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ON THE MAPPINGS PRESERVING THE HYPERBOLIC

POLYGONS OF TYPE B TOGETHER WITH THEIR HYPERBOLIC

AREAS

Oğuzhan Demirel

Abstract. In this paper, we present new characterizations of Möbius transformations
and conjugate Möbius transformations by using the mappings preserving the hyperbolic
polygons of type B together with their hyperbolic areas.
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1. Introduction

A Möbius transformation f : C → C is a mapping of the form w = az+b
cz+d

satisfying ad − bc 6= 0, where a, b, c, d ∈ C and C = C ∪ {∞}. The set of all
Möbius transformations is a group under composition. Möbius transformations are
conformal mappings having many useful properties. For example, a map is Möbius
if and only if it preserves cross ratios. As for geometric aspect, circle-preserving
is another important characterization of Möbius transformations. There are well-
known elementary proofs that if f is a continuous injective map of the extended
complex plane C that maps circles into circles, then f is Möbius.

The Möbius invariant property is naturally related to hyperbolic geometry. For
instance, see the preservation of triangular domains [6], Lambert and Saccheri
quadrilaterals [10], [11], hyperbolic regular polygons [3], hyperbolic regular star
polygons [4], polygons of type A [7] and others. The Möbius transformations pre-
serving the open unit disc B2 = {z ∈ C : |z| < 1} are precisely those of the form
w = eiθ a+z

1+az
, where a, z ∈ B2 and θ ∈ R. The Poincaré disc model of hyperbolic

geometry is built on B2, more precisely the points of this model are points of B2

and the hyperbolic lines of this model are Euclidean semicircular arcs that intersect
the boundary of B2 orthogonally including diameters of B2. Given two distinct
hyperbolic lines which intersect at a point, the measure of the angle between these
hyperbolic lines is defined by the Euclidean tangents at the common point.
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Definition 1.1. [1] A Lambert quadrilateral is a hyperbolic quadrilateral with
ordered interior angles π

2 ,
π
2 ,

π
2 and θ, where 0 < θ < π

2 .

Definition 1.2. [1] A Saccheri quadrilateral is a hyperbolic quadrilateral with
ordered interior angles π

2 ,
π
2 , θ, θ, where 0 < θ < π

2 .

Definition 1.3. [7] A hyperbolic polygon with n−sides is called as of type A if it
has exactly two interior angles not equal to π

2 .

Definition 1.4. [7] A hyperbolic polygon with n−sides is called as of type B if it
has exactly a unique interior angle not equal to π

2 .

Saccheri quadrilaterals and Lambert quadrilaterals are convex hyperbolic poly-
gons with 4 sides having type A and type B, respectively.

The transformations defined by f(z) = az+b
cz+d

from C to C satisfying ad − bc 6=
0 are known as conjugate Möbius transformations. Clearly a conjugate Möbius
transformation is a composition of the complex conjugate function with a Möbius
transformation. These transformations, like Möbius transformations, have many
beautiful properties. For instance they preserve angle magnitudes of angles, but
notice that Möbius transformations preserve the orientation while conjugate Möbius
transformations reverse it.

C. Carathéodory [2] proved that every arbitrary one to one correspondence be-
tween the points of a circular disc C and a bounded point set C′ by which circles
lying completely in C are transformed into circles lying in C′ must always be ei-
ther a Möbius transformation or a conjugate Möbius transformation. The following
results are well known and they play major roles in our proofs.

Lemma 1.1. [1] Let θ1, θ2, . . . , θn be any ordered n−tuple with 0 ≤ θj < (n −
2)π, j = 1, . . . , n. Then there exists a hyperbolic polygon P with interior angles
θ1, θ2, . . . , θn, occurring in this order around ∂P , if and only if θ1 + θ2 + . . .+ θn <

(n− 2)π.

Theorem 1.1. (Gauss-Bonnet theorem for a hyperbolic polygon with n sides) Let
P be a hyperbolic convex polygon with n− sides and with interior angles θ1, θ2, . . . , θn.
Then the hyperbolic area ∆(P ) of the polygon P is

∆(P ) = (n− 2)π − (θ1 + θ2 + . . .+ θn)(1.1)

Throughout the paper we denote by X ′ the image of X under f , by [Aj , Ak]
the geodesic segment between the points Aj and Ak, by AjAk the hyperbolic line
passing through the points Aj and Ak, by AjAkAs the hyperbolic triangle with
three ordered vertices Aj , Ak and As, by A1A2 · · ·An the hyperbolic polygon with
n− ordered vertices A1, A2, · · ·An, and by ∠AjAkAs the angle between [Aj , Ak]
and [As, Ak]. We consider the hyperbolic plane B2 = {z ∈ C : |z| < 1} with length

differential ds2 = 4|dz|2

(1−|z|2)2 .
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2. The Mappings Preserving the Hyperbolic Polygons of Type B

Together With Their Hyperbolic Areas

A map f : B2 → B2 has the property B, if it preserves n−sided hyperbolic
polygons having type B, that is if P is a n−sided hyperbolic polygon of type B,
then f(P ) is a n−sided hyperbolic polygon of type B, see [7]. J. Liu proved the
following result in [7]:

Lemma 2.1. [7] Let f : B2 → B2 be a continuous bijection. If f has Property B

for each n > 3, then f preserves the vertex where the interior angle is not right.

Instead of using the continuity condition of functions, we try to obtain a new
characterization of Möbius transformations with the condition “n−sided hyperbolic
polygons preserving property of type B together with their hyperbolic areas ” for a
fixed n > 3. More precisely, when we say f preserves n−sided hyperbolic polygons
of type B together with their hyperbolic areas, this means that if P is a n−sided
hyperbolic polygon of type B with hyperbolic area ∆(P ) = σ, then f(P ) is a
n−sided hyperbolic polygon of type B with hyperbolic area ∆(f(P )) = σ. Area
preserving mappings are studied by V. Pambuccian in [8] and by O. Demirel in [5].

Lemma 2.2. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B for a fixed n > 3. Then f is injective.

Proof. Let P and Q be two distinct points in B2. By Lemma 2.1, there exists a
hyperbolic polygon, say A1A2 · · ·An, satisfying ∠AnA1A2 = α < π

2 , ∠A1A2An =
· · · = ∠An−2An−1An = ∠An−1AnA1 = π

2 . There are three cases:

Case 1 : Assume dH(P,Q) < dH(A1, A2), where dH is hyperbolic distance.
A1A2 · · ·An can be carried to the point Q with the help of a hyperbolic isometry g1
such that g1(A2) = Q and P ∈ [g1(A1), g1(A2)]. Let l be the hyperbolic line passing
through P and intersects g1(An−1)g1(An) perpendicularly. Denote the common
point of the hyperbolic lines l and g1(An−1)g1(An) by S. The existence of the
point S is clear since ∠Pg1(An)g1(An−1) < π

2 , ∠Pg1(An−1)g1(An) < π
2 . Hence

we construct a hyperbolic polygon PQg1(A3) · · · g1(An−1)S which is an n−sided
hyperbolic polygon of type B.

Case 2 : Assume dH(P,Q) > dH(A1, A2). A1A2 · · ·An can be carried to the
point Q with the help of a hyperbolic isometry g2 such that g2(A2) = Q and
g2(A1) ∈ [P,Q] = [P, g2(A2)]. Let k be the hyperbolic line passing through P

which intersects the hyperbolic line g2(An−1)g2(An) perpendicularly. Denote the
common point of the hyperbolic lines k and g2(An−1)g2(An) by R. The existence of
the point R is clear since ∠Pg2(An)g2(An−1) >

π
2 . Hence we construct an n−sided

hyperbolic polygon RPQg2(A3) · · · g1(An−2)g1(An−1) of type B.

Case 3 : If dH(P,Q) = dH(A1, A2), then A1A2 · · ·An can be carried to the point
Q with the help of a hyperbolic isometry g3 such that g3(A1) = P and g3(A2) = Q.
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Hence we construct an n−sided hyperbolic polygon PQg3(A3) · · · g3(An−1)g3(An)
of type B.

As in the cases above, for two arbitrary points P and Q, it is possible to construct
an n−sided hyperbolic polygon of type B by using these points. Therefore, if
PQB1B2 · · ·Bn is an n−sided hyperbolic polygon of type B, then P ′Q′B′

1B
′
2 · · ·B

′
n

is also an n−sided hyperbolic polygon of type B. This ends the proof.

Lemma 2.3. Let f : B2 → B2 be a mapping which preserves n−sided hyper-
bolic polygons of type B for a fixed n > 3. Then f preserves the collinearity and
betweenness properties of the points.

Proof. Let P and Q be two distinct points in B2 and assume that S be an interior
point of [P,Q]. By Lemma 2.2, one can easily construct an n−sided hyperbolic
polygon of type B, say PQA1 · · ·An−2. Moreover, there are many more n−sided
hyperbolic polygons of type B with common side [P,Q] and all of them contain S.
Hence the images of all n−sided hyperbolic polygons of type B with common side
[P,Q] under f are n−sided hyperbolic polygons of type B with common side [P ′, Q′]
containing S′. Therefore, f preserves the collinearity and betweenness properties
of the points.

Lemma 2.4. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f

preserves the vertices together with their interior angles.

Proof. Let A1A2 · · ·An be an n−sided hyperbolic polygon of type B (directed coun-
terclockwise) such that ∠AnA1A2 := θ 6= π

2 . Assume ∠A′
nA

′
1A

′
2 = π

2 . Clearly,
∠A′

n−1A
′
nA

′
1 = π

2 or ∠A′
1A

′
2A

′
3 = π

2 . Without loss of generality, we may assume
∠A′

n−1A
′
nA

′
1 = π

2 . Now draw a geodesic segment [An,K] to the hyperbolic line
A1A2 where the point K lies on A1A2 satisfying ∠AnKA1 = π

2 . Notice that if
θ < π

2 , then K lies on [A1, A2] and if θ > π
2 , then A1 lies on [K,A2]. Since K lies

on A1A2, by Lemma 2.3, the point K ′ must be lie on A′
1A

′
2. Hence we construct

a new n−sided hyperbolic polygon KA2 · · ·An of type B. Therefore, K ′A′
2 · · ·A

′
n

is also an n−sided hyperbolic polygon of type B. Since ∠A′
n−1A

′
nA

′
1 = π

2 , we get
∠A′

n−1A
′
nK

′ 6= π
2 which yields ∠A′

nK
′A′

2 = ∠A′
nK

′A′
1 = π

2 . Obviously, this is a
contradiction since the sum of the interior angles of the hyperbolic triangle A′

nK
′A′

1

is greater then π. Thus we have ∠A′
nA

′
1A

′
2 6= π

2 . Because of the fact that f pre-
serves the n−sided hyperbolic polygons of type B together with their hyperbolic
areas, by Gauss-Bonnet theorem, we get ∠A′

nA
′
1A

′
2 = θ, ∠A′

i−1A
′
iA

′
i+1 = π

2 for all
2 ≤ i ≤ n− 1 and ∠A′

n−1A
′
nA

′
1 = π

2 .

Lemma 2.5. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f

preserves hyperbolic distance.

Proof. Let X,Y and Z be three distinct points in B2 such that XYZ is a hy-
perbolic triangle (directed counterclockwise) with ∠ZXY := α1,∠XY Z := α2
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and ∠Y ZX := α3. Now, by Lemma 2.1, there exists a hyperbolic polygon of
type B, say A1A2 . . . An (directed counterclockwise), such that ∠AnA1A2 = α1.
The angle ∠AnA1A2 of the hyperbolic polygon A1A2 . . . An can be moved to the
vertex X of the hyperbolic triangle XY Z by an appropriate Möbius transfor-
mation g such that the points g(A2) and g(An) lie on the hyperbolic lines XY

and XZ, respectively. By the properties of f and g, we immediately get that
g(A1)

′g(A2)
′ . . . g(An)

′, that is X ′g(A2)
′ . . . g(An)

′, is an n−sided hyperbolic poly-
gon of type B. By Lemma 2.4, we have ∠ZXY = ∠AnA1A2 = ∠g(An)Xg(A2) =
∠g(An)

′X ′g(A2)
′ = ∠A′

nA
′
1A

′
2 = ∠Z ′X ′Y ′ = α1. Hence f preserves the interior

angle ∠ZXY of the hyperbolic triangle XY Z. Following the same way, one can
easily prove that ∠XYZ = ∠X ′Y ′Z ′ and ∠Y ZX = ∠Y ′Z ′X ′ hold true. It is well
known that, in hyperbolic plane, the lengths of a hyperbolic triangle are deter-
mined by its interior angles, see [9]. Therefore, we get that dH(X,Y ) = dH(X ′, Y ′),
dH(X,Z) = dH(X ′, Z ′) and dH(Y, Z) = dH(Y ′, Z ′).

Lemma 2.6. Let f : B2 → B2 be a mapping which preserves n−sided hyperbolic
polygons of type B together with their hyperbolic areas for a fixed n > 3. Then f is
surjective.

Proof. To prove that f is surjective, we will show that for any point Y in B2, there
exists a point X in B2 such that f(X) = Y . Let A,B,C be three three distinct
points in B2, each of which is different from Y . Now construct three hyperbolic
circles with radius r1 = dH(A′, Y ), r2 = dH(B′, Y ) and r3 = dH(C′, Y ) centered at
A′, B′, C′, respectively. These circles meet together only at Y . Because of the fact
that f is a distance preserving mapping by Lemma 2.5, the pre-images of circles
meet together only at a point, say X . Hence, X ′ = Y .

Theorem 2.1. The mapping f : B2 → B2 is Möbius or conjugate Möbius if,
and only if, f preserves n−sided hyperbolic polygons of type B together with their
hyperbolic areas for a fixed n > 3.

Proof. Because of the fact that f is an isometry, the “only if” part is clear. Con-
versely, we may assume that f preserves n−sided hyperbolic polygons of type B

together with their hyperbolic areas for a fixed n > 3. Without loss of generality
we may assume f(O) = O by composing an isometry if necessary. Let x and y be
two different points in B2. Since f preserves the hyperbolic distance by Lemma 2.5,
one can easily get dH(0, x) = dH(0, x′) and dH(0, y) = dH(0, y′), namely |x| = |x′|
and |y| = |y′|, where | · | is the Euclidean norm. Hence we have |x− y| = |x′ − y′|,
since f preserves the angles by Lemma 2.4. Finally, we get

2〈x, y〉 = |x|2 + |y|2 − |x− y|2 = |x′|2 + |y′|2 − |x′ − y′|2 = 2〈x′, y′〉.(2.1)

Therefore, f preserves the inner product and then is the restriction on B2 of an
orthogonal transformation, that is, f is Möbius transformation or conjugate Möbius
transformation by Carathédory’s theorem. If the orientation of the angles preserved
under f , then f is a Möbius transformation, otherwise; f is a conjugate Möbius
transformation.
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Corollary 2.1. The mapping f : B2 → B2 is Möbius or conjugate Möbius if, and
only if, f preserves the Lambert quadrilaterals together with their hyperbolic areas.

Naturally, one may wonder whether Corollary 2.1 is valid for Saccheri quadri-
laterals. Now we give the affirmative answer as follows:

Corollary 2.2. The mapping f : B2 → B2 is Möbius or conjugate Möbius if, and
only if, f preserves all Saccheri quadrilaterals together with their hyperbolic areas.

Proof. Because of the fact that f is an isometry, the “only if” part is clear. Con-
versely, we may assume that f preserves all Saccheri quadrilaterals together with
their hyperbolic areas. The injectivity, collinearity and the betweenness properties
of f can be easily proved following the ways in the proofs of Lemma 2.2, Lemma
2.3.

Step 1 : We claim that f preserves the right angles of Saccheri quadrilater-
als. Let ABCD be a Saccheri quadrilateral with ∠DAB = ∠ABC = π

2 and
∠BCD = ∠CDA := θ < π

2 . For each point Xi ∈ [A,D], there exists a point
Yi ∈ [C,B] such that XiABYi is a Saccheri quadrilateral. Notice that dH(A,Xi) =
dH(B, Yi). Assume ∠YiXiA = ∠BYiXi := θi for all i ∈ I ⊂ R. Since f preserves
the Saccheri quadrilaterals together with their hyperbolic areas, we immediately get
that X ′

iA
′B′Y ′

i are Saccheri quadrilaterals with ∆(X ′
iA

′B′Y ′
i ) = ∆(XiABYi) for all

i ∈ I. Notice that, by injectivity property of f , the sets {X ′
i : i ∈ I} and {Y ′

i : i ∈ I}
are consist of collinear points, that is X ′

i ∈ [A′, D′] and Y ′
i ∈ [B′, C′] hold true for

all i ∈ I. Because of the fact that all the Saccheri quadrilaterals X ′
iA

′B′Y ′
i have

common two interior angles π
2 ,

π
2 and have common two vertices A′ and B′, this

implies that ∠X ′
iA

′B′ = ∠A′B′Y ′
i = π

2 . Thus f preserves right angles of Saccheri
quadrilaterals.

Step 2 : By Step 1, f preserves the other interior angles of Saccheri quadrilaterals
which are not right angles.

Step 3 : Let ABCD be a Lambert quadrilateral with ∠CDA := θ < π
2 and

∠DAB = ∠ABC = ∠BCD = π
2 . By reflecting ABCD with respect to geodesic

BC, we get a Saccheri quadrilateral AEFD, where the points E and F are the
reflections of the points A and D, respectively. Thus, the quadrilateral A′E′F ′D′

must be a Saccheri quadrilateral with ∆(A′E′F ′D′) = ∆(AEFD). Since B ∈ [A,E]
and C ∈ [D,F ], we have B′ ∈ [A′, E′] and C′ ∈ [D′, F ′]. Therefore, A′E′F ′D′

contains two quadrilaterals A′B′C′D′ and B′E′F ′C′. By Step 1 and Step 2, we get
∠D′A′B′ = ∠B′E′F ′ = π

2 and ∠C′D′A′ = ∠E′F ′C′ = θ. By reflecting ABCD in
the geodesic AB, one can easily see that ∠D′C′B′ = π

2 holds true. This implies
that C′ is the midpoint of D′ and F ′ which implies that ∠A′B′C′ = π

2 . Hence
the quadrilateral A′B′C′D′ must be a Lambert quadrilateral with ∆(A′B′C′D′) =
∆(ABCD) and this implies that f is a Möbius transformation or a conjugate Möbius
transformation.
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bolic geometry. J. Math. Anal. Appl. 319 (2006) no. 2, 660–664.

11. S. Yang and A. Fang Corrigendum to “A new characteristic of Möbius transfor-
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