$$

Using (3.1) in (2.7), we get

$$
\begin{align*}
G^{i} & =G_{\alpha}^{i}+\frac{\alpha^{2}}{\alpha-\beta} s_{0}^{i}+\frac{1}{2\left(\alpha^{2}-\beta^{2}+\alpha^{2} b^{2}-\alpha \beta\right)}\left[r_{00}-\frac{2 \alpha^{2}}{\alpha-\beta} s_{0}\right] \\
& \times\left[\alpha^{2} b^{i}+(\alpha-2 \beta) y^{i}\right] . \tag{3.2}
\end{align*}
$$

For the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$, one can also prove by (2.6) that \bar{L} is a regular Finsler metric if and only if $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficients are given by (2.7) with

$$
\begin{equation*}
\bar{\Theta}=\frac{1}{2(1+s)}, \bar{Q}=1, \quad \bar{\psi}=0 \tag{3.3}
\end{equation*}
$$

First, we prove the following lemma:

Lemma 3.1. Let $L=\alpha e^{\frac{\beta}{\alpha}}$ and $\bar{L}=\bar{\alpha}+\bar{\beta}$ be two (α, β)-metrics on a manifold M with dimension $n>2$. Then they have the same Douglas tensor if and only if both metrics are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and \bar{L} be Douglas metrics and the corresponding Douglas tensor $D_{j k l}^{i}$ and $\widehat{D}_{j k l}^{i}$. Then by the definition of Douglas metric, we have $D_{j k l}^{i}=0$ and $\widehat{D}_{j k l}^{i}=0$, that is, both metrics have the same Douglas tensor. Next, we prove the necessary condition. If L and \bar{L} have the same Douglas tensor, then (2.14) holds.
Using (2.13), (3.1) and (3.3) in (2.14), we have

$$
\begin{equation*}
H_{00}^{i}=\frac{A^{i} \alpha^{7}+B^{i} \alpha^{6}+C^{i} \alpha^{5}+D^{i} \alpha^{4}+E^{i} \alpha^{3}+F^{i} \alpha^{2}}{K \alpha^{6}+U \alpha^{5}+M \alpha^{4}+N \alpha^{3}+V \alpha^{2}+R}-\overline{s_{0}^{i}} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
A^{i} & =\left(1+b^{2}\right)\left[2 s_{0}^{i}\left(1+b^{2}\right)-2 s_{0}\right], \\
B^{i} & =\left(1+b^{2}\right)\left[r_{00} b^{i}-2 \beta\left(3+b^{2}\right) s_{0}^{i}+2 \beta s_{0} b^{i}\right. \\
& \left.-2 \lambda s s_{0}(1+s) y^{i}-2 \lambda r_{0} y^{i}\right]-2 \lambda s_{0} y^{i}, \\
C^{i} & =\beta\left(3+2 b^{2}\right)\left(2 \lambda r_{0} y^{i}-r_{00} b^{i}\right)-2 \lambda \beta s s_{0}\left(2+b^{2}\right) y^{i} \\
& +4 \lambda \beta s_{0}\left(1+b^{2}\right) y^{i}+2 \beta^{2}\left(1-2 b^{2}\right) s_{0}^{i}-\lambda b^{2} r_{00} y^{i}, \\
D^{i} & =2 \beta^{3}\left(3+2 b^{2}\right) s_{0}^{i}+r_{00} \beta^{2}\left(2+b^{2}\right) b^{i} \\
& +2 \lambda \beta\left(\beta s_{0}+2 \beta s^{2} s_{0}-\beta b^{2} r_{0}-2 \beta r_{0}-s^{2} r_{00}\right) y^{i}, \\
E^{i} & =\beta^{2} r_{00}\left[\beta b^{i}+\lambda\left(3 b^{2}-4 s^{2}-2 \beta b^{2}\right) y^{i}\right] \\
& +2 \lambda \beta^{3}\left(s s_{0}-r_{0}-2 s_{0}\right) y^{i}-2 \beta^{4} s_{0}^{i}, \\
F^{i} & =2 \lambda \beta^{3}\left(\beta r_{0}-\beta s_{0}+s^{2} r_{00}\right) y^{i} \\
& -2 \beta^{5} s_{0}^{i}-\beta^{4} r_{00} b^{i}, \\
\lambda & =\frac{1}{n+1}
\end{aligned}
$$

and

$$
\begin{aligned}
K & =2\left(1+b^{2}\right)^{2}, \quad U=4 \beta\left(b^{4}-3 b^{2}-2\right), \quad M=2 \beta^{2}\left(b^{2}+2\right)^{2} \\
N & =4 \beta^{3}\left(1+b^{2}\right), \quad V=-4 \beta^{4}\left(2+b^{2}\right), \quad R=2 \beta^{6}
\end{aligned}
$$

Then (3.4) is equivalent to

$$
\begin{gather*}
A^{i} \alpha^{7}+B^{i} \alpha^{6}+C^{i} \alpha^{5}+D^{i} \alpha^{4}+E^{i} \alpha^{3}+F^{i} \alpha^{2} \\
=\left(K \alpha^{6}+U \alpha^{5}+M \alpha^{4}+N \alpha^{3}+V \alpha^{2}+R\right)\left(H_{00}^{i}+\bar{\alpha} \bar{s}_{0}^{i}\right) . \tag{3.5}
\end{gather*}
$$

Replacing y^{i} in (3.5) by $-y^{i}$, we have

$$
\begin{align*}
& -A^{i} \alpha^{7}+B^{i} \alpha^{6}-C^{i} \alpha^{5}+D^{i} \alpha^{4}-E^{i} \alpha^{3}+F^{i} \alpha^{2} \\
& =\left(K \alpha^{6}-U \alpha^{5}+M \alpha^{4}-N \alpha^{3}+V \alpha^{2}+R\right)\left(H_{00}^{i}-\bar{\alpha} \bar{s}_{0}^{i}\right) . \tag{3.6}
\end{align*}
$$

Subtracting (3.6) from (3.5), we get

$$
\begin{align*}
A^{i} \alpha^{7}+C^{i} \alpha^{5}+E^{i} \alpha^{3} & =\left(U \alpha^{5}+N \alpha^{3}\right) H_{00}^{i} \\
& +\left(K \alpha^{6}+M \alpha^{4}+V \alpha^{2}+R\right) \bar{\alpha} \bar{s}_{0}^{i} \tag{3.7}
\end{align*}
$$

From (3.7), we have

$$
\begin{gather*}
\alpha^{2}\left[A^{i} \alpha^{5}+C^{i} \alpha^{3}+E^{i} \alpha-\left(U \alpha^{3}+N \alpha\right) H_{00}^{i}\right. \\
\left.-\bar{\alpha} \bar{s}_{0}^{i}\left(K \alpha^{4}+M \alpha^{2}+V\right)\right]=R \bar{\alpha} \bar{s}_{0}^{i} \tag{3.8}
\end{gather*}
$$

From (3.8), $R \bar{\alpha} \bar{s}_{0}^{i}$ has the factor α^{2}, i.e., the term $R \bar{\alpha} \bar{s}_{0}^{i}=2 \beta^{6} \bar{\alpha} \bar{s}_{0}^{i}$ has the factor α^{2}. We can study two cases for Riemannian metric.
Case (i): If $\bar{\alpha} \neq \mu(x) \alpha$, then $R \bar{s}_{0}^{i}=2 \beta^{6} \bar{s}_{0}^{i}$ has the factor α^{2}. Note that β^{2} has no factor α^{2}. Then the only possibility is that $\beta \bar{s}_{0}^{i}$ has the factor α^{2}. Then for each i there exists a scalar function $\eta^{i}=\eta^{i}(x)$ such that $\beta \bar{s}_{0}^{i}=\eta^{i} \alpha^{2}$ which is equivalent to $b_{j} \bar{s}_{k}^{i}+b_{k} \bar{s}_{j}^{i}=2 \eta^{i} \alpha_{j k}$. When $n>2$ and we assume that $\eta^{i} \neq 0$, then

$$
\begin{aligned}
2 & \geq \operatorname{rank}\left(b_{j} \bar{s}_{k}^{i}\right)+\operatorname{rank}\left(b_{k} \bar{s}_{j}^{i}\right) \\
& >\operatorname{rank}\left(b_{j} \bar{s}_{k}^{i}+b_{k} \bar{s}_{j}^{i}\right) \\
& =\operatorname{rank}\left(2 \eta^{i} \alpha_{j k}\right)>2,
\end{aligned}
$$

which is impossible unless $\eta^{i}=0$. Then $\beta \bar{s}_{0}^{i}=0$. Since $\beta \neq 0$, we have $\bar{s}_{0}^{i}=0$, which says that $\bar{\beta}$ is closed.
Case (ii): If $\bar{\alpha}=\mu(x) \alpha$, then (3.7), becomes

$$
\begin{align*}
R \mu(x) \bar{s}_{0}^{i} & =\alpha^{2}\left[A^{i} \alpha^{4}+C^{i} \alpha^{2}+E^{i}-\left(U \alpha^{2}+N\right) H_{00}^{i}\right. \\
& \left.-\mu(x) \bar{s}_{0}^{i}\left(K \alpha^{4}+M \alpha^{2}+V\right)\right] \tag{3.9}
\end{align*}
$$

From (3.9), we can see that $\mu(x) R \bar{s}_{0}^{i}$ has the factor α^{2}. i.e., $\mu(x) R \bar{s}_{0}^{i}=2 \mu(x) \bar{s}_{0}^{i} \beta^{6}$ has the factor α^{2}. Note that $\mu(x) \neq 0$ for all $x \in M$ and β^{2} has no factor α^{2}. The only possibility is that $\beta \bar{s}_{0}^{i}$ has the factor α^{2}. As the similar reason in case (i), we have $\bar{s}_{0}^{i}=0$, when $n>2$, which says that $\bar{\beta}$ is closed.
M. Hashiguchi [7] proved that the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric if and only if $\bar{\beta}$ is closed. Thus \bar{L} is a Douglas metric. Since L is projectively related to \bar{L}, then both L and \bar{L} are Douglas metrics.

Theorem 3.1. The Finsler metric $L=\alpha e^{\frac{\beta}{\alpha}}$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if the following conditions are satisfied

$$
\left\{\begin{array}{l}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \xi \alpha^{2} b^{i} \tag{3.10}\\
b_{i \mid j}=\tau\left[\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right] \\
d \bar{\beta}=0
\end{array}\right.
$$

where $b^{i}=a^{i j} b_{j}, b=\|\beta\|_{\alpha}, b_{i \mid j}$ denotes the coefficient of the covariant derivatives of β with respect to $\alpha, \tau=\tau(x)$ is a scalar function and $\theta=\theta_{i} y^{i}$ is a 1-form on a manifold M with dimension $n>2$.

Proof. First, we prove the necessary condition. Since the Douglas tensor is invariant under projective changes between two Finsler metrics, if L is projectively related to \bar{L}, then they have the same Douglas tensor. According to Lemma 3.1, we obtain that both L and \bar{L} are Douglas metrics.

We know that the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric if and only if $\bar{\beta}$ is closed, i.e., $d \bar{\beta}=0$.
The Finsler metric $L=\alpha e^{\frac{\beta}{\alpha}}$ is a Douglas metric if and only if

$$
\begin{equation*}
b_{i \mid j}=\tau\left[\left(1+2 b^{2}\right)-3 b_{i} b_{j}\right], \tag{3.11}
\end{equation*}
$$

for some scalar function $\tau=\tau(x)$ [3], where $b_{i \mid j}$ denotes the coefficient of the covariant derivatives of $\beta=b_{i} y^{i}$ with respect to α. In this case, β is closed. Since β is closed, $s_{i j}=0 \Rightarrow b_{i \mid j}=b_{j \mid i}$. Thus $s_{0}^{i}=0$ and $s_{0}=0$.
By using (3.11), we have $r_{00}=\tau\left[\left(1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right]$. Substituting all these in (3.2), we get

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\tau \frac{\left[\left(1+2 b^{2}\right)\left(\alpha^{3}-2 \alpha^{2} \beta\right)-3 \alpha \beta^{2}+6 \beta^{3}\right]}{2\left(\alpha^{2}-\beta^{2}+b^{2} \alpha^{2}-\alpha \beta\right)} y^{i}+\tau \xi \alpha^{2} b^{i} \tag{3.12}
\end{equation*}
$$

where $\xi=\frac{\tau\left[\left(1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right] b^{i}}{2\left(\alpha^{2}-\beta^{2}+b^{2} \alpha^{2}-\alpha \beta\right)}$.
Since L is projectively related to \bar{L}, this is a Randers change between L and $\bar{\alpha}$. Noticing that $\bar{\beta}$ is closed, then L is projectively related to $\bar{\alpha}$. Thus, there is a scalar function $P=P(y)$ on $T M-\{0\}$ such that

$$
\begin{equation*}
G^{i}=G_{\bar{\alpha}}^{i}+P y^{i} \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we have

$$
\begin{equation*}
\left[P+\frac{3 \alpha \beta^{2}-6 \beta^{3}-\left(1+2 b^{2}\right)\left(\alpha^{3}-3 \alpha^{2} \beta\right)}{2\left(\alpha^{2}-\beta^{2}+b^{2} \alpha^{2}-\alpha \beta\right)}\right] y^{i}=G_{\alpha}^{i}-G_{\bar{\alpha}}^{i}+\tau \xi \alpha^{2} b^{i} \tag{3.14}
\end{equation*}
$$

Note that the RHS of the above equation is a quadratic form. Then there must be one form $\theta=\theta_{i} y^{i}$ on M, such that

$$
P+\frac{3 \alpha \beta^{2}-6 \beta^{3}-\left(1+2 b^{2}\right)() \alpha^{3}-3 \alpha^{2} \beta}{2\left(\alpha^{2}-\beta^{2}+b^{2} \alpha^{2}-\alpha \beta\right)}=\theta
$$

Thus (3.14) becomes

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \xi \alpha^{2} b^{i} . \tag{3.15}
\end{equation*}
$$

Equations (3.11) and (3.12) together with (3.15) complete the proof of the necessity. Since $\bar{\beta}$ is closed, it suffices to prove that L is projectively related to $\bar{\alpha}$. From (3.12) and (3.15), we have

$$
G^{i}=G_{\bar{\alpha}}^{i}+\left[\theta+\frac{\tau\left[\left(1+2 b^{2}\right)\left(\alpha^{3}-3 \alpha^{2} \beta\right)-3 \alpha \beta^{2}+6 \beta^{3}\right]}{2\left(\alpha^{2}-\beta^{2}+b^{2} \alpha^{2}-\alpha \beta\right)}\right] y^{i},
$$

that is, L is projectively related to $\bar{\alpha}$

From the above theorem, we get the following corollaries.
Corollary 3.1. The Finsler metric $L=\alpha e^{\frac{\beta}{\alpha}}$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if they are Douglas metrics and the spray coefficients of α and $\bar{\alpha}$ have the following relation

$$
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\theta y^{i}-\tau \xi \alpha^{2} b^{i}
$$

where $b^{i}=a^{i j} b_{j}, \tau=\tau(x)$ is a scalar function and $\theta=\theta_{i} y^{i}$ is one form on a manifold M with dimension $n \geq 2$.

Further, we assume that the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is locally Minkowskian, where $\bar{\alpha}$ is a Euclidean metric and $\bar{\beta}=\bar{b}_{i} y^{i}$ is one form with $\bar{b}_{i}=$ constant. Then (3.10) can be written as

$$
\left\{\begin{align*}
G_{\alpha}^{i} & =\theta y^{i}-\tau \xi \alpha^{2} b^{i} \tag{3.16}\\
b_{i \mid j} & =\tau\left[\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right]
\end{align*}\right.
$$

Thus, we state
Corollary 3.2. The Finsler metric $\alpha e^{\frac{\beta}{\alpha}}$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if L is projectively flat, that is, L is projectively flat if and only if (3.16) holds.

4. Special Curvature Properties of two (α, β)-metrics

We know that the Berwald curvature tensor of a Finsler metric L is defined by [9]

$$
\begin{equation*}
G=G_{j k l}^{i} d x^{j} \otimes \partial_{i} \otimes d x^{k} \otimes d x^{l} \tag{4.1}
\end{equation*}
$$

where $G_{j k l}^{i}=\left[G^{i}\right]_{y^{j} y^{k} y^{l}}$ and G^{i} are the spray coefficients of L. The mean Berwald curvature tensor is defined by

$$
\begin{equation*}
E=E_{i j} d x^{i} \otimes d x^{j} \tag{4.2}
\end{equation*}
$$

where $E_{i j}=\frac{1}{2} G_{m i j}^{m}$.
A Finsler space is said to be of the isotropic mean Berwald curvature if

$$
\begin{equation*}
E_{i j}=\frac{n+1}{2} c(x) L_{y^{i} y^{j}} \tag{4.3}
\end{equation*}
$$

where $c(x)$ is scalar function on M.
In this section, we assume that (α, β)-metric $L=\alpha e^{\frac{\beta}{\alpha}}$ has some special curvature properties.

Theorem 4.1. The Finsler metric $L=\alpha e^{\frac{\beta}{\alpha}}$ having an isotropic S-curvature or isotropic mean Berwald curvature is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if the following conditions hold:

- α is projectively related to $\bar{\alpha}$,
- β is parallel with respect to α, i.e., $b_{i \mid j}=0$,
- $\bar{\beta}$ is closed, i.e., $d \bar{\beta}=0$,
where $b_{i \mid j}$ denotes the coefficient of the covariant derivative of β with respect to α.
Proof. The sufficiency is obvious from Theorem (3.2). For the necessary condition, from Theorem 3.1, if L is projectively related to \bar{L}, then

$$
b_{i \mid j}=\tau\left[\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right],
$$

where $\tau=\tau(x)$ is scalar function. Transvecting the above equation with y^{i} and y^{j}, we have

$$
\begin{equation*}
r_{00}=\tau\left[\left(1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right] . \tag{4.4}
\end{equation*}
$$

From Theorem 2.4, if L has an isotropic S-curvature or an equivalently isotropic mean Berwald curvature, then $r_{00}=0$. If $\tau \neq 0$, then (4.4) gives

$$
\begin{equation*}
\left(1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}=0 \tag{4.5}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}=0 \tag{4.6}
\end{equation*}
$$

Transvecting (4.6) with $a^{i l}$, we get

$$
\begin{equation*}
\left(1+2 b^{2}\right) \delta_{j}^{l}-3 b^{l} b_{j}=0 \tag{4.7}
\end{equation*}
$$

Contracting l and j in (4.7), we have $n+(2 n-3) b^{2}=0$, which is impossible. Thus $\tau=0$. Substituting in Theorem 3.2, we complete the proof.

REFERENCES

1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto: The theory of sprays and Finsler spaces with application in Physics and Biology. Kluwer Academic Publishers, London, 1985.
2. S. Bacso and M. Matsumoto: Projective change between Finsler spaces with (α, β)-metric. Tensor N. S., 55 (1994), 252-257.
3. S. Bacso, X. Cheng and Z. Shen: Curvature properties of (α, β)-metric. Advanced Studies in Pure Mathematics, 48 (2007), 73-110.
4. N. CuI: On the S-curvature of some (α, β)-metrics. Acta Math. Sci., 26A(7) (2006), 1047-1056.
5. Ningwei Cui and Yi-Bing Shen: Projective change between two classes of (α, β)-metrics. Differential. Geom. Appl., 27 (2009), 566-573.
6. M. Hashiguchi and Y. Ichijyo: On some special (α, β)-metrics. Rep. Fac. Sci. Kagoshima Univ., 8 (1975), 39-46.
7. M. Hashiguchi and Y. Ichijiyo: Randers spaces with rectilinear geodesics. Rep. Fac. Sci. Kagasima Univ., 13 (1980), 33-40.
8. M. Matsumoto and X. Wei: Projective change of Finsler spaces of constant curvature. Publ. Math. Debrecen, 44 (1994), 175-181.
9. M. Matsumoto: Foundation of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, Otsu, Saikawa, 1986.
10. M. Matsumoto: Projective flat Finsler spaces with (α, β)-metric. Rep. Math. Phys., 30 (1991), 15-20.
11. H. S. Park and Y. Lee: Projective change between a Finsler space with $(\alpha, \beta)-$ metric and the associated Riemannian metric. Canad. J. Math., 60 (2008), 443456.
12. H. S. Park and I. Y. Lee: On projectively flat Finsler spaces with (α, β)-metric. Commun. Korean Math. Soc., 14(2) (1999), 373-383.
13. H. S. Park and Il-Yong Lee: The Randers changes of Finsler spaces with (α, β)-metrics of Douglas type. J. Korean math. Soc., 38(3) (2001), 503-521.
14. A. RAPSCAK: Uber die bahntreuen abbildungen metrisher. Publ. Math. Debrecen, 8 (1961), 285-290.
15. H. Rund: The Differential Geometry of Finsler Spaces. Springer-Verlag, Berlin, 1959
16. Z. Shen and G. C. Yildirim: On a class of projectively flat matrics with constant flag curvature. Canad. J. Math., 60(2) (2008), 443-456.
17. Z. SHEN: On Landsberg (α, β)-metrics. (2006).

Ganga Prasad Yadav
Faculty of Science
Department of Mathematics
University of Allahabad Allahabad-211002, India
aumathganga@gmail.com

Paras Nath Pandey
Faculty of Science
Department of Mathematics
University of Allahabad
Allahabad-211002, India
pnpiaps@gmail.com

[^0]: Received November 17, 2017; accepted April 19, 2018
 2010 Mathematics Subject Classification. Primary 53B40; Secondary 53C60

