
FACTA UNIVERSITATIS (NIŠ)
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SOME RESULTS ON (k, µ)′-ALMOST KENMOTSU MANIFOLDS ∗

Wenfeng Ning, Ximin Liu and Jin Li

Abstract. In this paper, we study the quasi-conformal curvature tensor C̃ and pro-
jective curvature tensor P on a (k, µ)′-almost Kenmotsu manifold M2n+1 of dimension
greater than 3. We obtain that if M2n+1 is non-Kenmotsu and satisfies R · C̃ = 0 or
P · P = 0, then it is locally isometric to the Riemannian product Hn+1(−4)× R

n.
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1. Introduction

In 1972, K. Kenmotsu introduced a new class of almost contact metric manifolds,
nowadays known as Kenmotsu manifolds [8]. The concept of almost Kenmotsu
manifolds, regarded as a generalization of Kenmotsu manifolds, was studied by
Janssens and Vanhecke (see [4]). In 2007, Pitiş [7] published a book containing many
systematic studies related to Kenmotsu manifolds. Some geometric properties and
fundamental formulas of almost Kenmotsu manifolds were obtained by Kim and Pak
[11] and Pastore et al. [5, 6]. Several authors studied almost Kenmotsu manifolds
considering some curvature conditions (see [12, 13, 14]). Recently, some curvature
properties of some types of almost Kenmotsu manifolds were obtained by Wang and
Liu in [15, 16, 17, 18].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a (2n + 1)-dimensional Riemannian manifold.
If there exists a one-to-one correspondence between each coordinate neighbourhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat (see [2]). For n ≥ 1, M is locally projectively flat if and
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only if the projective curvature tensor P vanishes. Here P is defined by

(1.1) P (X,Y )U = R(X,Y )U − 1

2n
[S(Y, U)X − S(X,U)Y ]

for any vector fields X,Y, U ∈ X(M), where S is the Ricci tensor of M .

The Weyl conformal curvature tensor C on a (2n+ 1)-dimensional manifold M

is defined by [20]

C(X,Y )Z =R(X,Y )Z +
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ]

− 1

2n− 1
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

(1.2)

for any vector fields X,Y, Z on M , where S, Q and r denote the Ricci curvature
tensor, the Ricci operator with respect to the metric g and the scalar curvature,
respectively. Note that the Weyl conformal curvature tensor on any three dimension
Riemannian manifold vanishes.

For a (2n+1)-dimensional manifold M , the quasi-conformal curvature tensor C̃
is defined by [21]

C̃(X,Y )Z =aR(X,Y )Z − r

2n+ 1
[
a

2n
+ 2b][g(Y, Z)X − g(X,Z)Y ]

+ b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ],
(1.3)

where a and b are two constants. If a = 1 and b = − 1

2n−1
, then the quasi-conformal

curvature tensor reduces to the Weyl conformal curvature tensor.

In this paper, we aim to extend some known results regarding the projective
and quasi-conformal curvature tensor on Kenmotsu manifolds (see [1, 2, 9, 10]) to a
class of almost Kenmotsu manifolds. In Section 2, we recall some basic formulas and
properties of almost Kenmotsu manifolds and the notion of (k, µ)′-almost Kenmotsu
manifolds. In Section 3, we introduce some properties of such manifolds used to
prove our main results. In Section 4 and 5, we classify almost Kenmotsu manifolds
satisfying R · C̃ = 0 and P · P = 0, respectively.

2. Almost Kenmotsu manifolds

Let M2n+1 be an almost contact metric manifold of dimension 2n+1, equipped
with an almost contact metric structure (φ, ξ, η, g) (see [3]) satisfying

(2.1) φ2 = −id + η ⊗ ξ, η(ξ) = 1, η ◦ ξ = 0, φξ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for anyX,Y ∈ X(M), where φ, ξ, η, g and X(M) denote a (1, 1)-tensor field, a vector
field, a 1-form, the Riemannian metric and the Lie algebra of all differentiable vector
fields on M2n+1, respectively.
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The fundamental 2-form Φ of an almost contact metric manifold M2n+1 is de-
fined by Φ(X,Y ) = g(X,φY ) for any fieldsX,Y ∈ X(M). M2n+1 is called an almost
Kenmotsu manifold if dη = 0 and dΦ = 2η ∧ Φ. The almost contact metric mani-
fold is said to be normal if the Nijenhuis tensor of φ is given by [φ, φ] = −2dη ⊗ ξ,
where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]. A normal almost
Kenmotsu manifold is said to be a Kenmotsu manifold [4].

On an almost Kenmotsu manifold M2n+1, the two (1, 1)-type tensor fields l =
R(·, ξ)ξ and h = 1

2
Lξφ are symmetric, where R is the Riemannian curvature tensor

of g and L is the Lie differentiation. Then we get

(2.3) hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0.

We also have the following formulas presented in [5, 6]:

(2.4) ∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0),

(2.5) φlφ− l = 2(h2 − φ2),

(2.6) trl = S(ξ, ξ) = g(Qξ, ξ) = −2n− trh2,

(2.7) R(X,Y )ξ = η(X)(Y + h′Y )− η(Y )(X + h′X) + (∇Xh′)Y − (∇Y h
′)X

for any X,Y ∈ X(M), where h′ = h◦φ and S, Q, ∇, X(M) denote the Ricci tensor,
the Ricci operator with respect to g, the Levi-Civita connection of g and the Lie
algebra of all vector fields on M2n+1, respectively.

3. Some properties of (k, µ)′-almost Kenmotsu manifolds

If the characteristic vector field ξ of an almost Kenmotsu manifold (M2n+1,

φ, ξ, η, g) satisfies the (k, µ)′-nullity condition (see [6]), then it is called a (k, µ)′-
almost Kenmotsu manifold. The (k, µ)′-nullity condition is defined as follows:

(3.1) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ]

for any vector fields X,Y , where both k and µ are constant on M2n+1. M2n+1 is
said to be a (k, µ)-almost manifold Kenmotsu manifold if there holds R(X,Y )ξ =
k[η(Y )X − η(X)Y ] +µ[η(Y )hX − η(X)hY ] for any vector fields X,Y and k, µ ∈ R.
A (k, µ)-almost Kenmotsu manifold satisfies k = −1 and h = 0 (see [6]). A (k, µ)-
almost Kenmotsu manifold is a special case of (k, µ)′-almost Kenmotsu manifolds.
Following [6], on any (k, µ)′-almost Kenmotsu manifold M2n+1, we have

(3.2) h′2X = −(k + 1)X + (k + 1)η(X)ξ

for any vector field X ∈ X(M) and µ = −2. From (3.2), we know that h′ = 0 is
equivalent to k = −1 and h′ 6= 0 everywhere if and only if k < −1. Furthermore,
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by (3.1) and the symmetry of the Riemannian curvature tensor R, it is easy to see
that

(3.3) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X ]− 2[g(h′X,Y )ξ − η(Y )h′X ]

for anyX,Y ∈ X(M). In case of k < −1, we denote by [λ]′ and [−λ]′ the eigenspaces
of h′ corresponding two eigenvalues λ > 0 and −λ, respectively. Obviously, by (3.2),
we have

(3.4) λ =
√
−k − 1 > 0.

Before presenting one of our main results, we give the following two lemmas.

Lemma 3.1. [6, Proposition 4.2] Let M2n+1 be a (k, µ)′-almost Kenmotsu mani-

fold such that h′ = 0. Then, for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′,
the Riemannian curvature tensor satisfies

R(Xλ, Yλ)Z−λ = 0,(3.5)

R(X−λ, Y−λ)Zλ = 0,(3.6)

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,(3.7)

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,(3.8)

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],(3.9)

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].(3.10)

Lemma 3.2. [18, Lemma 3.2] Let M2n+1 be a (k, µ)′-almost Kenmotsu manifold

such that h′ 6= 0. Then the Ricci operator of M2n+1 is given by

(3.11) Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′.

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Proof. See the proof of [19, Lemma 3.2].

4. (k, µ)′-almost Kenmotsu manifolds satisfying R(X,Y ) · C̃ = 0

In this section, we consider a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold
M2n+1 satisfying the condition

(4.1) R(X,Y ) · C̃ = 0,

or equivalently

(R(X,Y ) · C̃)(U, V )W = R(X,Y )C̃(U, V )W − C̃(R(X,Y )U, V )W

− C̃(U,R(X,Y )V )W − C̃(U, V )R(X,Y )W

= 0

(4.2)
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for any X,Y, U, V,W ∈ X(M).

From the definition of C̃ (see (1.3)), we have

C̃(ξ, Y )Z = [ak − r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]g(Y, Z)ξ

− [ak − r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]η(Z)Y

− (−aµ+ 2nb)g(h′Y, Z)ξ + (−aµ+ 2nb)η(Z)h′Y,

(4.3)

C̃(ξ, Y )ξ = [ak − r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]η(Y )ξ

− [ak − r

2n+ 1
(
a

2n
+ 2b) + 2nkb− 2nb]Y

+ (−aµ+ 2nb)h′Y,

(4.4)

where r, a and b denote the scalar curvature and two constants, respectively. Let
us denote by A = [ak − r

2n+1
( a
2n

+ 2b) + 2nkb − 2nb], B = −A, D = (−aµ+ 2nb)
and E = −D.

Substituting X = U = ξ in (4.2) we have

(R(ξ, Y ) · C̃)(ξ, V )W = R(ξ, Y )C̃(ξ, V )W − C̃(R(ξ, Y )ξ, V )W

− C̃(ξ, R(ξ, Y )V )W − C̃(ξ, V )R(ξ, Y )W

= 0

(4.5)

for any Y, V,W ∈ X(M).

Making use of (3.3), (4.3) and (4.4) we calculate every term in equation (4.5)
straightly. Then we have

(4.6)

R(ξ, Y )C̃(ξ, V )W

=k[g(Y, C̃(ξ, V )W )ξ − η(C̃(ξ, V )W ))Y ]

+ µ[g(h′Y, C̃(ξ, V )W )ξ − η(C̃(ξ, V )W ))h′Y ]

=k{A[η(Y )g(V,W )ξ − η(W )g(Y, V )ξ]

+ E[η(Y )g(h′V,W )ξ − η(W )g(Y, h′V )ξ]}
− k{A[g(V,W )Y − η(W )η(V )Y ] + Eg(h′V,W )Y }
+ µ{−Aη(W )g(h′Y, V )ξ − Eη(W )g(h′Y, h′V )ξ}
− µ{A[g(V,W )h′Y − η(W )η(V )h′Y ] + Eg(h′V,W )h′Y }.

(4.7)

C̃(R(ξ, Y )ξ, V )W

=kη(Y )C̃(ξ, V )W − kC̃(Y, V )W − µC̃(h′Y, V )W

=k{A[η(Y )g(V,W )ξ − η(W )η(Y )V ] + E[η(Y )g(h′V,W )ξ

− η(W )η(Y )h′V ]} − kC̃(Y, V )W − µC̃(h′Y, V )W.
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(4.8)

C̃(ξ, R(ξ, Y )V )W

=kg(Y, V )C̃(ξ, ξ)W − kη(V )C̃(ξ, Y )W

+ µg(h′Y, V )C̃(ξ, ξ)W − µη(V )C̃(ξ, h′Y )W

=− k{A[η(V )g(Y,W )ξ − η(W )η(V )Y ]

+ E[η(V )g(h′Y,W )ξ − η(W )η(V )h′Y ]}
− µ{A[η(V )g(h′Y,W )ξ − η(W )η(V )h′Y ]}
+ E[η(V )g(h′2Y,W )ξ − η(W )η(V )h′2Y ]}.

(4.9)

C̃(ξ, V )R(ξ, Y )W

=kg(Y,W )C̃(ξ, V )ξ − kη(W )C̃(ξ, V )Y

+ µg(h′Y,W )C̃(ξ, V )ξ − µη(W )C̃(ξ, V )h′Y

=k{A[g(Y,W )η(V )ξ − g(Y,W )V ] +Dg(Y,W )h′V }
− k{A[η(W )g(V, Y )ξ − η(Y )η(W )V ]

+ E[η(W )g(h′V, Y )ξ − η(Y )η(W )h′V ]}
+ µ{A[g(h′Y,W )η(V )ξ − g(h′Y,W )V ] +Dg(h′Y,W )h′V }
− µ{Aη(W )g(V, h′Y )ξ + Eη(W )g(h′V, h′Y )ξ}

for any Y, V,W ∈ X(M).

Substituting (4.6)-(4.9) into (4.5) and using (3.2) gives

kC̃(Y, V )W + µC̃(h′Y, V )W − kAg(V,W )Y

−kEg(h′V,W )Y − µAg(V,W )h′Y − µEg(h′V,W )h′Y

+kEη(V )g(h′Y,W )ξ − kEη(W )η(V )h′Y − µE(k + 1)η(V )g(Y,W )ξ

+µE(k + 1)η(V )η(W )Y + kAg(Y,W )V + kEg(Y,W )h′V

+µAg(h′Y,W )V + µEg(h′Y,W )h′V = 0

(4.10)

for any Y, V,W ∈ X(M).

Substituting Y = h′Y in (4.10) and using (3.2) we obtain

kC̃(h′Y, V )W − µ(k + 1)C̃(Y, V )W − kAg(V,W )h′Y

−kEg(h′V,W )h′Y + µA(k + 1)g(V,W )Y + µE(k + 1)g(h′V,W )Y

−kE(k + 1)η(V )g(Y,W )ξ + kE(k + 1)η(V )η(W )Y

−µE(k + 1)η(V )g(h′Y,W )ξ + µE(k + 1)η(V )η(W )h′Y + kAg(h′Y,W )V

+kEg(h′Y,W )h′V − µA(k + 1)g(Y,W )V − µE(k + 1)g(Y,W )h′V = 0

(4.11)

for any Y, V,W ∈ X(M). Subtracting µ multiple of (4.11) from k multiple of (4.10)
and using µ = −2 implies

(k + 2)2C̃(Y, V )W − (k + 2)2{Ag(V,W )Y + Eg(h′V,W )Y

−Eη(V )g(h′Y,W )ξ + Eη(V )η(W )h′Y −Ag(Y,W )V − Eg(Y,W )h′V } = 0
(4.12)
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for any Y, V,W ∈ X(M). Next, we assume that Y = V = W ∈ [−λ]′ in (1.3), where
[−λ]′ is eigenspace of h′ corresponding eigenvalue −λ. Thus, by applying Lemma
3.1 and Lemma 3.2, we get

C̃(Y, V )W

=[a(k + 2λ)− r

2n+ 1
(
a

2n
+ 2b) + 4nb(λ− 1)][g(V,W )Y − g(Y,W )V ]

(4.13)

for any Y, V,W ∈ X(M).

With the help of (4.13) and assuming Y = V = W ∈ [−λ]′, from (4.12) we get

(4.14) 2nb(k + 2)2(λ− 1− k)[g(V,W )Y − g(Y,W )V ] = 0.

Putting (3.4) into (4.14) we have

(4.15) λ(λ− 1)2(λ+ 1)3 = 0.

In view of the fact λ > 0, we obtain λ = 1 and hence k = −2. From [6, Corollary
4.2] and [5, Theorem 6], we know that M2n+1 is locally isometric to the Riemannian
product Hn+1(−4)× R

n.

Therefore we have the following:

Theorem 4.1. If a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold M2n+1 of

dimension greater than 3 satisfies R · C̃ = 0, then it is locally isometric to the

Riemannian product Hn+1(−4)× R
n.

Since quasi-conformally symmetric manifold (∇C̃ = 0) implies R · C̃ = 0, there-
fore from Theorem 4.1 we state the following:

Corollary 4.1. A quasi-conformally symmetric non-Kenmotsu (k, µ)′-almost Ken-

motsu manifold M2n+1(n > 1) is locally isometric to the Riemannian product

H
n+1(−4)× R

n.

Since R · R implies R · C̃ = 0, we get the following:

Corollary 4.2. A semisymmetric non-Kenmotsu (k, µ)′-almost Kenmotsu mani-

fold M2n+1(n > 1) is locally isometric to the Riemannian product Hn+1(−4)×R
n.

The above corollary has been proved by Wang and Liu [15].

5. (k, µ)′-almost Kenmotsu manifolds satisfying P (X,Y ) · P = 0

In this section, we consider a non-Kenmotsu (k, µ)′-almost Kenmotsu manifolds
M2n+1 satisfying the condition

(5.1) P (X,Y ) · P = 0,
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which implies

(P (X,Y ) · P )(U, V )W

=P (X,Y )P (U, V )W − P (P (X,Y )U, V )W

− P (U, P (X,Y )V )W − P (U, V )P (X,Y )W

=0

(5.2)

for any X,Y, U, V,W ∈ X(M).

Making use of (1.1), we get

P (X,Y )P (U, V )W

= R(X,Y )R(U, V )W − 1

2n
S(V,W )R(X,Y )U +

1

2n
S(U,W )R(X,Y )V

− 1

2n
{S(Y,R(U, V )W )X − 1

2n
S(V,W )S(Y, U)X +

1

2n
S(U,W )S(Y, V )X}

+
1

2n
{S(X,R(U, V )W )Y − 1

2n
S(V,W )S(X,U)Y +

1

2n
S(U,W )S(X,V )Y },

(5.3)

P (P (X,Y )U, V )W

= R(R(X,Y )U, V )W − 1

2n
S(Y, U)R(X,V )W +

1

2n
S(X,U)R(Y, V )W

− 1

2n
{S(V,W )R(X,Y )U − 1

2n
S(V,W )S(Y, U)X +

1

2n
S(V,W )S(X,U)Y }

+
1

2n
{S(R(X,Y )U,W )V − 1

2n
S(Y, U)S(X,W )V +

1

2n
S(X,U)S(Y,W )V },

(5.4)

P (U, P (X,Y )V )W

= R(U,R(X,Y )V )W − 1

2n
S(Y, V )R(U,X)W +

1

2n
S(X,V )R(U, Y )W

− 1

2n
{S(R(X,Y )V,W )U − 1

2n
S(Y, V )S(X,W )U +

1

2n
S(X,V )S(Y,W )U}

+
1

2n
{S(U,W )R(X,Y )V − 1

2n
S(U,W )S(Y, V )X +

1

2n
S(U,W )S(X,V )Y },

(5.5)

P (U, V )P (X,Y )W

= R(U, V )R(X,Y )W − 1

2n
S(Y,W )R(U, V )X +

1

2n
S(X,W )R(U, V )Y

− 1

2n
{S(V,R(X,Y )W )U − 1

2n
S(Y,W )S(V,X)U +

1

2n
S(X,W )S(V, Y )U}

+
1

2n
{S(U,R(X,Y )W )V − 1

2n
S(Y,W )S(U,X)V +

1

2n
S(X,W )S(U, Y )V }.

(5.6)
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Substituting (5.3)-(5.6) into (5.2), we have

(R(X,Y ) ·R)(U, V )W − 1

2n
{S(Y,R(U, V )W )X − S(X,R(U, V )W )Y }

+
1

2n
{S(Y, U)R(X,V )W − S(X,U)R(Y, V )W − S(R(X,Y )U,W )V }

+
1

2n
{S(Y, V )R(U,X)W − S(X,V )R(U, Y )W + S(R(X,Y )V,W )U}

+
1

2n
{S(Y,W )R(U, V )X − S(X,W )R(U, V )Y + S(V,R(X,Y )W )U

− S(U,R(X,Y )W )V } = 0

(5.7)

for any vector fields X,Y, U, V,W ∈ X(M). If (5.1) holds, putting Y = U = ξ into
(5.7), we obtain

(R(X, ξ) ·R)(ξ, V )W − 1

2n
{S(ξ, R(ξ, V )W )X − S(X,R(ξ, V )W )ξ}

+
1

2n
{S(ξ, ξ)R(X,V )W − S(X, ξ)R(ξ, V )W − S(R(X, ξ)ξ,W )V }

+
1

2n
{S(ξ, V )R(ξ,X)W − S(X,V )R(ξ, ξ)W + S(R(X, ξ)V,W )ξ}

+
1

2n
{S(ξ,W )R(ξ, V )X − S(X,W )R(ξ, V )ξ + S(V,R(X, ξ)W )ξ

− S(ξ, R(X, ξ)W )V } = 0

(5.8)

for any vector fields X,V,W ∈ X(M). In Section 4, we know that S(ξ, V ) =
2nkη(V ), using the equation and (3.1), we have

S(R(ξ,X)Y, Z)

=2n{η(Z)[k2g(X,Y )− 2kg(h′X,Y )]

+ η(Y )[kg(X,Z)− k(k + 1)η(Z)η(X)

+ kg(X,h′Z)− 2g(h′X,Z)− 2g(h′X,h′Z)]}

(5.9)

for any vector fields X,Y, Z ∈ X(M). Combining (5.9) with (5.8) and assuming
that X ∈ [λ] and V = W ∈ [−λ] in (5.8) are eigenvector fields of h′ corresponding
two eigenvalues λ and −λ, respectively. Thus, by applying Lemma 3.1, we obtian

(5.10) (R(X, ξ) ·R)(ξ, V )W = [k2 + 2kλ+ k(k + 2)]g(V,W )X.

On the other hand, by a straightforward computation and applying Lemma 3.1,
Wang and Liu [15, Theorem 1.1] obtained the following relation (one can check it
by a direct calculation).

(5.11)

(R(X, ξ) · R)(ξ, V )W

=R(X, ξ)R(ξ, V )W −R(R(X, ξ)ξ, V )W

−R(ξ, R(X, ξ)V )W −R(ξ, V )R(X, ξ)W

=[(k − 2λ)(k + 2)− k2 + 4λ2]g(V,W )X.
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From (5.10) and (5.11), we get λ2(λ − 1) = 0. In view of the fact λ > 0, we
obtain λ = 1 and hence k = −2. From [6, Corollary 4.2] and [5, Theorem 6] we can
know that M2n+1 is locally isometric to the Riemannian product Hn+1(−4)× R

n.

Consequently, we have the following theorem:

Theorem 5.1. If a non-Kenmotsu (k, µ)′-almost Kenmotsu manifold M2n+1 sat-

isfies P ·P = 0, then it is locally isometric to the Riemannian product Hn+1(−4)×
R

n.
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J. 24(1) (1972), 93-103.

9. K. K. Baishya and P. R. Chowdhury: Kenmotsu manifold with some curvature

coditionds, Annales Univ. Sci. Budapest. 59 (2016), 55-65.

10. P. Majhi and U. C. De: Classifications of N(k)-contact manifolds satisfying cer-

tain curvature conditions, Acta Math. Univ. Comenianae 84(1) (2015), 167-178.

11. T.W. Kim and H.K. Pak: Canonical foliations of certain classes of almost contact

metric structures, Acta Math. Sin. Engl. Ser. 21(4) (2005), 841-846.

12. U. C. De and K. Mandal: on locally φ-Conformally symmetric almost Kenmotsu

manifolds with nullity distribytions, Commun. Korean Math. Soc. 32(2) (2017),
401-416.

13. U. C. De and K. Mandal: On a type of almost Kenmotsu manifolds with nullity

distributions, Arab J Math Sci 23(2) (2017), 109-123.

14. U. C. De, J. B. Jun and K. Mandal: On almost Kenmotsu manifolds with nullity

distributions, Tamkang Journal of Mathematics 48(3) (2017), 251-263.



Some Results on (k, µ)′-Almost Kenmotsu Manifolds 597

15. Y. Wang and X. Liu: Riemannian semisymmetric almost Kenmotsu manifolds

and nullity distributions, Ann. Polon. Math. 112(1) (2014), 37-46.

16. Y. Wang: Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann.
Polon. Math.(2016), 79-86.

17. Y. Wang: Conformally flat CR-integrable almost Kenmotsu manifolds, Bull.
Math. Soc. Sci. Math. Roumanie 59(4) (2016), 375-387.

18. Y. Wang: Conformally flat almost Kenmotsu 3-manifolds, Mediterr. J. Math.
14(5) (2017), No. 186.

19. Y. Wang and W. Wang: Some results on (k, µ)′-almost Kenmotsu manifolds,
Quaestiones Math. DOI: 10.2989/16073606.2017.1391347.

20. K. Yano and M. Kon: Structures on Manifolds, Vol. 40, World Scientifc Press,
1989.

21. K. Yano and S. Sawaki: Riemannian manifolds admitting a conformal transfor-

mation group, J. Differential Geom. 2 (1968), 161-184.

Wenfeng Ning

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024, Liaoning, P. R. China

winniening@mail.dlut.edu.cn

Ximin Liu

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024, Liaoning, P. R. China

ximinliu@dlut.edu.cn

Jin Li

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024, Liaoning, P. R. China

lijin0907@mail.dlut.edu.cn


