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Abstract. The main purpose of this paper is to define a new type of statistical conver-
gence of sequences in a cone metric space and investigate the relations of these sequences
with some other sequences.
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1. Introduction and Preliminaries

The study of statistical convergence apparently goes back to Steinhaus [19] and
Fast [7]. This concept has been studied under different names in spaces such as topo-
logical spaces, cone metric spaces etc. (see, for example [5],[8],[9],[12],[13],[14],[18]).
Long-Guang and Xian [11] suggested the idea of a cone metric space. The main
difference with a metric is that a cone metric is valued in an ordering Banach space.
Later, several authors studied cone metric spaces and applied different names. This
concept takes a vital role in computer science, statistics and some other research
areas as well as general topology (see, for example [2],[2],[7],[11],[16]). The defini-
tion of statistical convergence and statistical boundedness of a sequence in a cone
metric space was studied by Kedian, Shou and Ying [13]. In [10], the authors
defined the concept of a quasi-statistical filter. Also it is known that statistical
convergence is related to Cesaro summability and strong-Cesaro summability (see,
for example [4],[3],[18]). Recently, Sakaoğlu and Yurdakadim [15] defined the no-
tions of quasi-statistical convergence and strongly-Cesaro summability by relying
on [4], [3], [10] and [18], and they found some inclusion theorems between these
concepts. In the present paper, we introduce the quasi-statistical convergence and
quasi-statistical boundedness of a sequence on a cone metric space, and obtain some
theorems related to quasi-statistically convergent sequences. Later, we give the def-
inition of strongly-quasi summable sequences in a cone metric space and we also
investigate some theorems related to quasi-statistically convergent sequences and
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strongly–quasi summable sequences. Finally, we present some results related to
these theorems.

Throughout this paper, by N and R we denote the set of all positive integers
and the set of all real numbers, respectively. For a subset S of N, |S| stands for the
cardinality of S.

Definition 1.1. ([7]) Let S ⊂ N and S (m) = {i ∈ S : i ≤ m} for each m ∈ N. If
the following limit exists, then

δ(S) = lim
m→∞

|S (m)|

m

is called the asymptotic (or natural) density of S. It is clear that δ(S) ∈ [0, 1]. Also,
if δ(S) = 1, then S is said to be statistically dense. It can be easily obtained that
δ (N− S) = 1− δ (S) for each S ⊂ N.

Definition 1.2. ([8]) A sequence (xm) in R is said to be statistically convergent
to a point x ∈ R if for each ε > 0,

lim
m→∞

1

m
{i ≤ m : |xi − x| ≥ ε} = 0

or equivalently

lim
m→∞

1

m
{i ≤ m : |xi − x| < ε} = 1.

Definition 1.3. ([1]) Let E be a real Banach space. A subset P of E is called a
cone if it satisfies the following conditions:

(1) P 6= Ø, P 6= {0} and P is closed.

(2) ax+ by ∈ P for all x, y ∈ P and a, b ∈ R with a, b ≥ 0.

(3) If x ∈ P and −x ∈ P , then x = 0 for all x, y ∈ P .

A partial ordering ” � ” with respect to P is defined by x � y ⇔ y − x ∈ P .
Also, we mean x ≺ y ⇔ x � y, x 6= y and x ≺≺ y ⇔ y−x ∈ E+, where E+ denotes
the interior of P ; that is E+ = {c ∈ E : 0 ≺≺ c}. The cone P is called normal if
there is a number K > 0 such that for all x, y ∈ E, 0 � x � y implies ‖x‖ ≤ K ‖y‖.
The least positive number satisfying this inequality is called the normal constant of
P .

In this study, we always suppose that E is a Banach space, P is a cone in E
with E+ 6= Ø and ” � ” is a partial ordering with respect to P .

Definition 1.4. ([17]) Let X be a non-empty set. Suppose the mapping d : X ×
X → E satisfies

1. 0 � d (x, y) for all x, y ∈ X and d (x, y) = 0 if and only if x = y,
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2. d (x, y) = d (y, x) for all x, y ∈ X ,

3. d (x, y) � d (x, z) + d (y, z) for all x, y, z ∈ X .

Then d is called a cone metric on X , (X, d) is called a cone metric space.

Definition 1.5. ([11]) A sequence (xn) in a cone metric space (X, d) is said to be
convergent to x ∈ X if for every c ∈ E+ there exists a natural number N such that
d (xn, x) ≺≺ c for all n > N .

Definition 1.6. ([13]) A sequence (xn) in a cone metric space (X, d) is said to be
statistically convergent to x ∈ X if for every c ∈ E+

lim
n→∞

1

n
|{k ≤ n : d (xk, x) ≺≺ c}| = 1.

It is denoted by st- lim
n→∞

xn = x.

Definition 1.7. ([13]) A sequence (xn) in a cone metric space (X, d) is said to be
statistically bounded if there exist α ∈ X and c ∈ E+ such that

lim
n→∞

1

n
|{k ≤ n : d (xk, α) � c}| = 1.

Definition 1.8. ([15]) Let s = (sn) be a sequence of positive real numbers such
that

(1.1) lim
n
sn = ∞ and lim sup

n

sn
n

< ∞.

The quasi density of a subset K ⊂ N with respect to the sequence s = (sn) is
defined by

δs (K) = lim
n→∞

1

sn
|{k ≤ n : k ∈ K}| .

A sequence (xn) in R is called quasi-statistical convergent to x provided that for
every ε > 0 the set Kε = {k ∈ N : |xk − x| ≥ ε} has quasi-density zero. It is denoted
by stq-limn→∞ xn = x.

Throughout the study, we assume that s = (sn) and t = (tn) are sequences of
positive real numbers satisfying the conditions in (1.1).

Definition 1.9. ([15]) A sequence (xn) in R is said to be strongly quasi-summable
to x ∈ R if

lim
n→∞

1

sn

n
∑

k=1

|xk − x| = 0.
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2. Main Results

In this section, we first define the quasi-statistical convergence of a sequence in
a cone metric space. Later, we give some results related to this concept.

Definition 2.1. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical convergent to a point x ∈ X if for every c ∈ E+ we have

lim
n→∞

1

sn
|{k ≤ n : d(xk, x) ≺≺ c}| = 1

or equivalently

lim
n→∞

1

sn
|{k ≤ n : c � d(xk, x)}| = 0.

We denote it by stq − lim
n→∞

xn = x. If we take (sn) = (n), then we obtain that (xn)

is statistical convergent.

Theorem 2.1. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is

convergent to x ∈ X, then it is quasi-statistical convergent to x.

Proof. Let lim
n→∞

xn = x. Then, for every c ∈ E+ there exists n0 ∈ N such that

d (xn, x) ≺≺ c for every n > n0. It follows that

1

sn
|{k ≤ n : c � d (xk, x)}| ≤

n0

sn

which means limn→∞
1
sn

|{k ≤ n : c � d (xk, x)}| = 0. Hence, (xn) is quasi-statistical
convergent to x. .

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.1. Let E = R, P = [0,∞) and X = R. Consider X with usual metric
d(x, y) = |x− y|. Let sn = n3/4. Define a sequence (xn) as follows:

xn =

{

0, n 6= m2 for all m ∈ N

n, n = m2 for some m ∈ N

It is obvious that (xn) is not convergent. On the other hand, it is quasi-statistical conver-
gent to 0. Indeed, given any c ∈ E+, we obtain the inclusion

{n : c � d (xn, 0)} ⊂ {n : n = m2,m ∈ N}.

Hence we conclude that

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, 0)}| ≤ lim

n→∞

1

sn

∣

∣

{

k ≤ n : k = m2,m ∈ N
}∣

∣

= lim
n→∞

1

sn

[∣

∣

√
n
∣

∣

]

= 0.
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Theorem 2.2. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is

quasi-statistical convergent to x ∈ X, then it is statistical convergent to x.

Proof. Let stq- lim
n→∞

xn = x and M = sup
n

sn
n . Then, for every c ∈ E+, we have

lim
n→∞

1
sn

|{k ≤ n : c � d (xk, x)}| = 0. The statistical convergence of the sequence

(xn) follows from the following inequality

1

n
|{k ≤ n : c � d (xk, x)}| ≤

M

sn
|{k ≤ n : c � d (xk, x)}| .

.

The converse of the previous theorem does not hold which can be seen from the
following example.

Example 2.2. LetX = R, E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} , X = R and d : X×X →

E be the cone metric defined by d (x, y) = (|x− y| , α |x− y|), where α > 0 is a constant.

Assume that the sequence (sn) satisfies lim
n

√
n

sn
= ∞. We can choose a subsequence

(

snp

)

such that snp > 1 for each p ∈ N. Consider the sequence (xn) defined by

xn =







sn, n = m2and sn ∈
{

snp : p ∈ N
}

1, n = m2 and sn /∈
{

snp : p ∈ N
}

0, otherwise.
(m ∈ N)

Then, we have

d (xn, 0) =







(sn, αsn) , n = m2 and sn ∈
{

snp : p ∈ N
}

(1, α) , n = m2 and sn /∈
{

snp : p ∈ N
}

(0, 0) , otherwise.
(m ∈ N)

It is easy to see that (xn) is statistical convergent to zero. Now, we show that (xn) is not
quasi-statistical convergent to zero; that is,

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, 0)}| 6= 0.

For c = (1, α) ∈ E+ and n ∈ N, we have

|{k ≤ n : c � d (xk, 0)}| =
∣

∣

{

k ≤ n : k = m2, m ∈ N
}∣

∣

and

(2.1)
1

sn
|{k ≤ n : c � d (xk, 0)}| =

1

sn

(√
n− rn

)

,

where 0 ≤ rn < 1. If we take the limit of (2.1) as n → ∞, we conclude that (xn) is not
quasi-statistical convergent to zero.

Consequently, we have the following diagram:

convergent ⇒ quasi-statistical convergent ⇒ statistical convergent
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Theorem 2.3. Assume that

(2.2) h = inf
n

sn
n

> 0.

If a sequence (xn) in a cone metric space (X, d) is statistical convergent to x ∈ X,

then it is quasi-statistical convergent to x.

Proof. The proof follows from the inequality

1

n
|{k ≤ n : c � d (xk, L)}| ≥ h

1

sn
|{k ≤ n : c � d (xk, L)}| .

.

Corollary 2.1. Assume that the sequence (sn) satisfies (2.2). Then, (xn) is sta-

tistical convergent to x if and only if (xn) is quasi-statistical convergent to x.

Theorem 2.4. If (xn) is quasi-statistical convergent to x in a cone metric space

(X, d), then there is a sequence (yn) which is convergent to x and quasi-statistical

null sequence (zn) such that xn = yn + zn for all n ∈ N.

Proof. Let stq − lim
n→∞

xn = x. If the terms of the sequence (xn) is constant

after a certain stage, then the proof is trivial. Otherwise given any c ∈ E+, we
can find an increasing sequence of positive integers (Nj) such that N0 = 0 and
1
sn

∣

∣

∣

{

k ≤ n : e
j � d (xk, x)

}∣

∣

∣
< 1

j for all n > Nj (j = 1, 2, ...). Let us define (yk) and

(zk) as follows:

zk = 0 and yk = xk; if N0 < k ≤ N1,
zk = 0 and yk = xk; if d (xk, x) ≺≺ e

j , Nj < k ≤ Nj+1,

zk = xk − x and yk = x; if e
j � d (xk, x) , Nj < k ≤ Nj+1.

It is easy to see that xk = yk+zk for all k ∈ N. Now, we show that (yk) is convergent
to x. Given any c ∈ E+, choose j ∈ N such that e

j ≺≺ c.

If
e

j
� d (xk, x) for k > Nj, then d (yk, x) = d(x, x) = 0.

If d (xk, x) ≺≺ e
j for k > Nj , then d (yk, x) = d (xk, x) ≺≺ e

j ≺≺ c. Hence, it follows
that lim

k→∞
yk = x.

To show that (zk) is quasi-statistical null sequence; it is enough to prove that

lim
n→∞

1

sn
|{k ≤ n : zk 6= 0}| = 0.

For c ∈ E+, it is clear that the inclusion

{k ≤ n : c � d (zk, 0)} ⊆ {k ≤ n : zk 6= 0}
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holds for all n ∈ N. Thus, we have

|{k ≤ n : c � d (zk, 0)}| ≤ |{k ≤ n : zk 6= 0}| .

Given any δ > 0 there is a j ∈ N such that 1
j < δ. If Nj < k ≤ Nj+1, we have

|{k ≤ n : zk 6= 0}| =

∣

∣

∣

∣

{

k ≤ n :
e

j
� d (xk, x)

}
∣

∣

∣

∣

.

Thus, we have

1

sn
|{k ≤ n : zk 6= 0}| ≤

1

sn

∣

∣

∣

{

k ≤ n :
e

v
� d (xk, x)

}∣

∣

∣
<

1

v
<

1

j
< δ

for Nv < k ≤ Nv+1 and v > j which concludes the proof. .

The following result is an immediate consequence of the previous theorem.

Corollary 2.2. If (xn) is quasi-statistical convergent to x, then it has a subse-

quence (yn) which is convergent to x.

Definition 2.2. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical Cauchy if for every c ∈ E+ there exists n0 ∈ N such that

lim
n→∞

1

sn
|{k ≤ n : d (xk, xn0

) ≺≺ c}| = 1

or equivalently

lim
n→∞

1

sn
|{k ≤ n : c � d(xk, xn0

)}| = 0.

Theorem 2.5. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is a

Cauchy sequence, then it is a quasi-statistical Cauchy sequence.

Proof. Let (xn) be a Cauchy sequence. Then, for every c ∈ E+ there exists
n0 ∈ N such that d (xn, xm) ≺≺ c for every n,m ≥ n0. It follows that

1

sn
|{k ≤ n : c � d (xk, xn0

)}| ≤
n0

sn

which means limn→∞
1
sn

|{k ≤ n : c � d (xk, xn0
)}| = 0. Hence, (xn) is quasi-statistical

Cauchy. .

The sequence given in Example 2.1 is also a quasi-statistical Cauchy sequence
which is not a Cauchy sequence.

Theorem 2.6. Let (xn) be a sequence in a cone metric space (X, d). If (xn) is a

quasi-statistical Cauchy sequence, then it is a statistical Cauchy sequence.



620 N. Turan, E. E. Kara and M. İlkhan

Proof. Let (xn) be a quasi-statistical Cauchy sequence. Then, for every c ∈ E+

there exists n0 ∈ N such that lim
n→∞

1
sn

|{k ≤ n : c � d (xk, xn0
)}| = 0. Thus we have

1

n
|{k ≤ n : c � d (xk, xn0

)}| =
sn
n

1

sn
|{k ≤ n : c � d (xk, xn0

)}|

≤ K
1

sn
|{k ≤ n : c � d (xk, xn0

)}| ,

where K = supn
sn
n . This implies that (xn) is a statistical Cauchy sequence in

X . .

Consequently, we have the following diagram:

Cauchy ⇒ quasi-statistical Cauchy ⇒ statistical Cauchy

Definition 2.3. A sequence (xn) in a cone metric space (X, d) is said to be quasi-
statistical bounded if there exist α ∈ X and c ∈ E+ such that

lim
n→∞

1

sn
|{k ≤ n : c � d (xk, α)}| = 0.

Theorem 2.7. If (xn) is quasi-statistical bounded sequence in a cone metric space

(X, d), then it is statistical bounded.

Proof. Let (xn) be a quasi-statistical bounded sequence, α ∈ X andH = sup
n

sn
n .

Since the inequality

1

n
|{k ≤ n : c � d (xk, α)}| ≤

H

sn
|{k ≤ n : c � d (xk, α)}|

holds, the proof follows immediately. .

Lemma 2.1. Let P be a normal cone with normal constant K. The following

statements hold for sequences (xn) and (yn) in a cone metric space (X, d).

1. stq − lim
n→∞

xn = x ⇔ stq − lim
n→∞

d (xn, x) = 0

2. If stq− lim
n→∞

xn = x and stq− lim
n→∞

yn = y, then stq− lim
n→∞

d (xn, yn) = d (x, y) .

Proof. (1) Suppose that stq − lim
n→∞

xn = x. Then, for every c ∈ E+, we have

lim
n→∞

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| = 1.

Given any ε > 0, choose c ∈ E+ such that K ‖c‖ < ε. Suppose that k ∈ N satisfies
d (xk, x) ≺≺ c. Since P is a normal cone with normal constant K, we can write

‖d (xk, x)‖ ≤ K ‖c‖ < ε.
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Consequently, we obtain

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| ≤

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| .

Hence, we conclude that

lim
n→∞

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| = 1

which means stq − lim
n→∞

d (xn, x) = 0.

Conversely, suppose that stq − lim
n→∞

d (xn, x) = 0. Then for every ε > 0, we have

lim
n→∞

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| = 1.

Given any c ∈ E+, we can find an ε > 0 such that c − a ∈ E+ for all a ∈ E
with ‖a‖ < ε. Hence, if we choose k ∈ N such that ‖d(xk, x)‖ < ε, then we
obtain d(xk, x) ≺≺ c which implies that the inclusion {k : ‖d(xk, x)‖ < ε} ⊂ {k :
d(xk, x) ≺≺ c} holds. It follows that

1

sn
|{k ≤ n : ‖d (xk, x)‖ < ε}| ≤

1

sn
|{k ≤ n : d (xk, x) ≺≺ c}| .

Thus, we conclude that lim
n→∞

1
sn

|{k ≤ n : d (xk, x) ≺≺ c}| = 1 and so stq− lim
n→∞

xn =
x.

(2) Suppose stq − lim
n→∞

xn = x and stq − lim
n→∞

yn = y. Given any ε > 0, choose

c ∈ E+ such that ‖c‖ < ε
4K+2 . For k ∈ N with d(xk, x) ≺≺ c and d(yk, y) ≺≺ c,

we have ‖d(xk, yk) − d(x, y)‖ < ε from the proof of Lemma 5 in [11]. Hence, the
inclusion

{k : ‖d(xk, yk)− d(x, y)‖ ≥ ε} ⊂ {k : c � d(xk, x)} ∪ {k : c � d(yk, y)}

holds. It follows that

lim
n→∞

1

sn
|{k ≤ n : ‖d(xk, yk)− d(x, y)‖ ≥ ε}| = 0

which means that stq − lim
n→∞

d (xn, yn) = d (x, y) . .

Remark 2.1. Note that P does not need to be a normal cone to prove the sufficiency
condition in 1 of Lemma 2.1. That is; if stq − lim

n→∞
d (xn, x) = 0 in a cone metric space

(X, d), then we have stq − lim
n→∞

xn = x.

Theorem 2.8. Let (xn) and (yn) be two sequences in a cone metric space (X, d).
If stq− lim

n→∞
yn = y and d (xn, y) � d (yn, y) for every n ∈ N, then stq− lim

n→∞
xn = y.



622 N. Turan, E. E. Kara and M. İlkhan

Proof. Suppose that stq− lim
n→∞

yn = y and d (xn, y) � d (yn, y) for every n ∈ N.

The proof follows from the fact that

1

sn
|{k ≤ n : d (yk, y) � c}| ≤

1

sn
|{k ≤ n : d (xk, y) � c}| .

.

Definition 2.4. A sequence (xn) in a cone metric space (X, d) is said to be
strongly quasi-summable to x, if

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0

holds.

We will use Ns
q and Ss

q for the set of all strongly quasi-summable sequences and
all quasi-statistical convergent sequences, respectively. That is,

Ns
q =

{

(xn) : lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0 for some x

}

and

Ss
q =

{

(xn) : lim
n→∞

1

sn
|{k ≤ n : c � d(xk, x)}| = 0 for some x ∈ R and for all c ∈ E+

}

If we take t = (tn) instead of s = (sn), we will write N t
q and St

q instead of Ns
q and

Ss
q , respectively.

Theorem 2.9. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric

space (X, d) is quasi-statistical convergent to x with respect to s = (sn), then (xn)
sequence is quasi-statistical convergent to x with respect to t = (tn).

Proof. Suppose that for every c ∈ E+ we have lim
n→∞

1
sn

|{k ≤ n : c � d (xk, x)}| =

0. Since sn ≤ tn holds for every n ∈ N, we have the inequality

1

sn
|{k ≤ n : c � d (xk, x)}| ≥

1

tn
|{k ≤ n : c � d (xk, x)}| .

Letting n → ∞ in both sides of the above inequality, we obtain that the sequence
(xn) is quasi-statistical convergent to x with respect to t = (tn). .

Now, we consider the sequence (xn) in Example 2.2 and if we take tn = n and
sn = n1/4, then we observe that the sequence (xn) is quasi-statistical convergent
to zero with respect to the sequence t = (tn) but the sequence (xn) is not quasi-
statistical convergent to zero with respect to the sequence s = (sn). Thus, the
following result can given as a consequence of this theorem.
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Corollary 2.3. Let sn ≤ tn for every n ∈ N. Then, the inclusion Ss
q ⊂ St

q strictly

holds.

Theorem 2.10. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric

space (X, d) is strongly quasi-summable to x with respect to s = (sn), then the

sequence (xn) is quasi-statistical convergent to x with respect to t = (tn).

Proof. Let lim
n→∞

1
sn

∑

k=1

‖d (xk, x)‖ = 0. By using the fact that

n
∑

k=1

‖d (xk, x)‖ =

n
∑

k=1
‖d(xk,x)‖≥ε

‖d (xk, x)‖+

n
∑

k=1
‖d(xk,x)‖<ε

‖d (xk, x)‖ ≥ ε |{k ≤ n : ‖d (xk, x)‖ ≥ ε}|

and sn ≤ tn for every n ∈ N, we obtain

1

ε

1

sn

n
∑

k=1

‖d (xk, x)‖ ≥
1

tn
|{k ≤ n : ‖d (xk, x)‖ ≥ ε}| .

Since the limit of the left side equals to zero, we have stq − lim
n→∞

d (xn, x) = 0 with

respect to t = (tn). From Remark 2.1, we conclude that stq − lim
n→∞

xn = x with

respect to t = (tn). .

The converse of this theorem is not always true.

Example 2.3. Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} , X = R and d : X ×X → E be

the cone metric defined by d (x, y) = (|x− y| , |x− y|). Consider the sequence (xn) defined
by

xn =

{

1, n = m2

0, n 6= m2 m ∈ N

Let (sn) =
(

n
1

4

)

and (tn) = (n). We have

d(xn, 0) =

{

(1, 1), n = m2

(0, 0), n 6= m2 m ∈ N

Hence, given any c ∈ E+ and n ∈ N, we obtain

1

tn
|{k ≤ n : d (xk, 0) ≺≺ c}| ≥ 1

tn

∣

∣

{

k ≤ n : n 6= m2
}∣

∣ .

Since the limit of the right side equals 1, we conclude that the sequence (xn) is quasi-
statistical convergent to zero with respect to t = (tn).

Now, we will show that the sequence (xn) is not strongly quasi-summable to zero with
respect to s = (sn). It is clear that

‖d (xk, 0)‖ =

{ √
2, k = m2

0, k 6= m2 m ∈ N
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Then, we obtain that

n
∑

k=1

‖d (xk, 0)‖ = 0
∣

∣

{

k ≤ n : k 6= m2 for all m ∈ N
}∣

∣

+
√
2
∣

∣

{

k ≤ n : k = m2 for some m ∈ N
}∣

∣

= 0.
(

n−
[∣

∣

√
n
∣

∣

])

+
√
2
([∣

∣

√
n
∣

∣

])

.

and so

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, 0)‖ = lim
n→∞

1

sn

√
2
([∣

∣

√
n
∣

∣

])

= ∞.

Consequently, we find that

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, 0)‖ 6= 0.

which means the sequence (xn) is not strongly quasi-summable to zero with respect to
s = (sn).

Corollary 2.4. Let sn ≤ tn for every n ∈ N. The inclusion Ns
q ⊂ St

q, strictly
holds.

Theorem 2.11. Let sn ≤ tn for every n ∈ N. If a sequence (xn) in a cone metric

space (X, d) is strongly quasi-summable to x with respect to s = (sn), then the

sequence (xn) is strongly quasi-summable sequence to x with respect to t = (tn).

Proof. Suppose that the sequence (xn) is strongly quasi-summable to x with
respect to s = (sn). Then, we have

lim
n→∞

1

sn

n
∑

k=1

‖d (xk, x)‖ = 0.

From the fact that sn ≤ tn for every n ∈ N, we have the following inequality

1

sn

n
∑

k=1

‖d (xk, x)‖ ≥
1

tn

n
∑

k=1

‖d (xk, x)‖ .

Hence, we conclude that lim
n→∞

1
tn

n
∑

k=1

‖d (xk, x)‖ = 0. .

But the converse of this theorem is not always true. To observe this, consider
the sequences (xn), s = (sn) and t = (tn) defined in Example 2.3. It can be shown
that (xn) ∈ N t

q and (xn) /∈ Ns
q . Thus, the following corollary can be given as a

result of this theorem.

Corollary 2.5. Let sn ≤ tn for every n ∈ N. The inclusion Ns
q ⊂ N t

q , strictly
holds.
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Merve İlkhan

Faculty of Science and Arts

Department of Mathematics
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Düzce, Turkey

merveilkhan@gmail.com


