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Abstract. In this paper, we extend the Geraghty result [7] to k-dimension.
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1. Introduction and Preliminaries

It is known that the Banach contraction principle is considered as one of the
most important theorems in the classical functional analysis. There are many gen-
eralizations of this theorem. The following generalization is due to M. Geraghty
[7].

Theorem 1.1. [7] Let (X, d) be a complete metric space and T : X → X be a
mapping. If T satisfies the following inequality:

d(Tx, T y) ≤ β(d(x, y)) d(x, y)

for all x, y ∈ X, where β : [0,∞) → [0, 1) is a function which satisfies the condition

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

Then T has a unique fixed point u ∈ X and {T nx} converges to u for each x ∈ X.

The above result has been generalized by many authors. For details, see [1, 2, 3, 4,
5, 6, 8, 9].

N (resp. N0) denotes a set of positive (nonegative) integers. We denote by F
a set of functions β given in Theorem 1.1. The aim of this paper is to generalize
and extend Theorem 1.1 to k-dimension. To be more clear, we will consider non-
self mappings T : Xk → X involving a Geraghty type contraction in the class of
metric spaces. Note that in the given contraction (it corresponds later to (2.1)),
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we consider two k-uplets of the form (u1, u2, . . . , uk) and (u2, u3, . . . , uk+1), that
is, there is a repetition of (k − 1)-components, which are u2, u3, . . ., uk. This
fact is different from all known multidimensional fixed point results where the two
considered k-uplets are not generally dependent, i.e., of the form (u1, u2, . . . , uk)
and (v1, v2, . . . , vk).

2. Main results

Our main result is

Theorem 2.1. Let (X, d) be a complete metric space and k ∈ N. Let T : Xk → X

be such that

d(T (u1, u2, . . . , uk), T (u2, u3, . . . , uk+1))

≤ β (M((u1, u2, . . . , uk), (u2, u3, . . . , uk+1)))M((u1, x2, . . . , uk), (u2, u3, . . . , uk+1)),

(2.1)

for all u1, u2, . . . , uk, uk+1 in X, where β ∈ F and M : Xk ×Xk → [0,∞) is as

M((u1, u2, . . . , uk), (u2, u3, . . . , uk+1))

= max{d(uk, uk+1), d(uk, T (u1, u2, . . . , uk)), d(uk+1, T (u2, u3, . . . , uk+1))}.

Then there is a point u in X such that T (u, u, . . . , u) = u.

Proof. We split the proof into several steps.
Step 1: Let k ∈ N be fixed. Consider as the initial point the k-uplet point
(x1, x2, . . . , xk) ∈ Xk. Let

xn+k = T (xn, xn+1, . . . , xn+k−1) for all n ∈ N.

In view of (2.1),

d(xn+k+1, xn+k+2) = d(T (xn+1, xn+2, . . . , xn+k), T (xn+2, xn+3, . . . , xn+k+1))

≤ β (M((xn+1, xn+2, . . . , xn+k), (xn+2, xn+3, . . . , xn+k+1)))

M((xn+1, xn+2, . . . , xn+k), (xn+2, xn+3, . . . , xn+k+1)).

(2.2)

Now,

M((xn+1, xn+2, . . . , xn+k), (xn+2, xn+3, . . . , xn+k+1))

= max{d(xn+k, xn+k+1), d(T (xn+1, xn+2, . . . , xn+k), xn+k), d(T (xn+2, xn+3, . . . , xn+k+1), xn+k+1)}

= max{d(xn+k, xn+k+1), d(xn+k+2, xn+k+1)}.

The case thatM((xn+1, xn+2, . . . , xn+k), (xn+2, xn+3, . . . , xn+k+1)) = d(xn+k+2, xn+k+1)
for some n, is impossible. Indeed, by (2.2) and the fact that β ∈ F ,

d(xn+k+1, xn+k+2) ≤ β (d(xn+k+2, xn+k+1)) d(xn+k+2, xn+k+1) < d(xn+k+2, xn+k+1),
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which is a contradiction. HenceM((xn+1, xn+2, . . . , xn+k), (xn+2, xn+3, . . . , xn+k+1)) =
d(xn+k, xn+k+1) for all n ≥ 0. Again by (2.2),
(2.3)

d(xn+k+1, xn+k+2) ≤ β (d(xn+k, xn+k+1)) d(xn+k, xn+k+1) < d(xn+k, xn+k+1)

for all n ∈ N0.

So the sequence {d(xn+k, xn+k+1)} is non-negative and non-increasing. Hence there
exists r ≥ 0 such that lim

n→∞

d(xn+k, xn+k+1) = r. We claim that r = 0. Suppose,

on the contrary, that r > 0. So for a large n, d(xn+k, xn+k+1) > 0. (2.3) implies
that

d(xn+k+1, xn+k+2)

d(xn+k, xn+k+1)
≤ β(d(xn+k, xn+k+1)) < 1.

Taking the limit as n → ∞, we get that

lim
n→∞

β (d(xn+k, xn+k+1)) = 1.

Since β ∈ F ,

(2.4) lim
n→∞

d(xn+k, xn+k+1) = 0.

Step 2: We shall prove that {xn+k} is a Cauchy sequence. We argue by contradic-
tion. Then there exists ε > 0 for which we can find subsequences {xm(p)+k} and
{xn(p)+k} of {xn+k} with m(p) > n(p) > p such that for every p

(2.5) d(xm(p)+k, xn(p)+k) ≥ ε.

Moreover, corresponding to n(p) we can choose m(p) in such a way that it is the
smallest integer with m(p) > n(p) and satisfying (2.5). Then

(2.6) d(xm(p)+k−1, xn(p)+k) < ε.

By the triangle inequality, (2.5) and (2.6), we get

d(xn(p)+k−1, xm(p)+k−1) ≤ d(xn(p)+k−1, xn(p)+k) + d(xn(p)+k, xm(p)+k−1)

< ε+ d(xn(p)+k−1, xn(p)+k),
(2.7)

and

ε ≤ d(xn(p)+k, xm(p)+k)

≤ d(xn(p)+k, xn(p)+k−1) + d(xn(p)+k−1, xm(p)+k−1) + d(xm(p)+k−1, xm(p)+k).

(2.8)

Using (2.4) in (2.7) and (2.8), we obtain

(2.9) lim
p→∞

d(xn(p)+k−1, xm(p)+k−1) = ε.
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On the other hand,

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1))

= max{d(xn(p)+k−1, xm(p)+k−1), d(T (xn(p), xn(p)+1, . . . , xn(p)+k−1), xn(p)+k−1),

d(T (xm(p), xm(p)+1, . . . , xm(p)+k−1), xm(p)+k−1)}

= max{d(xn(p)+k−1, xm(p)+k−1), d(xn(p)+k, xn(p)+k−1), d(xm(p)+k, xm(p)+k−1)}.

In view of (2.4) and (2.9),
(2.10)

lim
p→∞

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1)) = ε.

By (2.1) and (2.5),

ε ≤ d(xn(p)+k, xm(p)+k)

= d(T (xn(p), xn(p)+1, . . . , xn(p)+k−1), T (xm(p), xm(p)+1, . . . , xm(p)+k−1))

≤ β
(

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1))
)

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1))

< M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1))

= max{d(xn(p)+k−1, xm(p)+k−1), d(xn(p)+k, xn(p)+k−1), d(xm(p)+k, xm(p)+k−1)}.

(2.11)

Using (2.10), we deduce from (2.11)

lim
p→∞

β
(

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1))
)

= 1.

Since β ∈ F , we have

lim
p→∞

M((xn(p), xn(p)+1, . . . , xn(p)+k−1), (xm(p), xm(p)+1, . . . , xm(p)+k−1)) = 0,

which is a contradiction with respect to (2.10). Thus {xn+k} is Cauchy in (X, d).
Step 3: Now, by using the completeness property of X , there exists a point u in X

such that

(2.12) lim
n→∞

xn+k = u.

Assume that u 6= T (u, u, . . . , u). We have

M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u))

max{d(xn+k−1, u), d(xn+k−1, T (xn, xn+1, . . . , xn+k−1), d(u, T (u, u, . . . , u))}

= d(u, xn+k) + max{d(xn+k−1, u), d(xn+k−1, xn+k), d(u, T (u, u, . . . , u))}

From (2.4) and (2.12),

(2.13) lim
n→∞

M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u)) = d(u, T (u, u, . . . , u)).
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On the other hand, by (2.1)

d(u, T (u, u, . . . , u)) ≤ d(u, xn+k) + d(xn+k, T (u, u, . . . , u))

= d(u, xn+k) + d(T (xn, xn+1, . . . , xn+k−1), T (u, u, . . . , u))

≤ d(u, xn+k) + β (M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u)))

.M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u))

< d(u, xn+k) +M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u)).

(2.14)

Using (2.13) in (2.14), we obtain

lim
n→∞

β (M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u))) = 1,

that is,

lim
n→∞

M((xn, xn+1, . . . , xn+k−1), (u, u, . . . , u)) = 0.

It is a contradiction with respect to (2.13). Thus, d(u, T (u, u, . . . , u)) = 0. This
completes the proof.

Remark 2.1. Taking k = 1 in Theorem 2.1, we get a generalization of Theorem 1.1.
Our main result is then a generalization and an extension of the Geraghty theorem to
k-dimension.
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