FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 33, No 4 (2018), 613–626 https://doi.org/10.22190/FUMI1804613T

QUASI STATISTICAL CONVERGENCE IN CONE METRIC SPACES

Nihan Turan, Emrah Evren Kara and Merve İlkhan

Abstract. The main purpose of this paper is to define a new type of statistical convergence of sequences in a cone metric space and investigate the relations of these sequences with some other sequences.

Keywords: Cone metric, statistical convergence, statistical boundedness.

1. Introduction and Preliminaries

The study of statistical convergence apparently goes back to Steinhaus [19] and Fast [7]. This concept has been studied under different names in spaces such as topological spaces, cone metric spaces etc. (see, for example [5], [8], [9], [12], [13], [14], [18]). Long-Guang and Xian [11] suggested the idea of a cone metric space. The main difference with a metric is that a cone metric is valued in an ordering Banach space. Later, several authors studied cone metric spaces and applied different names. This concept takes a vital role in computer science, statistics and some other research areas as well as general topology (see, for example [2],[2],[7],[11],[16]). The definition of statistical convergence and statistical boundedness of a sequence in a cone metric space was studied by Kedian, Shou and Ying [13]. In [10], the authors defined the concept of a quasi-statistical filter. Also it is known that statistical convergence is related to Cesaro summability and strong-Cesaro summability (see, for example [4],[3],[18]). Recently, Sakaoğlu and Yurdakadim [15] defined the notions of quasi-statistical convergence and strongly-Cesaro summability by relying on [4], [3], [10] and [18], and they found some inclusion theorems between these concepts. In the present paper, we introduce the quasi-statistical convergence and quasi-statistical boundedness of a sequence on a cone metric space, and obtain some theorems related to quasi-statistically convergent sequences. Later, we give the definition of strongly-quasi summable sequences in a cone metric space and we also investigate some theorems related to quasi-statistically convergent sequences and

Received June 21, 2016; accepted August 06, 2016

²⁰¹⁰ Mathematics Subject Classification. Primary 40A35; Secondary 40G15, 40F05

strongly–quasi summable sequences. Finally, we present some results related to these theorems.

Throughout this paper, by \mathbb{N} and \mathbb{R} we denote the set of all positive integers and the set of all real numbers, respectively. For a subset S of \mathbb{N} , |S| stands for the cardinality of S.

Definition 1.1. ([7]) Let $S \subset \mathbb{N}$ and $S(m) = \{i \in S : i \leq m\}$ for each $m \in \mathbb{N}$. If the following limit exists, then

$$\delta(S) = \lim_{m \to \infty} \frac{|S(m)|}{m}$$

is called the asymptotic (or natural) density of S. It is clear that $\delta(S) \in [0, 1]$. Also, if $\delta(S) = 1$, then S is said to be statistically dense. It can be easily obtained that $\delta(\mathbb{N} - S) = 1 - \delta(S)$ for each $S \subset \mathbb{N}$.

Definition 1.2. ([8]) A sequence (x_m) in \mathbb{R} is said to be statistically convergent to a point $x \in \mathbb{R}$ if for each $\varepsilon > 0$,

$$\lim_{m \to \infty} \frac{1}{m} \{ i \le m : |x_i - x| \ge \varepsilon \} = 0$$

or equivalently

$$\lim_{m \to \infty} \frac{1}{m} \{ i \le m : |x_i - x| < \varepsilon \} = 1.$$

Definition 1.3. ([1]) Let E be a real Banach space. A subset P of E is called a cone if it satisfies the following conditions:

- (1) $P \neq \emptyset, P \neq \{0\}$ and P is closed.
- (2) $ax + by \in P$ for all $x, y \in P$ and $a, b \in \mathbb{R}$ with $a, b \ge 0$.
- (3) If $x \in P$ and $-x \in P$, then x = 0 for all $x, y \in P$.

A partial ordering " \leq " with respect to P is defined by $x \leq y \Leftrightarrow y - x \in P$. Also, we mean $x \prec y \Leftrightarrow x \leq y, x \neq y$ and $x \prec \forall y \Leftrightarrow y - x \in E^+$, where E^+ denotes the interior of P; that is $E^+ = \{c \in E : 0 \prec \prec c\}$. The cone P is called normal if there is a number K > 0 such that for all $x, y \in E$, $0 \leq x \leq y$ implies $||x|| \leq K ||y||$. The least positive number satisfying this inequality is called the normal constant of P.

In this study, we always suppose that E is a Banach space, P is a cone in E with $E^+ \neq \emptyset$ and " \preceq " is a partial ordering with respect to P.

Definition 1.4. ([17]) Let X be a non-empty set. Suppose the mapping $d: X \times X \to E$ satisfies

1. $0 \leq d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y,

Quasi statistical convergence in cone metric spaces

- 2. d(x,y) = d(y,x) for all $x, y \in X$,
- 3. $d(x,y) \preceq d(x,z) + d(y,z)$ for all $x, y, z \in X$.

Then d is called a cone metric on X, (X, d) is called a cone metric space.

Definition 1.5. ([11]) A sequence (x_n) in a cone metric space (X, d) is said to be convergent to $x \in X$ if for every $c \in E^+$ there exists a natural number N such that $d(x_n, x) \prec \prec c$ for all n > N.

Definition 1.6. ([13]) A sequence (x_n) in a cone metric space (X, d) is said to be statistically convergent to $x \in X$ if for every $c \in E^+$

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d\left(x_k, x\right) \prec \prec c \right\} \right| = 1.$$

It is denoted by st- $\lim_{n \to \infty} x_n = x$.

Definition 1.7. ([13]) A sequence (x_n) in a cone metric space (X, d) is said to be statistically bounded if there exist $\alpha \in X$ and $c \in E^+$ such that

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : d\left(x_k, \alpha\right) \preceq c \right\} \right| = 1.$$

Definition 1.8. ([15]) Let $s = (s_n)$ be a sequence of positive real numbers such that

(1.1)
$$\lim_{n \to \infty} \lim_{n \to \infty} \sup_{n \to \infty} \frac{s_n}{n} < \infty.$$

The quasi density of a subset $K \subset \mathbb{N}$ with respect to the sequence $s = (s_n)$ is defined by

$$\delta_s(K) = \lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : k \in K\} \right|.$$

A sequence (x_n) in \mathbb{R} is called quasi-statistical convergent to x provided that for every $\varepsilon > 0$ the set $K_{\varepsilon} = \{k \in \mathbb{N} : |x_k - x| \ge \varepsilon\}$ has quasi-density zero. It is denoted by $st_q - \lim_{n \to \infty} x_n = x$.

Throughout the study, we assume that $s = (s_n)$ and $t = (t_n)$ are sequences of positive real numbers satisfying the conditions in (1.1).

Definition 1.9. ([15]) A sequence (x_n) in \mathbb{R} is said to be strongly quasi-summable to $x \in \mathbb{R}$ if

$$\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1}^n |x_k - x| = 0.$$

N. Turan, E. E. Kara and M. İlkhan

2. Main Results

In this section, we first define the quasi-statistical convergence of a sequence in a cone metric space. Later, we give some results related to this concept.

Definition 2.1. A sequence (x_n) in a cone metric space (X, d) is said to be quasistatistical convergent to a point $x \in X$ if for every $c \in E^+$ we have

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : d(x_k, x) \prec d c\} \right| = 1$$

or equivalently

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : c \preceq d(x_k, x)\} \right| = 0.$$

We denote it by $st_q - \lim_{n \to \infty} x_n = x$. If we take $(s_n) = (n)$, then we obtain that (x_n) is statistical convergent.

Theorem 2.1. Let (x_n) be a sequence in a cone metric space (X, d). If (x_n) is convergent to $x \in X$, then it is quasi-statistical convergent to x.

Proof. Let $\lim_{n \to \infty} x_n = x$. Then, for every $c \in E^+$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x) \prec \prec c$ for every $n > n_0$. It follows that

$$\frac{1}{s_n} \left| \left\{ k \le n : c \preceq d\left(x_k, x\right) \right\} \right| \le \frac{n_0}{s_n}$$

which means $\lim_{n\to\infty} \frac{1}{s_n} |\{k \leq n : c \leq d(x_k, x)\}| = 0$. Hence, (x_n) is quasi-statistical convergent to x. \Box .

The converse of the previous theorem does not hold which can be seen from the following example.

Example 2.1. Let $E = \mathbb{R}$, $P = [0, \infty)$ and $X = \mathbb{R}$. Consider X with usual metric d(x, y) = |x - y|. Let $s_n = n^{3/4}$. Define a sequence (x_n) as follows:

$$x_n = \begin{cases} 0, & n \neq m^2 \text{ for all } m \in \mathbb{N} \\ n, & n = m^2 \text{ for some } m \in \mathbb{N} \end{cases}$$

It is obvious that (x_n) is not convergent. On the other hand, it is quasi-statistical convergent to 0. Indeed, given any $c \in E^+$, we obtain the inclusion

$$\{n: c \leq d(x_n, 0)\} \subset \{n: n = m^2, m \in \mathbb{N}\}.$$

Hence we conclude that

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : c \le d\left(x_k, 0\right) \right\} \right| \le \lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : k = m^2, m \in \mathbb{N} \right\} \right|$$
$$= \lim_{n \to \infty} \frac{1}{s_n} \left[\left| \sqrt{n} \right| \right] = 0.$$

Theorem 2.2. Let (x_n) be a sequence in a cone metric space (X, d). If (x_n) is quasi-statistical convergent to $x \in X$, then it is statistical convergent to x.

Proof. Let st_q - $\lim_{n\to\infty} x_n = x$ and $M = \sup_n \frac{s_n}{n}$. Then, for every $c \in E^+$, we have $\lim_{n\to\infty} \frac{1}{s_n} |\{k \le n : c \le d(x_k, x)\}| = 0$. The statistical convergence of the sequence (x_n) follows from the following inequality

$$\frac{1}{n}\left|\left\{k \le n : c \preceq d\left(x_{k}, x\right)\right\}\right| \le \frac{M}{s_{n}}\left|\left\{k \le n : c \preceq d\left(x_{k}, x\right)\right\}\right|.$$

□.

The converse of the previous theorem does not hold which can be seen from the following example.

Example 2.2. Let $X = \mathbb{R}$, $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\}$, $X = \mathbb{R}$ and $d : X \times X \to E$ be the cone metric defined by $d(x, y) = (|x - y|, \alpha |x - y|)$, where $\alpha > 0$ is a constant. Assume that the sequence (s_n) satisfies $\lim_n \frac{\sqrt{n}}{s_n} = \infty$. We can choose a subsequence (s_{n_p}) such that $s_{n_p} > 1$ for each $p \in \mathbb{N}$. Consider the sequence (x_n) defined by

$$x_n = \begin{cases} s_n, & n = m^2 \text{and } s_n \in \{s_{n_p} : p \in \mathbb{N}\} \\ 1, & n = m^2 \text{ and } s_n \notin \{s_{n_p} : p \in \mathbb{N}\} \\ 0, & \text{otherwise.} \end{cases} \quad (m \in \mathbb{N})$$

Then, we have

$$d(x_n, 0) = \begin{cases} (s_n, \alpha s_n), & n = m^2 \text{ and } s_n \in \{s_{n_p} : p \in \mathbb{N}\} \\ (1, \alpha), & n = m^2 \text{ and } s_n \notin \{s_{n_p} : p \in \mathbb{N}\} \\ (0, 0), & \text{otherwise.} \end{cases} \quad (m \in \mathbb{N})$$

It is easy to see that (x_n) is statistical convergent to zero. Now, we show that (x_n) is not quasi-statistical convergent to zero; that is,

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : c \le d(x_k, 0)\} \right| \neq 0.$$

For $c = (1, \alpha) \in E^+$ and $n \in \mathbb{N}$, we have

$$|\{k \le n : c \le d(x_k, 0)\}| = |\{k \le n : k = m^2, m \in \mathbb{N}\}|$$

and

(2.1)
$$\frac{1}{s_n} |\{k \le n : c \le d(x_k, 0)\}| = \frac{1}{s_n} \left(\sqrt{n} - r_n\right),$$

where $0 \leq r_n < 1$. If we take the limit of (2.1) as $n \to \infty$, we conclude that (x_n) is not quasi-statistical convergent to zero.

Consequently, we have the following diagram:

convergent \Rightarrow quasi-statistical convergent \Rightarrow statistical convergent

Theorem 2.3. Assume that

$$h = \inf_{n} \frac{s_n}{n} > 0$$

If a sequence (x_n) in a cone metric space (X, d) is statistical convergent to $x \in X$, then it is quasi-statistical convergent to x.

Proof. The proof follows from the inequality

$$\frac{1}{n}\left|\left\{k\leq n:c \preceq d\left(x_{k},L\right)\right\}\right| \geq h\frac{1}{s_{n}}\left|\left\{k\leq n:c \preceq d\left(x_{k},L\right)\right\}\right|.$$

□.

Corollary 2.1. Assume that the sequence (s_n) satisfies (2.2). Then, (x_n) is statistical convergent to x if and only if (x_n) is quasi-statistical convergent to x.

Theorem 2.4. If (x_n) is quasi-statistical convergent to x in a cone metric space (X, d), then there is a sequence (y_n) which is convergent to x and quasi-statistical null sequence (z_n) such that $x_n = y_n + z_n$ for all $n \in \mathbb{N}$.

Proof. Let $st_q - \lim_{n \to \infty} x_n = x$. If the terms of the sequence (x_n) is constant after a certain stage, then the proof is trivial. Otherwise given any $c \in E^+$, we can find an increasing sequence of positive integers (N_j) such that $N_0 = 0$ and $\frac{1}{s_n} \left| \left\{ k \leq n : \frac{e}{j} \leq d(x_k, x) \right\} \right| < \frac{1}{j}$ for all $n > N_j$ (j = 1, 2, ...). Let us define (y_k) and (z_k) as follows:

$$z_k = 0 \quad \text{and} \quad y_k = x_k; \quad \text{if } N_0 < k \le N_1,$$

$$z_k = 0 \quad \text{and} \quad y_k = x_k; \quad \text{if } d(x_k, x) \prec \prec \frac{e}{j}, \quad N_j < k \le N_{j+1},$$

$$z_k = x_k - x \quad \text{and} \quad y_k = x; \qquad \text{if } \frac{e}{i} \preceq d(x_k, x), \quad N_j < k \le N_{j+1}.$$

It is easy to see that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$. Now, we show that (y_k) is convergent to x. Given any $c \in E^+$, choose $j \in \mathbb{N}$ such that $\frac{e}{j} \prec \prec c$.

If
$$\frac{e}{j} \leq d(x_k, x)$$
 for $k > N_j$, then $d(y_k, x) = d(x, x) = 0$.

If $d(x_k, x) \prec \prec \frac{e}{j}$ for $k > N_j$, then $d(y_k, x) = d(x_k, x) \prec \prec \frac{e}{j} \prec \prec c$. Hence, it follows that $\lim_{k \to \infty} y_k = x$.

To show that (z_k) is quasi-statistical null sequence; it is enough to prove that

$$\lim_{n \to \infty} \frac{1}{s_n} |\{k \le n : z_k \ne 0\}| = 0.$$

For $c \in E^+$, it is clear that the inclusion

$$\{k \le n : c \preceq d(z_k, 0)\} \subseteq \{k \le n : z_k \neq 0\}$$

holds for all $n \in \mathbb{N}$. Thus, we have

$$|\{k \le n : c \preceq d(z_k, 0)\}| \le |\{k \le n : z_k \neq 0\}|.$$

Given any $\delta > 0$ there is a $j \in \mathbb{N}$ such that $\frac{1}{i} < \delta$. If $N_j < k \le N_{j+1}$, we have

$$\left|\left\{k \le n : z_k \neq 0\right\}\right| = \left|\left\{k \le n : \frac{e}{j} \preceq d\left(x_k, x\right)\right\}\right|.$$

Thus, we have

$$\frac{1}{s_n} \left| \{k \le n : z_k \ne 0\} \right| \le \frac{1}{s_n} \left| \left\{ k \le n : \frac{e}{v} \preceq d(x_k, x) \right\} \right| < \frac{1}{v} < \frac{1}{j} < \delta$$

for $N_v < k \le N_{v+1}$ and v > j which concludes the proof. \Box .

The following result is an immediate consequence of the previous theorem.

Corollary 2.2. If (x_n) is quasi-statistical convergent to x, then it has a subsequence (y_n) which is convergent to x.

Definition 2.2. A sequence (x_n) in a cone metric space (X, d) is said to be quasistatistical Cauchy if for every $c \in E^+$ there exists $n_0 \in \mathbb{N}$ such that

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : d\left(x_k, x_{n_0} \right) \prec \prec c \right\} \right| = 1$$

or equivalently

$$\lim_{n \to \infty} \frac{1}{s_n} |\{k \le n : c \le d(x_k, x_{n_0})\}| = 0.$$

Theorem 2.5. Let (x_n) be a sequence in a cone metric space (X, d). If (x_n) is a Cauchy sequence, then it is a quasi-statistical Cauchy sequence.

Proof. Let (x_n) be a Cauchy sequence. Then, for every $c \in E^+$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) \prec \prec c$ for every $n, m \ge n_0$. It follows that

$$\frac{1}{s_n} |\{k \le n : c \preceq d(x_k, x_{n_0})\}| \le \frac{n_0}{s_n}$$

which means $\lim_{n\to\infty} \frac{1}{s_n} |\{k \le n : c \le d(x_k, x_{n_0})\}| = 0$. Hence, (x_n) is quasi-statistical Cauchy. \Box .

The sequence given in Example 2.1 is also a quasi-statistical Cauchy sequence which is not a Cauchy sequence.

Theorem 2.6. Let (x_n) be a sequence in a cone metric space (X, d). If (x_n) is a quasi-statistical Cauchy sequence, then it is a statistical Cauchy sequence.

Proof. Let (x_n) be a quasi-statistical Cauchy sequence. Then, for every $c \in E^+$ there exists $n_0 \in \mathbb{N}$ such that $\lim_{n \to \infty} \frac{1}{s_n} |\{k \leq n : c \leq d(x_k, x_{n_0})\}| = 0$. Thus we have

$$\frac{1}{n} |\{k \le n : c \preceq d(x_k, x_{n_0})\}| = \frac{s_n}{n} \frac{1}{s_n} |\{k \le n : c \preceq d(x_k, x_{n_0})\}| \\
\le K \frac{1}{s_n} |\{k \le n : c \preceq d(x_k, x_{n_0})\}|,$$

where $K = \sup_n \frac{s_n}{n}$. This implies that (x_n) is a statistical Cauchy sequence in X. \Box .

Consequently, we have the following diagram:

Cauchy
$$\Rightarrow$$
 quasi-statistical Cauchy \Rightarrow statistical Cauchy

Definition 2.3. A sequence (x_n) in a cone metric space (X, d) is said to be quasistatistical bounded if there exist $\alpha \in X$ and $c \in E^+$ such that

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : c \preceq d\left(x_k, \alpha\right) \right\} \right| = 0.$$

Theorem 2.7. If (x_n) is quasi-statistical bounded sequence in a cone metric space (X, d), then it is statistical bounded.

Proof. Let (x_n) be a quasi-statistical bounded sequence, $\alpha \in X$ and $H = \sup_n \frac{s_n}{n}$. Since the inequality

$$\frac{1}{n} \left| \left\{ k \le n : c \preceq d\left(x_k, \alpha\right) \right\} \right| \le \frac{H}{s_n} \left| \left\{ k \le n : c \preceq d\left(x_k, \alpha\right) \right\} \right|$$

holds, the proof follows immediately. \Box .

Lemma 2.1. Let P be a normal cone with normal constant K. The following statements hold for sequences (x_n) and (y_n) in a cone metric space (X, d).

1.
$$st_q - \lim_{n \to \infty} x_n = x \Leftrightarrow st_q - \lim_{n \to \infty} d(x_n, x) = 0$$

2. If $st_q - \lim_{n \to \infty} x_n = x$ and $st_q - \lim_{n \to \infty} y_n = y$, then $st_q - \lim_{n \to \infty} d(x_n, y_n) = d(x, y)$.

Proof. (1) Suppose that $st_q - \lim_{n \to \infty} x_n = x$. Then, for every $c \in E^+$, we have

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : d(x_k, x) \prec d \in c \} \right| = 1.$$

Given any $\varepsilon > 0$, choose $c \in E^+$ such that $K ||c|| < \varepsilon$. Suppose that $k \in \mathbb{N}$ satisfies $d(x_k, x) \prec \prec c$. Since P is a normal cone with normal constant K, we can write

$$\|d(x_k, x)\| \le K \|c\| < \varepsilon.$$

Consequently, we obtain

$$\frac{1}{s_n} \left| \left\{ k \le n : d\left(x_k, x\right) \prec \prec c \right\} \right| \le \frac{1}{s_n} \left| \left\{ k \le n : \left\| d\left(x_k, x\right) \right\| < \varepsilon \right\} \right|.$$

Hence, we conclude that

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : \left\| d\left(x_k, x \right) \right\| < \varepsilon \right\} \right| = 1$$

which means $st_q - \lim_{n \to \infty} d(x_n, x) = 0.$

Conversely, suppose that $st_q - \lim_{n \to \infty} d(x_n, x) = 0$. Then for every $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \left\{ k \le n : \left\| d\left(x_k, x \right) \right\| < \varepsilon \right\} \right| = 1.$$

Given any $c \in E^+$, we can find an $\varepsilon > 0$ such that $c - a \in E^+$ for all $a \in E$ with $||a|| < \varepsilon$. Hence, if we choose $k \in \mathbb{N}$ such that $||d(x_k, x)|| < \varepsilon$, then we obtain $d(x_k, x) \prec \prec c$ which implies that the inclusion $\{k : ||d(x_k, x)|| < \varepsilon\} \subset \{k : d(x_k, x) \prec \prec c\}$ holds. It follows that

$$\frac{1}{s_n} \left| \left\{ k \le n : \left\| d\left(x_k, x\right) \right\| < \varepsilon \right\} \right| \le \frac{1}{s_n} \left| \left\{ k \le n : d\left(x_k, x\right) \prec \prec c \right\} \right|.$$

Thus, we conclude that $\lim_{n\to\infty} \frac{1}{s_n} |\{k \le n : d(x_k, x) \prec \prec c\}| = 1$ and so $st_q - \lim_{n\to\infty} x_n = x$.

(2) Suppose $st_q - \lim_{n \to \infty} x_n = x$ and $st_q - \lim_{n \to \infty} y_n = y$. Given any $\varepsilon > 0$, choose $c \in E^+$ such that $\|c\| < \frac{\varepsilon}{4K+2}$. For $k \in \mathbb{N}$ with $d(x_k, x) \prec \prec c$ and $d(y_k, y) \prec \prec c$, we have $\|d(x_k, y_k) - d(x, y)\| < \varepsilon$ from the proof of Lemma 5 in [11]. Hence, the inclusion

$$\{k: \|d(x_k, y_k) - d(x, y)\| \ge \varepsilon\} \subset \{k: c \le d(x_k, x)\} \cup \{k: c \le d(y_k, y)\}$$

holds. It follows that

$$\lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : \|d(x_k, y_k) - d(x, y)\| \ge \varepsilon \} \right| = 0$$

which means that $st_q - \lim_{n \to \infty} d(x_n, y_n) = d(x, y)$. \Box .

Remark 2.1. Note that *P* does not need to be a normal cone to prove the sufficiency condition in 1 of Lemma 2.1. That is; if $st_q - \lim_{n \to \infty} d(x_n, x) = 0$ in a cone metric space (X, d), then we have $st_q - \lim_{n \to \infty} x_n = x$.

Theorem 2.8. Let (x_n) and (y_n) be two sequences in a cone metric space (X, d). If $st_q - \lim_{n \to \infty} y_n = y$ and $d(x_n, y) \leq d(y_n, y)$ for every $n \in \mathbb{N}$, then $st_q - \lim_{n \to \infty} x_n = y$.

Proof. Suppose that $st_q - \lim_{n \to \infty} y_n = y$ and $d(x_n, y) \leq d(y_n, y)$ for every $n \in \mathbb{N}$. The proof follows from the fact that

$$\frac{1}{s_n} |\{k \le n : d(y_k, y) \le c\}| \le \frac{1}{s_n} |\{k \le n : d(x_k, y) \le c\}|.$$

Definition 2.4. A sequence (x_n) in a cone metric space (X, d) is said to be strongly quasi-summable to x, if

$$\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1}^n \|d(x_k, x)\| = 0$$

holds.

We will use N_q^s and S_q^s for the set of all strongly quasi-summable sequences and all quasi-statistical convergent sequences, respectively. That is,

$$N_{q}^{s} = \left\{ (x_{n}) : \lim_{n \to \infty} \frac{1}{s_{n}} \sum_{k=1}^{n} \|d(x_{k}, x)\| = 0 \text{ for some } x \right\}$$

and

$$S_q^s = \left\{ (x_n) : \lim_{n \to \infty} \frac{1}{s_n} \left| \{k \le n : c \preceq d(x_k, x)\} \right| = 0 \text{ for some } x \in \mathbb{R} \text{ and for all } c \in E^+ \right\}$$

If we take $t = (t_n)$ instead of $s = (s_n)$, we will write N_q^t and S_q^t instead of N_q^s and S_q^s , respectively.

Theorem 2.9. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. If a sequence (x_n) in a cone metric space (X, d) is quasi-statistical convergent to x with respect to $s = (s_n)$, then (x_n) sequence is quasi-statistical convergent to x with respect to $t = (t_n)$.

Proof. Suppose that for every $c \in E^+$ we have $\lim_{n \to \infty} \frac{1}{s_n} |\{k \le n : c \le d(x_k, x)\}| = 0$. Since $s_n \le t_n$ holds for every $n \in \mathbb{N}$, we have the inequality

$$\frac{1}{s_n} |\{k \le n : c \le d(x_k, x)\}| \ge \frac{1}{t_n} |\{k \le n : c \le d(x_k, x)\}|.$$

Letting $n \to \infty$ in both sides of the above inequality, we obtain that the sequence (x_n) is quasi-statistical convergent to x with respect to $t = (t_n)$. \Box .

Now, we consider the sequence (x_n) in Example 2.2 and if we take $t_n = n$ and $s_n = n^{1/4}$, then we observe that the sequence (x_n) is quasi-statistical convergent to zero with respect to the sequence $t = (t_n)$ but the sequence (x_n) is not quasi-statistical convergent to zero with respect to the sequence $s = (s_n)$. Thus, the following result can given as a consequence of this theorem.

Corollary 2.3. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. Then, the inclusion $S_q^s \subset S_q^t$ strictly holds.

Theorem 2.10. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. If a sequence (x_n) in a cone metric space (X, d) is strongly quasi-summable to x with respect to $s = (s_n)$, then the sequence (x_n) is quasi-statistical convergent to x with respect to $t = (t_n)$.

Proof. Let $\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1} ||d(x_k, x)|| = 0$. By using the fact that

$$\sum_{k=1}^{n} \|d(x_{k}, x)\| = \sum_{\substack{k=1\\ \|d(x_{k}, x)\| \ge \varepsilon}}^{n} \|d(x_{k}, x)\| + \sum_{\substack{k=1\\ \|d(x_{k}, x)\| < \varepsilon}}^{n} \|d(x_{k}, x)\| \ge \varepsilon |\{k \le n : \|d(x_{k}, x)\| \ge \varepsilon\}$$

and $s_n \leq t_n$ for every $n \in \mathbb{N}$, we obtain

$$\frac{1}{\varepsilon} \frac{1}{s_n} \sum_{k=1}^n \left\| d\left(x_k, x\right) \right\| \ge \frac{1}{t_n} \left| \left\{ k \le n : \left\| d\left(x_k, x\right) \right\| \ge \varepsilon \right\} \right|.$$

Since the limit of the left side equals to zero, we have $st_q - \lim_{n \to \infty} d(x_n, x) = 0$ with respect to $t = (t_n)$. From Remark 2.1, we conclude that $st_q - \lim_{n \to \infty} x_n = x$ with respect to $t = (t_n)$. \Box .

The converse of this theorem is not always true.

Example 2.3. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\}$, $X = \mathbb{R}$ and $d : X \times X \to E$ be the cone metric defined by d(x, y) = (|x - y|, |x - y|). Consider the sequence (x_n) defined by

$$x_n = \begin{cases} 1, & n = m^2 \\ 0, & n \neq m^2 \end{cases} \quad m \in \mathbb{N}$$

Let $(s_n) = \left(n^{\frac{1}{4}}\right)$ and $(t_n) = (n)$. We have

$$d(x_n, 0) = \begin{cases} (1, 1), & n = m^2 \\ (0, 0), & n \neq m^2 \end{cases} \quad m \in \mathbb{N}$$

Hence, given any $c \in E^+$ and $n \in \mathbb{N}$, we obtain

$$\frac{1}{t_n} |\{k \le n : d(x_k, 0) \prec \prec c\}| \ge \frac{1}{t_n} |\{k \le n : n \ne m^2\}|.$$

Since the limit of the right side equals 1, we conclude that the sequence (x_n) is quasistatistical convergent to zero with respect to $t = (t_n)$.

Now, we will show that the sequence (x_n) is not strongly quasi-summable to zero with respect to $s = (s_n)$. It is clear that

$$\|d(x_k, 0)\| = \begin{cases} \sqrt{2}, & k = m^2 \\ 0, & k \neq m^2 \end{cases} m \in \mathbb{N}$$

Then, we obtain that

$$\sum_{k=1}^{n} \|d(x_{k}, 0)\| = 0 |\{k \le n : k \ne m^{2} \text{ for all } m \in \mathbb{N}\}|$$

+ $\sqrt{2} |\{k \le n : k = m^{2} \text{ for some } m \in \mathbb{N}\}|$
= $0. (n - [|\sqrt{n}|]) + \sqrt{2} ([|\sqrt{n}|]).$

and so

$$\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1}^n \|d(x_k, 0)\| = \lim_{n \to \infty} \frac{1}{s_n} \sqrt{2} \left(\left[|\sqrt{n}| \right] \right) = \infty.$$

Consequently, we find that

$$\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1}^n \|d(x_k, 0)\| \neq 0.$$

which means the sequence (x_n) is not strongly quasi-summable to zero with respect to $s = (s_n)$.

Corollary 2.4. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. The inclusion $N_q^s \subset S_q^t$, strictly holds.

Theorem 2.11. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. If a sequence (x_n) in a cone metric space (X, d) is strongly quasi-summable to x with respect to $s = (s_n)$, then the sequence (x_n) is strongly quasi-summable sequence to x with respect to $t = (t_n)$.

Proof. Suppose that the sequence (x_n) is strongly quasi-summable to x with respect to $s = (s_n)$. Then, we have

$$\lim_{n \to \infty} \frac{1}{s_n} \sum_{k=1}^n \|d(x_k, x)\| = 0.$$

From the fact that $s_n \leq t_n$ for every $n \in \mathbb{N}$, we have the following inequality

$$\frac{1}{s_n} \sum_{k=1}^n \|d(x_k, x)\| \ge \frac{1}{t_n} \sum_{k=1}^n \|d(x_k, x)\|.$$

Hence, we conclude that $\lim_{n \to \infty} \frac{1}{t_n} \sum_{k=1}^n \|d(x_k, x)\| = 0.$ \Box .

But the converse of this theorem is not always true. To observe this, consider the sequences (x_n) , $s = (s_n)$ and $t = (t_n)$ defined in Example 2.3. It can be shown that $(x_n) \in N_q^t$ and $(x_n) \notin N_q^s$. Thus, the following corollary can be given as a result of this theorem.

Corollary 2.5. Let $s_n \leq t_n$ for every $n \in \mathbb{N}$. The inclusion $N_q^s \subset N_q^t$, strictly holds.

REFERENCES

- 1. C. D. ALIPRANTICE and R. TOURKY: *Cones and Duality*. American Mathematical Society, USA, 2007.
- K. P. CHI and T. V. AN: Dugundji's theorem for cone metric space. Appl. Math. Lett. 24 (2011), 387-390.
- 3. J. CONNOR: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. **32** (1989), 194-198.
- 4. J. CONNOR: The statistical and strong p-Cesaro convergence of sequences. Analysis (1998), 47-63.
- H. ÇAKALLI: A study on statistical convergence. Funct. Anal. Approx. Comput, 1 (2) (2009), 19-24.
- 6. K. DEIMLING: Nonlinear Analysis. Springer-Verlag, 1985.
- 7. H. FAST: Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
- 8. J. A. FRIDY: On statistical convergence. Analysis 5 (1985), 301-313.
- J. A. FRIDY: Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), 1187-1192.
- M. GANICHEV and V. KADETS: Filter convergence in Banach spaces and generalized bases. In: General Topology in Banach Spaces (Taras Banach, eds.) NOVA Science Publishers, Huntington, New York, 2001, pp.61-69.
- L. G. HUANG and X. ZHANG: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2) (2007), 1467-1475.
- 12. P. KOSTYRKO, M. MACAJ, T. SALAT and O. STRAUCH: On statistical limit points. Proc. Amer. Math. Soc. **129** (2000), 2647-2654.
- K. LI, S. LIN and Y.GE: On statistical convergence in cone metric space. Topology Appl. 196 (2015), 641-651.
- G. DI. MAIO and L. D. R. KOINAC: Statistical convergence in topology. Topology Appl. 156 (2008), 28-45.
- 15. İ. SAKAOGLU OZGUC and T. YURDAKADIM: On quasi-statistical convergence. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. **61** (1) (2012), 11-17.
- S. REZAPOUR and R. HALMBARANI: Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings". J. Math. Anal. Appl. 345 (2008), 719-724.
- B. RZEPECKI: On fixed point theorems of Maia type. Publ. Inst. Math. 28 (42) (1980), 179-186.
- I. J. SCHOENBERG: The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
- H. STEINHAUS: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. 2 (1951), 73-74.

Nihan Turan Faculty of Science and Arts Department of Mathematics Düzce University Düzce, Turkey nhn_trn08@hotmail.com

Emrah Evren Kara Faculty of Science and Arts Department of Mathematics Düzce University Düzce, Turkey karaeevren@gmail.com

Merve İlkhan Faculty of Science and Arts Department of Mathematics Düzce University Düzce, Turkey merveilkhan@gmail.com