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MATLAB SIMULATION OF THE HYBRID OF RECURSIVE

NEURAL DYNAMICS FOR ONLINE MATRIX INVERSION

Ivan S. Živković∗, Predrag S. Stanimirović†

Abstract. A novel kind of a hybrid recursive neural implicit dynamics for real-time
matrix inversion has been recently proposed and investigated. Our goal is to compare
the hybrid recursive neural implicit dynamics on the one hand, and conventional explicit
neural dynamics on the other hand. Simulation results show that the hybrid model can
coincide better with systems in practice and has higher abilities in representing dynamic
systems. More importantly, hybrid model can achieve superior convergence performance
in comparison with the existing dynamic systems, specifically recently-proposed Zhang
dynamics. This paper presents the Simulink model of a hybrid recursive neural implicit
dynamics and gives a simulation and comparison to the existing Zhang dynamics for
real-time matrix inversion. Simulation results confirm a superior convergence of the
hybrid model compared to Zhang model.
Keywords: Zhang neural network; gradient neural network; matrix inverse; conver-
gence.

1. Introduction

Recently, a number of nonlinear and linear recurrent neural network (RNN)
models have been developed for the purpose of numerical evaluation of the matrix
inverse and the pseudoinverse of full-row or full-column rank rectangular matrices
(for more details, see [4, 8, 13, 14, 18]). Various recurrent neural networks for com-
puting generalized inverses of rank-deficient matrices were designed in [15, 16]. A
new type of complex-valued recurrent neural networks, called Zhang neural network
(ZNN), was proposed in 2001 and has been extensively exploited in solving various
time-varying complex generalized inverse problems. The design of complex ZNN
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models arises from the choice of a complex matrix-valued error-monitoring func-
tion, called the Zhang function (ZF). Computation of the Moore-Penrose inverse of
time-varying full-rank matrix by means of different ZNN models were investigated
in [17]. Liao and Zhang in [7] proposed five different complex ZFs and, accordingly
developed and investigated five different complex ZNN models for computing the
time-varying complex pseudoinverse. A feedforward neural network architecture
for computing the Drazin inverse AD was proposed in [3]. RNN for computing the
Drazin inverse of a real square matrix in real time was presented in [11]. The dy-
namical equation and associated artificial RNN for computing the Drazin inverse
of an arbitrary square real matrix, without any restriction on its eigenvalues, were
proposed in [10]. In the recent paper [9], the authors proposed two finite-time con-
vergent complex ZNN models with for computing the Drazin inverse of a complex
time-varying square matrix.

A number of problems and applications in the fields of science and engineering
concern online inverse of matrix. A number of zeroing neural networks has been
proposed for solving various matrix equations. See [5, 6] and included references
for more details.

This paper presents a Matlab Simulink model for the implementation of the
hybrid recurrent neural networks for computing inverse of a nonsingular matrix
which was proposed in [1]. In addition, we present a comparisons of numerical
results derived by this implementation and the Simulink implementation of the
classical ZNN model for online matrix inversion of a given time invariant matrix,
introduced in [13].

The following defining equation of matrix inverse A−1 ∈ R
n×n can be given:

(1.1) AX(t)− I = 0

or

(1.2) X(t)A− I = 0,

where I ∈ R
n×n is the identity matrix, and X(t) ∈ R

n×n denotes the unknown
matrix to be inverted which corresponds to the theoretical inverse A−1.

The rest of the paper is organized as follows. Some known results related to the
gradient-based dynamics and implicit Zhang dynamics as well as improved hybrid
model are restated in Section 2. In Section 3. we present the corresponding MAT-
LAB Simulink model of improved hybrid dynamics along with simulation examples
and comparison.

2. Model formulation

We assume invertibility of the input matrix A. Then the equation (1.1) (or (1.2)
in dual case) has a unique solution and the minimal eigenvalue of ATA is greater
than 0.
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2.1. Gradient-based dynamics

The dynamics of the gradient neural network (GNN) models for computing inverses
are based on the usage of the scalar-valued norm-based error function

(2.1) ε(t) = ε(X(t)) =
1

2
‖E(t)‖2F ,

where E(t) is an appropriate error matrix and ‖A‖F :=
√

Tr (ATA) denotes the
Frobenius norm of the matrix A and Tr (·) denotes the trace of a matrix. The gen-
eral design formula is typically defined along the negative gradient −∂ε(X(t))/∂X
of ε(X(t)) until the minimum is reached. Using the above negative gradient to con-
struct the neural dynamics, we could have the gradient-based dynamics as follows

(2.2)
dX(t)

dt
= −γF

(

∂ε(X(t))

∂X

)

.

The scaling real parameter γ in (2.2) is used to adjust the convergence rate and could
be chosen as large as possible in order to accelerate the convergence. Further, F(C)
is an odd and monotonically increasing function array, element-wise applicable to
elements of a real matrix C = (cij) ∈ R

n×n, i.e. F(C) = (f(cij)), i = 1, . . . ,m,
j = 1, . . . , n, wherein f(·) is an odd and monotonically increasing function.

The dynamical equation of the linear recurrent neural network for the inversion
of a nonsingular matrix is initiated by the error matrix E(t) = AX(t) − I, and it
was proposed in [13]:

(2.3)
dX(t)

dt
= −γAT (AX(t)− I) .

The same principle was extended for computing the Moore–Penrose inverse of
a full-column rectangular matrix A ∈ R

m×n
n or a full-row rectangular matrix A ∈

R
m×n
m . Wang in [15] showed that the model can be used for computing the Moore-

Penrose inverse of rank-deficient matrices under the zero initial condition, V (0) = 0.

2.2. Zhang dynamics

On the other hand, the ZNN model for online time-invariant matrix inversion is
based upon the matrix-formed error function E(t) , instead of a scalar valued func-
tion. The time derivative of error function E(t), should be chosen such that each

element eij(t) of E(t) converges to zero, ∀i = 1, ..., n . A general design rule of ˙E(t)
is defined

(2.4)
dE(t)

dt
= −γF (E(t)) .

Substituting E(t) into dynamic system (2.4) and choosing F to bi linear function,
the following Zhang dynamics for online matrix inversion can be obtained:

(2.5) AẊ = −γ (AX(t)− I) .
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The implicit dynamics were originally proposed for online inversion of a time-
varying matrix A(t) in [19]. It was shown in [18, 19, 20] that the Zhang dynamics
(2.5) globally exponentially converges to the theoretical inverse A−1, starting from
any initial state X(0), with the exponential convergence rate γ.

2.3. Hybrid ZNN model for matrix inversion

A gradient-based recurrent neural dynamics for real-time inverse of a time-invariant
matrix was proposed by Wang [13] in the form of an explicit dynamic system

(2.6) Ẋ(t) = −γAT (AX(t)− I) .

The explicit gradient-based recursive dynamics (2.6) can be transformed into an
equivalent implicit form after the multiplication with A from the left:

(2.7) AẊ(t) = −γAAT (AX(t)− I).

Recently, a novel kind of recurrent implicit dynamics for real-time matrix inver-
sion was proposed and investigated in [1, 2]. This hybrid model can be obtained
after the summation of both the left and the right hand side of the Zhang dynamics
(2.5) and the modified gradient dynamics (2.7). The resulting implicit model is
given by

(2.8) AẊ(t) = −γ(AAT + I)(AX(t)− I).

Global exponential convergence rate of the implicit dynamics (2.8) was investigated
in [1, 2].

Theorem 2.1. [1] Given a nonsingular matrix A ∈ R
n×n, the state matrix X(t) ∈

R
n×n of the model (2.8) achieves global exponential convergence to the theoretical

inverse X∗ = A−1 starting from any initial state X(0) ∈ R
n×n. In addition, the

exponential convergence rate is equal to γβ where β > 1 denotes the minimum

eigenvalue of ATA+ I.

Now we are able to present our motivation in details. The Zhang dynamics (2.5)
globally exponentially converges to the theoretical inverse A−1, starting from any
initial state X(0), with the exponential convergence rate γ. On the other hand,
the model (2.8) is globally exponentially convergent to the theoretical inverse A−1

with the exponential convergence rate γβ, where β > 1 is the minimum eigenvalue
of ATA + I. Our goal is to investigate the acceleration caused by the quantity β.
Since the hybrid model (2.8) requires some additional matrix multiplications with
respect to the standard ZNN model (2.5), our tendency is to discover some classes
of matrices which are more appropriate for the application of the hybrid model.
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3. Simulation Results and its Comparison

The graphical editor and customizable block libraries available in Matlab Simulink
tool are used for simulating and comparing the Zhang dynamic system (2.5) and
recently proposed hybrid dunamic system (2.8). Simulink implementation of (2.5)
was described in [12]. The models (2.5) and (2.8) will be termed as ZNNNM and
EZNNNM , respectively.

The Simulink implementation of the hybrid model (2.8) is based on its equivalent
form given by

(3.1) Ẋ(t) = (I −A)Ẋ(t)− γ(AAT + I)(AX(t) − I).

and it is presented in Figure 3.1. For solving differential equations in the models
we used the ode15s solver.

X(t)
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AAT
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Fig. 3.1: Simulink implementation of EZNNNM model.

The next examples will show performance of both ZNNNM and EZNNNM mod-
els.
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Example 3.1. (a) Consider the following matrix

A=

































0.8147 0.1576 0.6557 0.7060 0.4387 0.2760 0.7513 0.8407 0.3517 0.0759
0.9058 0.9706 0.0357 0.0318 0.3816 0.6797 0.2551 0.2543 0.8308 0.0540
0.1270 0.9572 0.8491 0.2769 0.7655 0.6551 0.5060 0.8143 0.5853 0.5308
0.9134 0.4854 0.9340 0.0462 0.7952 0.1626 0.6991 0.2435 0.5497 0.7792
0.6324 0.8003 0.6787 0.0971 0.1869 0.1190 0.8909 0.9293 0.9172 0.9340
0.0975 0.1419 0.7577 0.8235 0.4898 0.4984 0.9593 0.3500 0.2858 0.1299
0.2785 0.4218 0.7431 0.6948 0.4456 0.9597 0.5472 0.1966 0.7572 0.5688
0.5469 0.9157 0.3922 0.3171 0.6463 0.3404 0.1386 0.2511 0.7537 0.4694
0.9575 0.7922 0.6555 0.9502 0.7094 0.5853 0.1493 0.6160 0.3804 0.0119
0.9649 0.9595 0.1712 0.0344 0.7547 0.2238 0.2575 0.4733 0.5678 0.3371

































.

This matrix has minimum eigenvalue α of ATA: α = 0.0154. We compare the linear
ZNNNM and EZNNNM model with the gain parameter γ = 106. The initial matrix is
chosen by V (0) = 0. Figure 3.2 (right) shows the trajectories of the error norms ‖A−1 −
X(t)‖ in the total simulation time ttot = 10−5. Figure 3.2 (left) shows the trajectories of
the error norms ‖A−1 −X(t)‖ in the total simulation time ttot = 10−6.
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Fig. 3.2: Trajectories of the errors ‖A−1 − X(t)‖ of ZNNNM and EZNNNM in Ex-
ample 3.1.

In general, Figure 3.2 shows that EZNNNM model slightly outperforms the ZNNNM

model. Both models generate almost identical residual norms in the initial phase and
then EZNNNM generates a bit smaller residual norms. According to Figure 3.2, the
EZNNNM model possesses a bit faster convergence.

(b) Now, consider matrix A1 = 5I + A. This matrix has the smallest eigenvalue
α = 16.6813, which is quite larger than in the previous example. We apply the linear
EZNNNM model with the gain parameter γ = 106.

Figure 3.3 (right) shows the trajectories of the error norm ‖A−1 −X(t)‖ in the total
simulation time ttot = 10−5. Figure 3.3 (left) shows the trajectories of the error norm
‖A−1 −X(t)‖ in the total simulation time ttot = 10−6.
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Fig. 3.3: Trajectories of the errors ‖A−1

1
− X(t)‖ of ZNNNM and EZNNNM in Ex-

ample 3.1.

According to Figure 3.3, the EZNNNM model possesses remarkably faster convergence.

Example 3.2. Consider the matrix

A =

[

20 6
−1 30

]

which satisfies α = 386.2656. Elements of the matrix X(t) generated by the model
EZNNNM are denoted by xEZNNNM

ij . Similarly, elements of the matrix X(t) gener-
ated by the model ZNNNM are denoted by xZNNNM

ij . Trajectories of the elements of
the matrices are presented in Figure 3.4.
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Fig. 3.4: Trajectories of X(t) of ZNNNM and EZNNNM in Example 3.2.
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Greater value α initiates significantly faster convergence of EZNNNM with respect
to ZNNNM .

Example 3.3. This example shows the influence of α on the convergence of the ZNN

models. The gain parameters in the simulation is γ = 106 and the time period is [0, 10−5]
s. First, consider the following randomly generated matrix B:

B =













0.9631 0.6241 0.0377 0.2619 0.1068
0.5468 0.6791 0.8852 0.3354 0.6538
0.5211 0.3955 0.9133 0.6797 0.4942
0.2316 0.3674 0.7962 0.1366 0.7791
0.4889 0.9880 0.0987 0.7212 0.7150













.

Then we are varying matrix A in the way that the value α becomes larger in every
step, and testing both models on such matrix A in the order to find the error norm of the
model results.

A α ‖XZNNNM − A−1‖1 ‖XEZNNNM − A−1‖1

B 0.0149 0.000594 0.000494

B + I 0.1729 0.000143 2.7866e−05

B + 2I 1.9360 3.8564e−05 2.1079e−08

B + 3I 5.6776 2.2102e−05 1.4172e−09

B + 4I 11.4133 1.5414e−05 3.6347−10

B + 5I 19.1467 1.1757−05 1.5278−09

B + 10I 87.8023 5.2761e−06 1.0706e−11

B + 15I 206.4530 3.3656e−06 2.7424e−11

B + 20I 375.1024 2.4667e−06 5.7302e−12

B + 50I 2437 9.4123e−07 8.6352e−14

From the table we can see when the value of α is grater EZNNNM model gives better
accuracy of the solution related to ZNNNM model in the same given period of time.

Example 3.4. In this example we ask the answer for the question: is it possible to
compensate advantage of the EZNNNM model using greater values γ in ZNNNM . For
this purpose, we tested these models on the matrix

A =













5.8147 0.0975 0.1576 0.1419 0.6557
0.9058 5.2785 0.9706 0.4218 0.0357
0.1270 0.5469 5.9572 0.9157 0.8491
0.9134 0.9575 0.4854 5.7922 0.9340
0.6324 0.9649 0.8003 0.9595 5.6787













with the minimal eigenvalue of AAT equal to 20.8356. The value of the gain parameter
γ in Simulink model γ = ZNNNM is 107 and in EZNNNM is γ = 106. Figure 3.5
(right) shows the trajectories of the error norm ‖A−1 −X(t)‖ in the total simulation time
ttot = 10−5. Figure 3.5 (left) shows the trajectories of the error norm ‖A−1−X(t)‖ in the
total simulation time ttot = 10−6.
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Fig. 3.5: Trajectories of the errors ‖A−1

1
− X(t)‖ of ZNNNM and EZNNNM in Ex-

ample 3.4.

According to Figure 3.3, the EZNNNM model still possesses faster convergence.
This means that greater values γ can not always compensate faster convergence rate of
the EZNNNM model with respect to the ZNNNM model.

4. Conclusion

The Matlab Simulink model of a novel implicit dynamic system (2.8) for online
matrix inversion is proposed in this paper. Compared to the Zhang implicit dynamic
system (2.5), superior global exponential convergence to the theoretical inverse by
hybrid implicit dynamic system (2.8) is confirmed and justified by several computer
simulation results. Tests shows that with a greater value of α (i.e. β = 1 + α),
faster convergence and better accuracy of the solution can be obtain with the hybrid
implicit dynamic system related to the Zhang implicit dynamic system.
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5. S. Li, S. Chen, B. Liu, Accelerating a recurrent neural network to finite-time conver-

gence for solving time-varying Sylvester Equation by using a sign-bi-power activation

function, Neural Process. Lett. 37 (2013), 189–205.

6. Z. Li, Y. Zhang, Improved Zhang neural network model and its solution of time-

varying generalized linear matrix equations, Expert Syst. Appl. 37 (2010), 7213–7218.

7. B. Liao, Y. Zhang, Different complex ZFs leading to different complex ZNN models for

time-varying complex generalized inverse matrices, IEEE Trans. Neural Netw. Learn.
Syst., 25 (2014), 1621–1631.

8. F.L. Luo, Z. Bao, Neural network approach to computing matrix inversion, Appl.
Math. Comput. 47 (1992), 109–120.

9. S. Qiao, X.-Z. Wang, Y. Wei, Two finite-time convergent Zhang neural net-

work models for time-varying complex matrix Drazin inverse, Linear Algebra Appl.
http://dx.doi.org/10.1016/j.laa.2017.03.014.
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