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Abstract. The aim of this paper is to study the Codazzi type of the Ricci tensor in
generalized (k, µ)-paracontact metric manifolds. We also study the cyclic parallel Ricci
tensor in generalized (k, µ)-paracontact metric manifolds. Further, we characterize
generalized (k, µ)-paracontact metric manifolds whose structure tensor φ is η-parallel.
Finally, we investigate locally φ-Ricci symmetric generalized (k, µ)-paracontact metric
manifolds.
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1. Introduction

In 1985, Kaneyuki and Williams [8] introduced the idea of paracontact geometry.
A systematic investigation on paracontact metric manifolds was done by Zamkovoy
[12]. Recently, Cappelletti-Montano et al [5] introduced a new type of paracontact
geometry, the so-called paracontact metric (k, µ) space, where k and µ are constants.
This is known [2] about the contact case k ≤ 1, but in the paracontact case there is
no restriction of k. Recently, three-dimensional generalized (k, µ)-paracontact met-
ric manifolds were studied by Kupeli Erken et al [9, 10].
Zamkovoy [12] studied paracontact metric manifolds and some remarkable sub-
classes named para-Sasakian manifolds. In particular, in recent years, many authors
have pointed to the importance of paracontact geometry and, in particular, para-
Sasakian geometry. Several papers have established relationships with the theory of
para-Kahler manifolds and its role in pseudo-Riemannian geometry and mathemat-
ical physics. A normal paracontact metric manifold is a para-Sasakian manifold.
An almost paracontact metric manifold is a para-sasakian manifold if and only if
[12]

(1.1) (∇Xφ)Y = −g(X,Y )ξ + η(Y )X.
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A. Gray [7] introduced the notion of cyclic parallel Ricci tensor and Codazzi
type of Ricci tensor. The Ricci tensor S of type (0,2) is said to be cyclic parallel if
it is non-zero and satisfies the condition

(1.2) (∇ZS)(X,Y ) + (∇XS)(Y, Z) + (∇Y S)(Z,X) = 0.

Again, a Riemannian or a pseudo-Riemannian manifold is said to be of Codazzi
type if its Ricci tensors of type (0,2) is non-zero and satisfy the following condition

(1.3) (∇XS)(Y, Z) = (∇Y S)(X,Z),

for all vector fields X, Y , Z. On a contact metric manifold there is an associated
CR-structure which is integrable if and only if the structure tensor φ is η-parallel,
that is,

g((∇Xφ)Y, Z) = 0,

for all vector fields X,Y, Z in the contact distribution D(η = 0). In 2005, Boeckx
and Cho [3] considered a milder condition that h is η-parallel, that is,

g((∇Xh)Y, Z) = 0,

for all vector fields X, Y , Z in the contact distribution D.

The paper is organized in the following way:
In Section 2, we discuss some basic results of paracontact metric manifolds. Further,
we characterize the Codazzi type of the Ricci tensor in generalized (k, µ)-paracontact
metric manifolds. In Section 4, we investigate the cyclic parallel Ricci tensor in gen-
eralized (k, µ)-paracontact metric manifolds. In the next section we study η-parallel
φ-tensor in a generalized (k, µ)-paracontact metric manifold. Finally, we investigate
locally φ-Ricci symmetric generalized (k, µ)-paracontact metric manifolds.

2. Preliminaries

An odd dimensional smooth manifold Mn(n > 1) is said to be an almost para-
contact manifold [8] if it carries a (1, 1)-tensor φ, a vector field ξ and a 1-form η
satisfying :
(i) φ2X = X − η(X)ξ, for all X ∈ χ(M),
(ii)η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0,
(iii) the tensor field φ induces an almost paracomplex structure on each fiber of
D = ker(η), that is, the eigen distributions D+

φ and D−
φ of φ corresponding to the

eigenvalues 1 and −1, respectively, have an equal dimension n.

An almost paracontact structure is said to be normal [8] if and only if the (1, 2)
type torsion tensor Nφ = [φ, φ]− 2dη ⊗ ξ vanishes identically, where [φ, φ](X,Y ) =
φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. A para-Sasakian manifold is a normal
paraconatact metric manifold. If an almost paracontact manifold admits a pseudo-
Riemannian metric g such that

(2.1) g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),
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for X, Y ∈ χ(M), then we say that (M,φ, ξ, η, g) is an almost paracontact metric
manifold. Any such pseudo-Riemannian metric is of signature (n+1, n). An almost
paracontact structure is said to be a paracontact structure if g(X,φY ) = dη(X,Y )
[12]. In a paracontact metric manifold we define (1, 1)-type tensor fields h by
h = 1

2£ξφ, where £ξφ is the Lie derivative of φ along the vector field ξ. Then
we observe that h is symmetric and anti-commutes with φ. Also h satisfies the
following conditions [12]:

(2.2) hξ = 0, tr(h) = tr(φh) = 0,

(2.3) ∇Xξ = −φX + φhX,

for all X ∈ χ(M), where ∇ denotes the Levi-Civita connection of the pseudo-
Riemannian manifold.
Moreover, h vanishes identically if and only if ξ is a Killing vector field. In this
case, (M,φ, ξ, η, g) is said to be a K-paracontact manifold [11].

Generalized (k, µ)-paracontact metric manifolds were studied by Erken et al.
[10] and Erken [9]. A generalized (k, µ)-paracontact metric manifold means a three-
dimensional paracontact metric manifold which satisfies the curvature condition

(2.4) R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

where k and µ are smooth functions.

In a generalized (k 6= −1, µ)-paracontact manifold the following results hold
[4, 5, 9, 10]

(2.5) h2 = (1 + k)φ2,

(2.6) ξ(k) = 0,

(2.7) Qξ = 2kξ,

(2.8) (∇ξh)(Y ) = µh(φY ),

(∇Xh)Y − (∇Y h)X = −(1 + k)[2g(X,φY )ξ + η(X)φY − η(Y )φX]

+(1− µ)(η(X)φhY − η(Y )φhX),(2.9)

(2.10) (∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), for k 6= −1

(2.11) h gradµ = gradk,
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(2.12) (∇Xη)(Y ) = −g(φX, Y ) + g(φhX, Y ),

(2.13) QX = (
r

2
− k)X + (−r

2
+ 3k)η(X)ξ + µhX, k 6= −1,

where X is any vector fields on M , Q is the Ricci operator of M , r denotes the
scalar curvature of M .
From ( 2.13), we have

(2.14) S(X,Y ) = (
r

2
− k)g(X,Y ) + (−r

2
+ 3k)η(X)η(Y ) + µg(hX, Y ), k 6= −1.

3. The Codazzi type of the Ricci tensor in generalized
(k, µ)-paracontact metric manifolds

In this section we characterize generalized (k, µ)-paracontact metric manifolds
whose Ricci tensor is of Codazzi type.
Then we have

(3.1) (∇XS)(Y,Z) = (∇Y S)(X,Z),

which implies r =constant.

Now from (2.14) we have

(∇XS)(Y, Z) = { (Xr)

2
− (Xk)}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY, Z)

+µg((∇Xh)(Y ), Z)(3.2)

and

(∇Y S)(X,Z) = { (Y r)

2
− (Y k)}g(X,Z) + {− (Y r)

2
+ 3(Y k)}η(X)η(Z)

+{−r
2

+ 3k}{(∇Y η)(X)η(Z) + η(X)(∇Y η)(Z)}+ (Y µ)g(hX,Z)

+µg((∇Y h)(X), Z).(3.3)

Using (3.2) and (3.3) in (3.1) yields

{ (Xr)

2
− (Xk)}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY, Z)

+µg((∇Xh)(Y ), Z) = {Y r
2
− Y k}g(X,Z)

+{− (Y r)

2
+ 3(Y k)}η(X)η(Z) + {−r

2
+ 3k}{(∇Y η)(X)η(Z)

+η(X)(∇Y η))(Z)}+ (Y µ)g(hX,Z) + µg((∇Y h)(X), Z).(3.4)
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Substituting Z = ξ in (3.4) gives

{ (Xr)

2
− (Xk)}η(Y ) + {− (Xr)

2
+ 3(Xk)}η(Y ) + {−r

2
+ 3k}{(∇Xη)(Y )

+η(Y )(∇Xη))(ξ)}+ µη((∇Xh)(Y )) = {Y r
2
− Y k}η(X)

+{− (Y r)

2
+ 3(Y k)}η(X) + {−r

2
+ 3k}{(∇Y η)(X) + η(X)(∇Y η))(ξ)}

+µη((∇Y h)(X)).(3.5)

Putting X = ξ in (3.5) and using r =constant, we obtain

(3.6) µη((∇ξh)(Y )) = 2(Y k) + µη((∇Y h)(ξ)) = 0.

Applying (2.8) in (3.6), we have (Y k) = 0, which implies k =constant. Hence from
(2.11), we get either h = 0 or µ =constant. Thus, we can state the following

Theorem 3.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1
the Ricci tensor is of Codazzi type, then the manifold is either a (k, µ)-paracontact
metric manifold or a K-paracontact manifold.

4. The cyclic parallel Ricci tensor in generalized (k, µ)-paracontact
metric manifolds

This section is devoted to the study of the cyclic parallel Ricci tensor in gener-
alized (k, µ)-paracontact metric manifolds
If the Ricci tensors is cyclic parallel, then we have

(4.1) (∇ZS)(X,Y ) + (∇XS)(Y, Z) + (∇Y S)(Z,X) = 0,

which implies r = constant.

Now from the equation (2.14), we obtain

{ (Zr)

2
− (Zk)}g(X,Y ) + {− (Zr)

2
+ 3(Zk)}η(X)η(Y )

+{−r
2

+ 3k}{(∇Zη)(X)η(Y ) + η(X)(∇Zη)(Y )}+ (Zµ)g(hX, Y )

+µg((∇Zh)(X)Y ) + {Xr
2
−Xk}g(Y,Z) + {− (Xr)

2
+ 3(Xk)}η(Y )η(Z)

+{−r
2

+ 3k}{(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)}+ (Xµ)g(hY,Z)

+µg((∇Xh)(Y ), Z) + {(Y r)− (Y k)}g(Z,X) + {− (Y r)

2
+ 3(Y k)}η(Z)η(X)

+{−r
2

+ 3k}{(∇Y η)(Z)η(X) + η(Z)(∇Y η)(X)}+ (Y µ)g(hZ,X)

+µg((∇Y h)(Z), X) = 0.(4.2)
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Substituting X = Y = ξ and applying (2.8) in (4.2) yields

(4.3) 2(Zk) + (−r
2

+ 3k)(∇ξη)(Z) + (−r
2

+ 3k)(∇ξη)(Z) = 0.

Now using (2.12) in (4.3), we have

(4.4) (Zk) = 0.

Therefore, k =constant. Hence from (2.11), we have either h = 0 or µ =constant.
This leads to the following:

Theorem 4.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1
the Ricci tensor is cyclic parallel, then the manifold is either a (k, µ)-paracontact
metric manifold or a K-paracontact manifold.

5. The η-parallel φ-tensor in generalized (k, µ)-paracontact metric
manifolds

In this section we study the η-parallel φ-tensor in generalized (k, µ)-paracontact
metric manifolds
If the (1, 1) tensor φ is η-parallel, then we have [1]

(5.1) g((∇Xφ)Y, Z) = 0.

From (2.10) and (5.1), we get

(5.2) −g(X,Y )η(Z) + g(hX, Y )η(Z) + g(X,Z)η(Y )− g(hX,Z)η(Y ) = 0.

Putting Z = ξ in (5.2) yields

(5.3) −g(X,Y ) + g(hX, Y ) + η(X)η(Y ) = 0.

Substituting X = hX in (5.3), we have

(5.4) −g(hX, Y )− (k + 1)g(X,Y ) + (k + 1)η(X)η(Y ) = 0.

Adding (5.3) and (5.4), we obtain

(5.5) (k + 2){g(X,Y )− η(X)η(Y )} = 0.

Thus we have k = −2, that is, k = constant. Using (2.11) we have h gradµ = 0.
Therefore, either h = 0 or µ =constant.
Thus we can state the following:

Theorem 5.1. If in a generalized (k, µ)-paracontact metric manifold with k 6= −1,
the tensor φ is η-parallel, then the manifold is either a (k, µ)-paracontact metric
manifold or a K-paracontact manifold.
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6. Locally φ-Ricci symmetric generalized (k, µ)-paracontact manifolds

A paracontact metric manifold is said to be locally φ-Ricci symmetric [6] if it
satisfies

(6.1) φ2(∇XQ)(Y ) = 0,

for all vector fields X, Y orthogonal to ξ, where Q is the Ricci operator defined by
g(QX,Y ) = S(X,Y ).

Taking the covariant derivative of (2.13) with respect to Y and applying φ2 we
get

(6.2) −{ (Y r)

2
− Y k}X − (Y µ)hX + µφ2((∇Y h)X) = 0.

Interchanging X and Y in (6.2), we have

(6.3) −{ (Xr)

2
−Xk}Y − (Xµ)hY + µφ2((∇Xh)Y ) = 0.

Subtracting (6.3) from (6.2), we obtain

{ (Y r)

2
− Y k}X − { (Xr)

2
−Xk}Y + (Y µ)hX − (Xµ)hY

+µφ2((∇XhY )− (∇Y hX)) = 0.(6.4)

Applying (2.9) in (6.4), we get

(6.5) { (Y r)

2
− Y k}X − { (Xr)

2
−Xk}Y + (Y µ)hX − (Xµ)hY = 0.

Substituting X = ξ in (6.5) yields

(6.6) −1

2
(ξr)Y − (ξµ)hY + {Y r

2
− Y k}ξ = 0.

Taking the inner product with Z from (6.6), we have

(6.7) −1

2
(ξr)g(Y, Z)− (ξµ)g(hY, Z) = 0.

Let {ei}, i = 1, 2, 3 be a local orthonormal basis in the tangent space TPM at each
point p ∈ M . Substituting Y = Z = ei in (6.7) and summing over i = 1 to 3, we
infer that ξr = 0, since k 6= −1.
This leads to the following:

Theorem 6.1. If a generalized (k, µ)-paracontact metric manifold with k 6= −1,
is locally φ-Ricci symmetric, then the characteristic vector field ξ leaves the scalar
curvature invariant.
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