ON THE MAPPINGS PRESERVING THE HYPERBOLIC POLYGONS OF TYPE B TOGETHER WITH THEIR HYPERBOLIC AREAS

Oğuzhan Demirel

Abstract

In this paper, we present new characterizations of Möbius transformations and conjugate Möbius transformations by using the mappings preserving the hyperbolic polygons of type B together with their hyperbolic areas.

Keywords. Hyperbolic polygons; Möbius transformations; hyperbolic areas.

1. Introduction

A Möbius transformation $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a mapping of the form $w=\frac{a z+b}{c z+d}$ satisfying $a d-b c \neq 0$, where $a, b, c, d \in \mathbb{C}$ and $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. The set of all Möbius transformations is a group under composition. Möbius transformations are conformal mappings having many useful properties. For example, a map is Möbius if and only if it preserves cross ratios. As for geometric aspect, circle-preserving is another important characterization of Möbius transformations. There are wellknown elementary proofs that if f is a continuous injective map of the extended complex plane $\overline{\mathbb{C}}$ that maps circles into circles, then f is Möbius.

The Möbius invariant property is naturally related to hyperbolic geometry. For instance, see the preservation of triangular domains [6], Lambert and Saccheri quadrilaterals [10], [11], hyperbolic regular polygons [3], hyperbolic regular star polygons [4], polygons of type $A[7]$ and others. The Möbius transformations preserving the open unit disc $B^{2}=\{z \in \mathbb{C}:|z|<1\}$ are precisely those of the form $w=e^{i \theta} \frac{a+z}{1+\bar{a} z}$, where $a, z \in B^{2}$ and $\theta \in \mathbb{R}$. The Poincaré disc model of hyperbolic geometry is built on B^{2}, more precisely the points of this model are points of B^{2} and the hyperbolic lines of this model are Euclidean semicircular arcs that intersect the boundary of B^{2} orthogonally including diameters of B^{2}. Given two distinct hyperbolic lines which intersect at a point, the measure of the angle between these hyperbolic lines is defined by the Euclidean tangents at the common point.

[^0]Definition 1.1. [1] A Lambert quadrilateral is a hyperbolic quadrilateral with ordered interior angles $\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}$ and θ, where $0<\theta<\frac{\pi}{2}$.

Definition 1.2. [1] A Saccheri quadrilateral is a hyperbolic quadrilateral with ordered interior angles $\frac{\pi}{2}, \frac{\pi}{2}, \theta, \theta$, where $0<\theta<\frac{\pi}{2}$.

Definition 1.3. [7] A hyperbolic polygon with n-sides is called as of type A if it has exactly two interior angles not equal to $\frac{\pi}{2}$.

Definition 1.4. [7] A hyperbolic polygon with n-sides is called as of type B if it has exactly a unique interior angle not equal to $\frac{\pi}{2}$.

Saccheri quadrilaterals and Lambert quadrilaterals are convex hyperbolic polygons with 4 sides having type A and type B, respectively.

The transformations defined by $f(z)=\frac{a \bar{z}+b}{c \bar{z}+d}$ from $\overline{\mathbb{C}}$ to $\overline{\mathbb{C}}$ satisfying $a d-b c \neq$ 0 are known as conjugate Möbius transformations. Clearly a conjugate Möbius transformation is a composition of the complex conjugate function with a Möbius transformation. These transformations, like Möbius transformations, have many beautiful properties. For instance they preserve angle magnitudes of angles, but notice that Möbius transformations preserve the orientation while conjugate Möbius transformations reverse it.
C. Carathéodory [2] proved that every arbitrary one to one correspondence between the points of a circular disc C and a bounded point set C^{\prime} by which circles lying completely in C are transformed into circles lying in C^{\prime} must always be either a Möbius transformation or a conjugate Möbius transformation. The following results are well known and they play major roles in our proofs.

Lemma 1.1. [1] Let $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ be any ordered $n-$ tuple with $0 \leq \theta_{j}<(n-$ 2) $\pi, j=1, \ldots, n$. Then there exists a hyperbolic polygon P with interior angles $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$, occurring in this order around ∂P, if and only if $\theta_{1}+\theta_{2}+\ldots+\theta_{n}<$ $(n-2) \pi$.

Theorem 1.1. (Gauss-Bonnet theorem for a hyperbolic polygon with n sides) Let P be a hyperbolic convex polygon with $n-$ sides and with interior angles $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$. Then the hyperbolic area $\Delta(P)$ of the polygon P is

$$
\begin{equation*}
\Delta(P)=(n-2) \pi-\left(\theta_{1}+\theta_{2}+\ldots+\theta_{n}\right) \tag{1.1}
\end{equation*}
$$

Throughout the paper we denote by X^{\prime} the image of X under f, by $\left[A_{j}, A_{k}\right]$ the geodesic segment between the points A_{j} and A_{k}, by $A_{j} A_{k}$ the hyperbolic line passing through the points A_{j} and A_{k}, by $A_{j} A_{k} A_{s}$ the hyperbolic triangle with three ordered vertices A_{j}, A_{k} and A_{s}, by $A_{1} A_{2} \cdots A_{n}$ the hyperbolic polygon with $n-$ ordered vertices $A_{1}, A_{2}, \cdots A_{n}$, and by $\angle A_{j} A_{k} A_{s}$ the angle between $\left[A_{j}, A_{k}\right]$ and $\left[A_{s}, A_{k}\right]$. We consider the hyperbolic plane $B^{2}=\{z \in \mathbb{C}:|z|<1\}$ with length differential $d s^{2}=\frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}$.

2. The Mappings Preserving the Hyperbolic Polygons of Type B Together With Their Hyperbolic Areas

A map $f: B^{2} \rightarrow B^{2}$ has the property B, if it preserves n-sided hyperbolic polygons having type B, that is if P is a n-sided hyperbolic polygon of type B, then $f(P)$ is a n-sided hyperbolic polygon of type B, see [7]. J. Liu proved the following result in [7]:

Lemma 2.1. [7] Let $f: B^{2} \rightarrow B^{2}$ be a continuous bijection. If f has Property B for each $n>3$, then f preserves the vertex where the interior angle is not right.

Instead of using the continuity condition of functions, we try to obtain a new characterization of Möbius transformations with the condition " n-sided hyperbolic polygons preserving property of type B together with their hyperbolic areas" for a fixed $n>3$. More precisely, when we say f preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas, this means that if P is a n-sided hyperbolic polygon of type B with hyperbolic area $\Delta(P)=\sigma$, then $f(P)$ is a n-sided hyperbolic polygon of type B with hyperbolic area $\Delta(f(P))=\sigma$. Area preserving mappings are studied by V. Pambuccian in [8] and by O. Demirel in [5].

Lemma 2.2. Let $f: B^{2} \rightarrow B^{2}$ be a mapping which preserves n-sided hyperbolic polygons of type B for a fixed $n>3$. Then f is injective.

Proof. Let P and Q be two distinct points in B^{2}. By Lemma 2.1, there exists a hyperbolic polygon, say $A_{1} A_{2} \cdots A_{n}$, satisfying $\angle A_{n} A_{1} A_{2}=\alpha<\frac{\pi}{2}, \angle A_{1} A_{2} A_{n}=$ $\cdots=\angle A_{n-2} A_{n-1} A_{n}=\angle A_{n-1} A_{n} A_{1}=\frac{\pi}{2}$. There are three cases:

Case 1: Assume $d_{H}(P, Q)<d_{H}\left(A_{1}, A_{2}\right)$, where d_{H} is hyperbolic distance. $A_{1} A_{2} \cdots A_{n}$ can be carried to the point Q with the help of a hyperbolic isometry g_{1} such that $g_{1}\left(A_{2}\right)=Q$ and $P \in\left[g_{1}\left(A_{1}\right), g_{1}\left(A_{2}\right)\right]$. Let l be the hyperbolic line passing through P and intersects $g_{1}\left(A_{n-1}\right) g_{1}\left(A_{n}\right)$ perpendicularly. Denote the common point of the hyperbolic lines l and $g_{1}\left(A_{n-1}\right) g_{1}\left(A_{n}\right)$ by S. The existence of the point S is clear since $\angle P g_{1}\left(A_{n}\right) g_{1}\left(A_{n-1}\right)<\frac{\pi}{2}, \angle P g_{1}\left(A_{n-1}\right) g_{1}\left(A_{n}\right)<\frac{\pi}{2}$. Hence we construct a hyperbolic polygon $P Q g_{1}\left(A_{3}\right) \cdots g_{1}\left(A_{n-1}\right) S$ which is an n-sided hyperbolic polygon of type B.

Case 2: Assume $d_{H}(P, Q)>d_{H}\left(A_{1}, A_{2}\right) . A_{1} A_{2} \cdots A_{n}$ can be carried to the point Q with the help of a hyperbolic isometry g_{2} such that $g_{2}\left(A_{2}\right)=Q$ and $g_{2}\left(A_{1}\right) \in[P, Q]=\left[P, g_{2}\left(A_{2}\right)\right]$. Let k be the hyperbolic line passing through P which intersects the hyperbolic line $g_{2}\left(A_{n-1}\right) g_{2}\left(A_{n}\right)$ perpendicularly. Denote the common point of the hyperbolic lines k and $g_{2}\left(A_{n-1}\right) g_{2}\left(A_{n}\right)$ by R. The existence of the point R is clear since $\angle P g_{2}\left(A_{n}\right) g_{2}\left(A_{n-1}\right)>\frac{\pi}{2}$. Hence we construct an n-sided hyperbolic polygon $R P Q g_{2}\left(A_{3}\right) \cdots g_{1}\left(A_{n-2}\right) g_{1}\left(A_{n-1}\right)$ of type B.

Case 3: If $d_{H}(P, Q)=d_{H}\left(A_{1}, A_{2}\right)$, then $A_{1} A_{2} \cdots A_{n}$ can be carried to the point Q with the help of a hyperbolic isometry g_{3} such that $g_{3}\left(A_{1}\right)=P$ and $g_{3}\left(A_{2}\right)=Q$.

Hence we construct an n-sided hyperbolic polygon $P Q g_{3}\left(A_{3}\right) \cdots g_{3}\left(A_{n-1}\right) g_{3}\left(A_{n}\right)$ of type B.

As in the cases above, for two arbitrary points P and Q, it is possible to construct an n-sided hyperbolic polygon of type B by using these points. Therefore, if $P Q B_{1} B_{2} \cdots B_{n}$ is an n-sided hyperbolic polygon of type B, then $P^{\prime} Q^{\prime} B_{1}^{\prime} B_{2}^{\prime} \cdots B_{n}^{\prime}$ is also an n-sided hyperbolic polygon of type B. This ends the proof.

Lemma 2.3. Let $f: B^{2} \rightarrow B^{2}$ be a mapping which preserves n-sided hyperbolic polygons of type B for a fixed $n>3$. Then f preserves the collinearity and betweenness properties of the points.

Proof. Let P and Q be two distinct points in B^{2} and assume that S be an interior point of $[P, Q]$. By Lemma 2.2, one can easily construct an n-sided hyperbolic polygon of type B, say $P Q A_{1} \cdots A_{n-2}$. Moreover, there are many more n-sided hyperbolic polygons of type B with common side $[P, Q]$ and all of them contain S. Hence the images of all n-sided hyperbolic polygons of type B with common side $[P, Q]$ under f are n-sided hyperbolic polygons of type B with common side [$\left.P^{\prime}, Q^{\prime}\right]$ containing S^{\prime}. Therefore, f preserves the collinearity and betweenness properties of the points.

Lemma 2.4. Let $f: B^{2} \rightarrow B^{2}$ be a mapping which preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas for a fixed $n>3$. Then f preserves the vertices together with their interior angles.

Proof. Let $A_{1} A_{2} \cdots A_{n}$ be an n-sided hyperbolic polygon of type B (directed counterclockwise) such that $\angle A_{n} A_{1} A_{2}:=\theta \neq \frac{\pi}{2}$. Assume $\angle A_{n}^{\prime} A_{1}^{\prime} A_{2}^{\prime}=\frac{\pi}{2}$. Clearly, $\angle A_{n-1}^{\prime} A_{n}^{\prime} A_{1}^{\prime}=\frac{\pi}{2}$ or $\angle A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}=\frac{\pi}{2}$. Without loss of generality, we may assume $\angle A_{n-1}^{\prime} A_{n}^{\prime} A_{1}^{\prime}=\frac{\pi}{2}$. Now draw a geodesic segment $\left[A_{n}, K\right]$ to the hyperbolic line $A_{1} A_{2}$ where the point K lies on $A_{1} A_{2}$ satisfying $\angle A_{n} K A_{1}=\frac{\pi}{2}$. Notice that if $\theta<\frac{\pi}{2}$, then K lies on $\left[A_{1}, A_{2}\right]$ and if $\theta>\frac{\pi}{2}$, then A_{1} lies on $\left[K, A_{2}\right]$. Since K lies on $A_{1} A_{2}$, by Lemma 2.3, the point K^{\prime} must be lie on $A_{1}^{\prime} A_{2}^{\prime}$. Hence we construct a new n-sided hyperbolic polygon $K A_{2} \cdots A_{n}$ of type B. Therefore, $K^{\prime} A_{2}^{\prime} \cdots A_{n}^{\prime}$ is also an n-sided hyperbolic polygon of type B. Since $\angle A_{n-1}^{\prime} A_{n}^{\prime} A_{1}^{\prime}=\frac{\pi}{2}$, we get $\angle A_{n-1}^{\prime} A_{n}^{\prime} K^{\prime} \neq \frac{\pi}{2}$ which yields $\angle A_{n}^{\prime} K^{\prime} A_{2}^{\prime}=\angle A_{n}^{\prime} K^{\prime} A_{1}^{\prime}=\frac{\pi}{2}$. Obviously, this is a contradiction since the sum of the interior angles of the hyperbolic triangle $A_{n}^{\prime} K^{\prime} A_{1}^{\prime}$ is greater then π. Thus we have $\angle A_{n}^{\prime} A_{1}^{\prime} A_{2}^{\prime} \neq \frac{\pi}{2}$. Because of the fact that f preserves the n-sided hyperbolic polygons of type B together with their hyperbolic areas, by Gauss-Bonnet theorem, we get $\angle A_{n}^{\prime} A_{1}^{\prime} A_{2}^{\prime}=\theta, \angle A_{i-1}^{\prime} A_{i}^{\prime} A_{i+1}^{\prime}=\frac{\pi}{2}$ for all $2 \leq i \leq n-1$ and $\angle A_{n-1}^{\prime} A_{n}^{\prime} A_{1}^{\prime}=\frac{\pi}{2}$.

Lemma 2.5. Let $f: B^{2} \rightarrow B^{2}$ be a mapping which preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas for a fixed $n>3$. Then f preserves hyperbolic distance.

Proof. Let X, Y and Z be three distinct points in B^{2} such that $X Y Z$ is a hyperbolic triangle (directed counterclockwise) with $\angle Z X Y:=\alpha_{1}, \angle X Y Z:=\alpha_{2}$
and $\angle Y Z X:=\alpha_{3}$. Now, by Lemma 2.1, there exists a hyperbolic polygon of type B, say $A_{1} A_{2} \ldots A_{n}$ (directed counterclockwise), such that $\angle A_{n} A_{1} A_{2}=\alpha_{1}$. The angle $\angle A_{n} A_{1} A_{2}$ of the hyperbolic polygon $A_{1} A_{2} \ldots A_{n}$ can be moved to the vertex X of the hyperbolic triangle $X Y Z$ by an appropriate Möbius transformation g such that the points $g\left(A_{2}\right)$ and $g\left(A_{n}\right)$ lie on the hyperbolic lines $X Y$ and $X Z$, respectively. By the properties of f and g, we immediately get that $g\left(A_{1}\right)^{\prime} g\left(A_{2}\right)^{\prime} \ldots g\left(A_{n}\right)^{\prime}$, that is $X^{\prime} g\left(A_{2}\right)^{\prime} \ldots g\left(A_{n}\right)^{\prime}$, is an n-sided hyperbolic polygon of type B. By Lemma 2.4, we have $\angle Z X Y=\angle A_{n} A_{1} A_{2}=\angle g\left(A_{n}\right) X g\left(A_{2}\right)=$ $\angle g\left(A_{n}\right)^{\prime} X^{\prime} g\left(A_{2}\right)^{\prime}=\angle A_{n}^{\prime} A_{1}^{\prime} A_{2}^{\prime}=\angle Z^{\prime} X^{\prime} Y^{\prime}=\alpha_{1}$. Hence f preserves the interior angle $\angle Z X Y$ of the hyperbolic triangle $X Y Z$. Following the same way, one can easily prove that $\angle X Y Z=\angle X^{\prime} Y^{\prime} Z^{\prime}$ and $\angle Y Z X=\angle Y^{\prime} Z^{\prime} X^{\prime}$ hold true. It is well known that, in hyperbolic plane, the lengths of a hyperbolic triangle are determined by its interior angles, see [9]. Therefore, we get that $d_{H}(X, Y)=d_{H}\left(X^{\prime}, Y^{\prime}\right)$, $d_{H}(X, Z)=d_{H}\left(X^{\prime}, Z^{\prime}\right)$ and $d_{H}(Y, Z)=d_{H}\left(Y^{\prime}, Z^{\prime}\right)$.

Lemma 2.6. Let $f: B^{2} \rightarrow B^{2}$ be a mapping which preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas for a fixed $n>3$. Then f is surjective.

Proof. To prove that f is surjective, we will show that for any point Y in B^{2}, there exists a point X in B^{2} such that $f(X)=Y$. Let A, B, C be three three distinct points in B^{2}, each of which is different from Y. Now construct three hyperbolic circles with radius $r_{1}=d_{H}\left(A^{\prime}, Y\right), r_{2}=d_{H}\left(B^{\prime}, Y\right)$ and $r_{3}=d_{H}\left(C^{\prime}, Y\right)$ centered at $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. These circles meet together only at Y. Because of the fact that f is a distance preserving mapping by Lemma 2.5, the pre-images of circles meet together only at a point, say X. Hence, $X^{\prime}=Y$.

Theorem 2.1. The mapping $f: B^{2} \rightarrow B^{2}$ is Möbius or conjugate Möbius if, and only if, f preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas for a fixed $n>3$.

Proof. Because of the fact that f is an isometry, the "only if" part is clear. Conversely, we may assume that f preserves n-sided hyperbolic polygons of type B together with their hyperbolic areas for a fixed $n>3$. Without loss of generality we may assume $f(O)=O$ by composing an isometry if necessary. Let x and y be two different points in B^{2}. Since f preserves the hyperbolic distance by Lemma 2.5, one can easily get $d_{H}(0, x)=d_{H}\left(0, x^{\prime}\right)$ and $d_{H}(0, y)=d_{H}\left(0, y^{\prime}\right)$, namely $|x|=\left|x^{\prime}\right|$ and $|y|=\left|y^{\prime}\right|$, where $|\cdot|$ is the Euclidean norm. Hence we have $|x-y|=\left|x^{\prime}-y^{\prime}\right|$, since f preserves the angles by Lemma 2.4. Finally, we get

$$
\begin{equation*}
2\langle x, y\rangle=|x|^{2}+|y|^{2}-|x-y|^{2}=\left|x^{\prime}\right|^{2}+\left|y^{\prime}\right|^{2}-\left|x^{\prime}-y^{\prime}\right|^{2}=2\left\langle x^{\prime}, y^{\prime}\right\rangle \tag{2.1}
\end{equation*}
$$

Therefore, f preserves the inner product and then is the restriction on B^{2} of an orthogonal transformation, that is, f is Möbius transformation or conjugate Möbius transformation by Carathédory's theorem. If the orientation of the angles preserved under f, then f is a Möbius transformation, otherwise; f is a conjugate Möbius transformation.

Corollary 2.1. The mapping $f: B^{2} \rightarrow B^{2}$ is Möbius or conjugate Möbius if, and only if, f preserves the Lambert quadrilaterals together with their hyperbolic areas.

Naturally, one may wonder whether Corollary 2.1 is valid for Saccheri quadrilaterals. Now we give the affirmative answer as follows:

Corollary 2.2. The mapping $f: B^{2} \rightarrow B^{2}$ is Möbius or conjugate Möbius if, and only if, f preserves all Saccheri quadrilaterals together with their hyperbolic areas.

Proof. Because of the fact that f is an isometry, the "only if" part is clear. Conversely, we may assume that f preserves all Saccheri quadrilaterals together with their hyperbolic areas. The injectivity, collinearity and the betweenness properties of f can be easily proved following the ways in the proofs of Lemma 2.2, Lemma 2.3.

Step 1: We claim that f preserves the right angles of Saccheri quadrilaterals. Let $A B C D$ be a Saccheri quadrilateral with $\angle D A B=\angle A B C=\frac{\pi}{2}$ and $\angle B C D=\angle C D A:=\theta<\frac{\pi}{2}$. For each point $X_{i} \in[A, D]$, there exists a point $Y_{i} \in[C, B]$ such that $X_{i} A B Y_{i}$ is a Saccheri quadrilateral. Notice that $d_{H}\left(A, X_{i}\right)=$ $d_{H}\left(B, Y_{i}\right)$. Assume $\angle Y_{i} X_{i} A=\angle B Y_{i} X_{i}:=\theta_{i}$ for all $i \in I \subset \mathbb{R}$. Since f preserves the Saccheri quadrilaterals together with their hyperbolic areas, we immediately get that $X_{i}^{\prime} A^{\prime} B^{\prime} Y_{i}^{\prime}$ are Saccheri quadrilaterals with $\Delta\left(X_{i}^{\prime} A^{\prime} B^{\prime} Y_{i}^{\prime}\right)=\Delta\left(X_{i} A B Y_{i}\right)$ for all $i \in I$. Notice that, by injectivity property of f, the sets $\left\{X_{i}^{\prime}: i \in I\right\}$ and $\left\{Y_{i}^{\prime}: i \in I\right\}$ are consist of collinear points, that is $X_{i}^{\prime} \in\left[A^{\prime}, D^{\prime}\right]$ and $Y_{i}^{\prime} \in\left[B^{\prime}, C^{\prime}\right]$ hold true for all $i \in I$. Because of the fact that all the Saccheri quadrilaterals $X_{i}^{\prime} A^{\prime} B^{\prime} Y_{i}^{\prime}$ have common two interior angles $\frac{\pi}{2}, \frac{\pi}{2}$ and have common two vertices A^{\prime} and B^{\prime}, this implies that $\angle X_{i}^{\prime} A^{\prime} B^{\prime}=\angle A^{\prime} B^{\prime} Y_{i}^{\prime}=\frac{\pi}{2}$. Thus f preserves right angles of Saccheri quadrilaterals.

Step 2: By Step 1, f preserves the other interior angles of Saccheri quadrilaterals which are not right angles.

Step 3: Let $A B C D$ be a Lambert quadrilateral with $\angle C D A:=\theta<\frac{\pi}{2}$ and $\angle D A B=\angle A B C=\angle B C D=\frac{\pi}{2}$. By reflecting $A B C D$ with respect to geodesic $B C$, we get a Saccheri quadrilateral $A E F D$, where the points E and F are the reflections of the points A and D, respectively. Thus, the quadrilateral $A^{\prime} E^{\prime} F^{\prime} D^{\prime}$ must be a Saccheri quadrilateral with $\Delta\left(A^{\prime} E^{\prime} F^{\prime} D^{\prime}\right)=\Delta(A E F D)$. Since $B \in[A, E]$ and $C \in[D, F]$, we have $B^{\prime} \in\left[A^{\prime}, E^{\prime}\right]$ and $C^{\prime} \in\left[D^{\prime}, F^{\prime}\right]$. Therefore, $A^{\prime} E^{\prime} F^{\prime} D^{\prime}$ contains two quadrilaterals $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $B^{\prime} E^{\prime} F^{\prime} C^{\prime}$. By Step 1 and Step 2, we get $\angle D^{\prime} A^{\prime} B^{\prime}=\angle B^{\prime} E^{\prime} F^{\prime}=\frac{\pi}{2}$ and $\angle C^{\prime} D^{\prime} A^{\prime}=\angle E^{\prime} F^{\prime} C^{\prime}=\theta$. By reflecting $A B C D$ in the geodesic $A B$, one can easily see that $\angle D^{\prime} C^{\prime} B^{\prime}=\frac{\pi}{2}$ holds true. This implies that C^{\prime} is the midpoint of D^{\prime} and F^{\prime} which implies that $\angle A^{\prime} B^{\prime} C^{\prime}=\frac{\pi}{2}$. Hence the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ must be a Lambert quadrilateral with $\Delta\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)=$ $\Delta(A B C D)$ and this implies that f is a Möbius transformation or a conjugate Möbius transformation.

Acknowledgement: The author would like to thank the reviewer for the helpful comments to improve the paper.

REFERENCES

1. A. F. Beardon The Geometry of Discrete Groups. Springer-Verlag, New York, 1983.
2. C. CARATHÉODORY The most general transformations of plane regions which transform circles into circles. Bull. Am. Math. Soc. 43 (1937), 573-579.
3. O. Demirel and E. S. Seyrantepe A characterization of Möbius transformations by use of hyperbolic regular polygons. J. Math. Anal. Appl. 374 (2011) no. 2, 566-572.
4. O. Demirel A characterization of Möbius transformations by use of hyperbolic regular star polygons. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 14 (2013) no. 1, 13-19.
5. O. Demirel A characterization of Möbius transformations by use of hyperbolic triangles. J. Math. Anal. Appl. 398 (2013) no. 2, 457-461.
6. B. Li and Y. Wang A new characterization for isometries by triangles. New York J. Math. 15 (2009), 423-429.
7. J. Liu A new characteristic of Möbius transformations by use of polygons having type A. J. Math. Anal. Appl. 324 (2006) no. 1, 281-284.
8. V. Pambuccian Mappings preserving the area equality of hyperbolic triangles are motions. Arch. Math. (Basel) 95 (2010) no. 3, 293-300.
9. A. A. Ungar: The hyperbolic square and Möbius transformations. Banach J. Math. Anal. 1 (2007) no. 1, 101-116.
10. S. Yang and A. Fang A new characteristic of Möbius transformations in hyperbolic geometry. J. Math. Anal. Appl. 319 (2006) no. 2, 660-664.
11. S. YANG and A. FANG Corrigendum to "A new characteristic of Möbius transformations in hyperbolic geometry ", [J. Math. Anal. Appl. 319 (2) (2006) 660664], J. Math. Anal. Appl. 376 (2011) no. 1, 383-384.

Oğuzhan Demirel
Faculty of Science and Literature
Department of Mathematics
P. O. Box 03200

34000 Afyonkarahisar, Turkey
odemirel@aku.edu.tr

[^0]: Received March 12, 2018; accepted April 20, 2018
 2010 Mathematics Subject Classification. Primary 51M10; Secondary 30F45, 51B10, 51M09, 51M25

