SOME RESULTS ON GENERALIZED \((k, \mu)\)-PARACONTACT METRIC MANIFOLDS

Sourav Makhal

Abstract. The aim of this paper is to study the Codazzi type of the Ricci tensor in generalized \((k, \mu)\)-paracontact metric manifolds. We also study the cyclic parallel Ricci tensor in generalized \((k, \mu)\)-paracontact metric manifolds. Further, we characterize generalized \((k, \mu)\)-paracontact metric manifolds whose structure tensor \(\phi\) is \(\eta\)-parallel. Finally, we investigate locally \(\phi\)-Ricci symmetric generalized \((k, \mu)\)-paracontact metric manifolds.

Keywords: Generalized \((k, \mu)\)-paracontact metric manifold, Codazzi type of tensor, cyclic parallel Ricci tensor, \(\eta\)-parallel \(\phi\)-tensor, locally \(\phi\)-Ricci symmetric.

1. Introduction

In 1985, Kaneyuki and Williams [8] introduced the idea of paracontact geometry. A systematic investigation on paracontact metric manifolds was done by Zamkovoy [12]. Recently, Cappelletti-Montano et al [5] introduced a new type of paracontact geometry, the so-called paracontact metric \((k, \mu)\) space, where \(k\) and \(\mu\) are constants. This is known [2] about the contact case \(k \leq 1\), but in the paracontact case there is no restriction of \(k\). Recently, three-dimensional generalized \((k, \mu)\)-paracontact metric manifolds were studied by Kupeli Erken et al [9, 10].

Zamkovoy [12] studied paracontact metric manifolds and some remarkable subclasses named para-Sasakian manifolds. In particular, in recent years, many authors have pointed to the importance of paracontact geometry and, in particular, para-Sasakian geometry. Several papers have established relationships with the theory of para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathematical physics. A normal paracontact metric manifold is a para-Sasakian manifold. An almost paracontact metric manifold is a para-sasakian manifold if and only if

\[
(\nabla_X \phi)Y = -g(X, Y)\xi + \eta(Y)X.
\]

Received December 07, 2017; accepted March 22, 2018

2010 Mathematics Subject Classification. Primary 53C05; Secondary 53D15, 53C15
A. Gray [7] introduced the notion of cyclic parallel Ricci tensor and Codazzi type of Ricci tensor. The Ricci tensor \(S \) of type (0,2) is said to be cyclic parallel if it is non-zero and satisfies the condition

\[
(\nabla_Z S)(X,Y) + (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) = 0.
\]

Again, a Riemannian or a pseudo-Riemannian manifold is said to be of Codazzi type if its Ricci tensors of type (0,2) is non-zero and satisfy the following condition

\[
(\nabla_X S)(Y,Z) = (\nabla_Y S)(X,Z),
\]

for all vector fields \(X, Y, Z \). On a contact metric manifold there is an associated CR-structure which is integrable if and only if the structure tensor \(\phi \) is \(\eta \)-parallel, that is,

\[
g((\nabla_X \phi)Y,Z) = 0,
\]

for all vector fields \(X, Y, Z \) in the contact distribution \(D(\eta = 0) \). In 2005, Boeckx and Cho [3] considered a milder condition that \(h \) is \(\eta \)-parallel, that is,

\[
g((\nabla_X h)Y,Z) = 0,
\]

for all vector fields \(X, Y, Z \) in the contact distribution \(D \).

The paper is organized in the following way:

In Section 2, we discuss some basic results of paracontact metric manifolds. Further, we characterize the Codazzi type of the Ricci tensor in generalized \((k,\mu)\)-paracontact metric manifolds. In Section 4, we investigate the cyclic parallel Ricci tensor in generalized \((k,\mu)\)-paracontact metric manifolds. In the next section we study \(\eta \)-parallel \(\phi \)-tensor in a generalized \((k,\mu)\)-paracontact metric manifold. Finally, we investigate locally \(\phi \)-Ricci symmetric generalized \((k,\mu)\)-paracontact metric manifolds.

2. Preliminaries

An odd dimensional smooth manifold \(M^n (n > 1) \) is said to be an almost paracontact manifold [8] if it carries a \((1,1)\)-tensor \(\phi \), a vector field \(\xi \) and a 1-form \(\eta \) satisfying :

(i) \(\phi^2 X = X - \eta(X)\xi \), for all \(X \in \chi(M) \),

(ii) \(\eta(\xi) = 1, \phi(\xi) = 0, \eta \circ \phi = 0 \),

(iii) the tensor field \(\phi \) induces an almost paracomplex structure on each fiber of \(D = \text{ker}(\eta) \), that is, the eigen distributions \(D^+ \) and \(D^- \) of \(\phi \) corresponding to the eigenvalues 1 and \(-1 \), respectively, have an equal dimension \(n \).

An almost paracontact structure is said to be normal [8] if and only if the \((1,2)\) type torsion tensor \(N_\phi = [\phi, \phi] - 2d\eta \otimes \xi \) vanishes identically, where \([\phi, \phi](X,Y) = \phi^2[X,Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] \). A para-Sasakian manifold is a normal paracontact metric manifold. If an almost paracontact manifold admits a pseudo-Riemannian metric \(g \) such that

\[
g(\phi X, \phi Y) = -g(X,Y) + \eta(X)\eta(Y),
\]
for $X, Y \in \chi(M)$, then we say that (M, ϕ, ξ, η, g) is an almost paracontact metric manifold. Any such pseudo-Riemannian metric is of signature $(n+1, n)$. An almost paracontact structure is said to be a paracontact structure if $g(X, \phi Y) = d\eta(X, Y)$ [12]. In a paracontact metric manifold we define $(1,1)$-type tensor fields h by $h = \frac{1}{2} \mathcal{L}_\xi \phi$, where $\mathcal{L}_\xi \phi$ is the Lie derivative of ϕ along the vector field ξ. Then we observe that h is symmetric and anti-commutes with ϕ. Also h satisfies the following conditions [12]:

\begin{equation}
(2.2) \quad h\xi = 0, \quad tr(h) = tr(\phi h) = 0,
\end{equation}

\begin{equation}
(2.3) \quad \nabla_X \xi = -\phi X + \phi h X,
\end{equation}

for all $X \in \chi(M)$, where ∇ denotes the Levi-Civita connection of the pseudo-Riemannian manifold.

Moreover, h vanishes identically if and only if ξ is a Killing vector field. In this case, (M, ϕ, ξ, η, g) is said to be a K-paracontact manifold [11].

Generalized (k, μ)-paracontact metric manifolds were studied by Erken et al. [10] and Erken [9]. A generalized (k, μ)-paracontact metric manifold means a three-dimensional paracontact metric manifold which satisfies the curvature condition

\begin{equation}
(2.4) \quad R(X, Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)h X - \eta(X)h Y),
\end{equation}

where k and μ are smooth functions.

In a generalized $(k \neq -1, \mu)$-paracontact manifold the following results hold [4, 5, 9, 10]

\begin{equation}
(2.5) \quad h^2 = (1 + k)\phi^2,
\end{equation}

\begin{equation}
(2.6) \quad \xi(k) = 0,
\end{equation}

\begin{equation}
(2.7) \quad Q\xi = 2k\xi,
\end{equation}

\begin{equation}
(2.8) \quad (\nabla_\xi h)(Y) = \mu h(\phi Y),
\end{equation}

\begin{equation}
(2.9) \quad (\nabla_X h)Y - (\nabla_Y h)X = -(1 + k)[2g(X, \phi Y)\xi + \eta(X)\phi Y - \eta(Y)\phi X]
+ (1 - \mu)(\eta(X)\phi h Y - \eta(Y)\phi h X),
\end{equation}

\begin{equation}
(2.10) \quad (\nabla_X \phi)Y = -g(X - h X, Y)\xi + \eta(Y)(X - h X), \text{ for } k \neq -1
\end{equation}

\begin{equation}
(2.11) \quad h \text{ grad } \mu = \text{ grad } k,
\end{equation}
\[(\nabla \eta)(Y) = -g(\phi X, Y) + g(\phi h X, Y), \]

\[Q X = \left(\frac{r}{2} - k \right) X + \left(-\frac{r}{2} + 3k \right) \eta(X) \xi + \mu h X, \quad k \neq -1, \]

where \(X \) is any vector fields on \(M \), \(Q \) is the Ricci operator of \(M \), \(r \) denotes the scalar curvature of \(M \).

From (2.13), we have

\[S(X, Y) = \left(\frac{r}{2} - k \right) g(X, Y) + \left(-\frac{r}{2} + 3k \right) \eta(Y) \eta(X) + \mu g(h X, Y), \quad k \neq -1. \]

3. The Codazzi type of the Ricci tensor in generalized \((k, \mu)\)-paracontact metric manifolds

In this section we characterize generalized \((k, \mu)\)-paracontact metric manifolds whose Ricci tensor is of Codazzi type.

Then we have

\[(\nabla X S)(Y, Z) = (\nabla Y S)(X, Z), \]

which implies \(r = \text{constant} \).

Now from (2.14) we have

\[(\nabla X S)(Y, Z) = \left\{ \frac{(X r)}{2} - (X k) \right\} g(Y, Z) + \left\{ -\frac{(X r)}{2} + 3(X k) \right\} \eta(Y) \eta(Z) \]
\[+ \left\{ -\frac{r}{2} + 3k \right\} ((\nabla X \eta)(Y) \eta(Z) + \eta(Y)(\nabla X \eta)(Z)) + (X \mu) g(h Y, Z) \]
\[+ \mu g((\nabla X h)(Y), Z) \]

and

\[(\nabla Y S)(X, Z) = \left\{ \frac{(Y r)}{2} - (Y k) \right\} g(X, Z) + \left\{ -\frac{(Y r)}{2} + 3(Y k) \right\} \eta(X) \eta(Z) \]
\[+ \left\{ -\frac{r}{2} + 3k \right\} ((\nabla Y \eta)(X) \eta(Z) + \eta(X)(\nabla Y \eta)(Z)) + (Y \mu) g(h X, Z) \]
\[+ \mu g((\nabla Y h)(X), Z). \]

Using (3.2) and (3.3) in (3.1) yields

\[\left\{ \frac{(X r)}{2} - (X k) \right\} g(Y, Z) + \left\{ -\frac{(X r)}{2} + 3(X k) \right\} \eta(Y) \eta(Z) \]
\[+ \left\{ -\frac{r}{2} + 3k \right\} ((\nabla X \eta)(Y) \eta(Z) + \eta(Y)(\nabla X \eta)(Z)) + (X \mu) g(h Y, Z) \]
\[+ \mu g((\nabla X h)(Y), Z) = \left\{ \frac{Y r}{2} - Y k \right\} g(X, Z) \]
\[+ \left\{ -\frac{(Y r)}{2} + 3(Y k) \right\} \eta(X) \eta(Z) + \left\{ -\frac{r}{2} + 3k \right\} ((\nabla Y \eta)(X) \eta(Z) \]
\[+ \eta(X)(\nabla Y \eta)(Z)) + (Y \mu) g(h X, Z) + \mu g((\nabla Y h)(X), Z). \]
Substituting $Z = \xi$ in (3.4) gives
\[
\left(\frac{Xr}{2} - (Xk) \right) \eta(Y) + \left\{ - \frac{(Xr)}{2} + 3(Xk) \right\} \eta(Y) + \left\{ - \frac{r}{2} + 3k \right\} \{(\nabla_X \eta)(Y) + \eta(Y)(\nabla_X \eta)\} = \left\{ \frac{Yr}{2} - Yk \right\} \eta(X)
\]
\[
+ \left\{ - \frac{(Yr)}{2} + 3(Yk) \right\} \eta(X) + \left\{ - \frac{r}{2} + 3k \right\} \{(\nabla_Y \eta)(X) + \eta(X)(\nabla_Y \eta)\}(\xi)
\]
(3.5)
\[
+ \mu \eta((\nabla_Y h)(X)).
\]

Putting $X = \xi$ in (3.5) and using $r = \text{constant}$, we obtain
(3.6)
\[
\mu \eta((\nabla\xi h)(Y)) = 2(Yk) + \mu \eta((\nabla_Y h)(\xi)) = 0.
\]

Applying (2.8) in (3.6), we have $(Yk) = 0$, which implies $k = \text{constant}$. Hence from (2.11), we get either $h = 0$ or $\mu = \text{constant}$. Thus, we can state the following

Theorem 3.1. If in a generalized (k, μ)-paracontact metric manifold with $k \neq -1$ the Ricci tensor is of Codazzi type, then the manifold is either a (k, μ)-paracontact metric manifold or a K-paracontact manifold.

4. The cyclic parallel Ricci tensor in generalized (k, μ)-paracontact metric manifolds

This section is devoted to the study of the cyclic parallel Ricci tensor in generalized (k, μ)-paracontact metric manifolds

If the Ricci tensors is cyclic parallel, then we have
(4.1)
\[
(\nabla_Z S)(X, Y) + (\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) = 0,
\]
which implies $r = \text{constant}$.

Now from the equation (2.14), we obtain
\[
\left(\frac{Zr}{2} - (Zk) \right) g(X, Y) + \left\{ - \frac{(Zr)}{2} + 3(Zk) \right\} \eta(X) \eta(Y)
\]
\[
+ \left\{ - \frac{r}{2} + 3k \right\} \{(\nabla_Z \eta)(X) \eta(Y) + \eta(X)(\nabla_Z \eta)(Y)\} + (Z\mu) g(hX, Y)
\]
\[
+ \mu g((\nabla_X h)(Y)) + \left\{ \frac{Xr}{2} - Xk \right\} g(Y, Z) + \left\{ - \frac{(Xr)}{2} + 3(Xk) \right\} \eta(Y) \eta(Z)
\]
\[
+ \left\{ - \frac{r}{2} + 3k \right\} \{(\nabla_Y \eta)(Y) \eta(Z) + \eta(Y)(\nabla_Y \eta)(Z)\} + (X\mu) g(hY, Z)
\]
\[
+ \mu g((\nabla_X h)(Y)) + \left\{ (Yr) - (Yk) \right\} g(Z, X) + \left\{ - \frac{(Yr)}{2} + 3(Yk) \right\} \eta(Z) \eta(X)
\]
\[
+ \left\{ - \frac{r}{2} + 3k \right\} \{(\nabla_Y \eta)(Z) \eta(X) + \eta(Z)(\nabla_Y \eta)(X)\} + (Y\mu) g(hZ, X)
\]
(4.2) $+ \mu g((\nabla_Y h)(Z), X) = 0.$
Substituting $X = Y = \xi$ and applying (2.8) in (4.2) yields

$$2(Zk) + (\frac{r}{2} + 3k)(\nabla_\xi \eta)(Z) + (\frac{r}{2} + 3k)(\nabla_\xi \eta)(Z) = 0.$$

Now using (2.12) in (4.3), we have

$$Zk = 0.$$

Therefore, $k =$constant. Hence from (2.11), we have either $h = 0$ or $\mu =$constant.

This leads to the following:

Theorem 4.1. If in a generalized (k, μ)-paracontact metric manifold with $k \neq -1$ the Ricci tensor is cyclic parallel, then the manifold is either a (k, μ)-paracontact metric manifold or a K-paracontact manifold.

5. The η-parallel ϕ-tensor in generalized (k, μ)-paracontact metric manifolds

In this section we study the η-parallel ϕ-tensor in generalized (k, μ)-paracontact metric manifolds

If the $(1, 1)$ tensor ϕ is η-parallel, then we have [1]

$$g(\nabla_X \phi Y, Z) = 0.$$

From (2.10) and (5.1), we get

$$-g(X, Y)\eta(Z) + g(hX, Y)\eta(Z) + g(X, Z)\eta(Y) - g(hX, Z)\eta(Y) = 0.$$

Putting $Z = \xi$ in (5.2) yields

$$-g(X, Y) + g(hX, Y) + \eta(X)\eta(Y) = 0.$$

Substituting $X = hX$ in (5.3), we have

$$-g(hX, Y) - (k + 1)g(X, Y) + (k + 1)\eta(X)\eta(Y) = 0.$$

Adding (5.3) and (5.4), we obtain

$$(k + 2)\{g(X, Y) - \eta(X)\eta(Y)\} = 0.$$

Thus we have $k = -2$, that is, $k =$constant. Using (2.11) we have $h \text{ grad} \mu = 0$. Therefore, either $h = 0$ or $\mu =$constant.

Thus we can state the following:

Theorem 5.1. If in a generalized (k, μ)-paracontact metric manifold with $k \neq -1$, the tensor ϕ is η-parallel, then the manifold is either a (k, μ)-paracontact metric manifold or a K-paracontact manifold.
6. Locally ϕ-Ricci symmetric generalized (k, μ)-paracontact manifolds

A paracontact metric manifold is said to be locally ϕ-Ricci symmetric [6] if it satisfies

\begin{equation}
\phi^2(\nabla_X Q)(Y) = 0,
\end{equation}

for all vector fields X, Y orthogonal to ξ, where Q is the Ricci operator defined by $g(QX, Y) = S(X, Y)$.

Taking the covariant derivative of (2.13) with respect to Y and applying ϕ^2 we get

\begin{equation}
-\frac{(Y_k)}{2}X - \frac{(X_k)}{2}Y - (Y_\mu)hX + \mu\phi^2((\nabla_Y h)X) = 0.
\end{equation}

Interchanging X and Y in (6.2), we have

\begin{equation}
-\frac{(X_k)}{2}X - \frac{(Y_k)}{2}Y - (X_\mu)hY + \mu\phi^2((\nabla_Y h)X) = 0.
\end{equation}

Subtracting (6.3) from (6.2), we obtain

\begin{equation}
\frac{(Y_r)}{2}X - \frac{(X_r)}{2}Y - \frac{(Y_k)}{2}X - \frac{(X_k)}{2}Y + (Y_\mu)hX - (X_\mu)hY - \frac{1}{2}(\nabla_Y h)X) = 0.
\end{equation}

Applying (2.9) in (6.4), we get

\begin{equation}
\frac{(Y_k)}{2}X - \frac{(X_k)}{2}Y - \frac{(Y_\mu)}{2}X + \frac{(X_\mu)}{2}Y = 0.
\end{equation}

Substituting $X = \xi$ in (6.5) yields

\begin{equation}
-\frac{1}{2}(\xi_r)Y - (\xi_\mu)hY + \frac{(Y_r)}{2} - \frac{(Y_k)}{2} = 0.
\end{equation}

Taking the inner product with Z from (6.6), we have

\begin{equation}
-\frac{1}{2}(\xi_r)g(Y, Z) - (\xi_\mu)g(hY, Z) = 0.
\end{equation}

Let \{\epsilon_i\}, $i = 1, 2, 3$ be a local orthonormal basis in the tangent space T_pM at each point $p \in M$. Substituting $Y = Z = \epsilon_i$ in (6.7) and summing over $i = 1$ to 3, we infer that $\xi_r = 0$, since $k \neq -1$.

This leads to the following:

Theorem 6.1. If a generalized (k, μ)-paracontact metric manifold with $k \neq -1$, is locally ϕ-Ricci symmetric, then the characteristic vector field ξ leaves the scalar curvature invariant.
REFERENCES

Sourav Makhal
Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road, Kolkata- 700019
West Bengal, India.
sou.pmath@gmail.com