SOME CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH q-RUSCHEWEYH DIFFERENTIAL OPERATOR

Khalida Inayat Noor

Abstract

It is known that the q-analysis (q-calculus) has many applications in mathematics and physics. The notion of the q-derivative D_{q} of a function f, analytic in the open unit disc, is defined as $D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}, q \in(0,1),(z \neq 0)$ and $D_{q} f(0)=f^{\prime}(0)$. Using a q-analogue of the well-known Ruscheweyh differential operator D_{q}^{n} of order n, we introduce certain classes $S T_{q}(n)$ for $n=0,1,2, \ldots$, and investigate a number of interesting properties such as inclusion and coefficient results. The ideas and techniques in this paper may stimulate further research in this field.

Keywords: Analytic, Starlike functions, q-derivative, Ruscheweyh operator, Subordination

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc $E=\{z:|z|<1\}$ and are of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1.1}
\end{equation*}
$$

The class $S \subset A$ consists of univalent functions. A function $f \in A$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in E if it satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad(z \in E)
$$

We denote this class by $S^{*}(\alpha)$. For $\alpha=0$, we have $S^{*}(0)=S^{*}$, is the well-known class of starlike functions. The class $C(\alpha),(0 \leq \alpha<1)$ consists of convex functions

[^0]of order α and can be defined by the relation $f \in C(\alpha)$, if and only if, $z f^{\prime} \in S^{*}(\alpha)$.

Let $f_{1}, f_{2} \in A$. If there exists a Schwartz function $\phi(z)$ which is analytic in E with $\phi(0)=0$ and $|\phi(z)|<1$ such that $f_{1}(z)=f_{2}(\phi(z))$, then we say that $f_{1}(z)$ is subordinate to $f_{2}(z)$ and write $f_{1}(z) \prec f_{2}(z)$, where \prec denote subordination symbol.

For $f \in A$ and given by (1.1), $g: g(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}$, convolution $*$ (Hadamard product) of f and g is defined by

$$
(f * g)(z)=\sum_{m=2}^{\infty} a_{m} b_{m} z^{m}
$$

Recently, the use of q-calculus has attracted the attention of many researchers in the field of geometric function theory. Ismail et al. [5] generalized the class S^{*} with the concept of q-derivative and called this class S_{q}^{*} of q-starlike functions. For recent developments, see $[10,11,12,13,14,17]$ and the references therein.

We first give some basic definitions and the concept of q-calculus, which we shall use in this paper. For more details, see $[3,8]$.

A set $B \subset \mathbb{C}$ is called q-geometric if, for $q \in(0,1), q z \in B$, it contains all the sequences $\left\{z q^{m}\right\}_{0}^{\infty}$. Jackson $[6,7]$ defined q-derivative and q-integral of f on the set B as follows:

$$
\begin{equation*}
\partial_{q} f(z)=\frac{f(z)-f(z q)}{z(1-q)}, \quad(z \neq 0, z \in(0,1)) \tag{1.2}
\end{equation*}
$$

and

$$
\int_{0}^{z} f(t) \partial_{q} t=z(1-q) \sum_{m=0}^{\infty} q^{m} f\left(z q^{m}\right), \quad q \in(0,1)
$$

provided that the series converges.

It can easily be seen that, for $m=1,2,3, \ldots$, and $z \in E$,

$$
\begin{equation*}
\partial_{q}\left\{\sum_{m=1}^{\infty} a_{m} z^{m}\right\}=\sum_{m=1}^{\infty}[m, q] a_{m} z^{m-1} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
[m, q]=1+\sum_{i=1}^{m-1} q^{i}=\frac{1-q^{m}}{1-q}, \quad[0, q]=0 \tag{1.4}
\end{equation*}
$$

For any non-negative integer m, the q-number shift factorial is defined by

$$
[m, q]!= \begin{cases}1, & m=0 \\ {[1, q][2, q][3, q] \ldots[m, q],} & m=1,2,3, \ldots\end{cases}
$$

Also, the q-generalized Pochhamer symbol for $x>0$ is given as

$$
[m, q]_{m}= \begin{cases}1, & m=0 \\ {[x, q][x+1, q] \ldots[x+m-1, q],} & m=1,2,3, \ldots\end{cases}
$$

Throughout this paper, we shall assume $z \in E$, and $q \in(0,1)$, unless stated otherwise.

Using the q-derivative, we define certain new classes of analytic functions given as below.

Definition 1.1. Let $f \in A$. Then f is said to belong to the class $S T_{q}$, if

$$
\left|\frac{z}{f(z)}\left(\partial_{q} f\right)(z)-\frac{q}{1-q^{2}}\right| \leq \frac{q}{1-q^{2}},
$$

where $\partial_{q} f(z)$ is defined by (1.2) on q-geometric set B.
Remark 1.1. We note that, as $q \rightarrow 1^{-}$, the disc $\left|w(z)-\frac{q}{1-q^{2}}\right| \leq \frac{q}{1-q^{2}}$ becomes the right half plane $\operatorname{Re}\{w(z)\}>\alpha, \alpha \in\left(\frac{1}{2}, 1\right)$ and the class $S T_{q}$ reduces to $S^{*}\left(\frac{1}{2}\right)$.

Following the argument similar to the one used in [20], it is easily seen that $f \in S T_{q}$, if and only if,

$$
\begin{equation*}
\frac{z \partial_{q} f(z)}{f(z)} \prec \frac{1}{1-q z} \tag{1.5}
\end{equation*}
$$

From (1.5) it can be seen that the linear transformation $\frac{1}{1-q z}$ maps $|z|=r$ onto the circle with center $C(r)=\frac{q r^{2}}{1-q^{2} r^{2}}$ and the radius $\sigma(r)=\frac{q r}{1-q^{2} r^{2}}$, and we can write

$$
\begin{equation*}
\frac{1-q r+q r^{2}}{(1-q r)(1+q r)} \leq\left\{\operatorname{Re} \frac{z \partial_{q} f(z)}{f(z)}\right\} \leq \frac{1+q r+q r^{2}}{(1-q r)(1+q r)} \tag{1.6}
\end{equation*}
$$

Now, with $\partial_{q}(\log f(z))=\frac{\partial_{q} f(z)}{f(z)}, \operatorname{Re} \frac{\partial_{q} f(z)}{f(z)}=r \frac{\partial_{q} \log |f(z)|}{d r}$ and some computation, we have from (1.6)

$$
\begin{equation*}
\frac{1}{r}+\frac{q}{1+q r} \leq \frac{\partial_{q}}{d r} \log |f(z)| \leq \frac{1}{r}+\frac{q}{1-q r} \tag{1.7}
\end{equation*}
$$

Taking the q-integral on both sides of (1.7) and simplifying, we get

$$
\begin{equation*}
\frac{1}{(1+q r)^{q q_{1}}} \leq\left|\frac{f(z)}{z}\right| \leq \frac{1}{(1-q r)^{q q_{1}}}, \quad q_{1}=\frac{1-q}{\log q^{-1}} \tag{1.8}
\end{equation*}
$$

Since $\lim _{q \rightarrow 1^{-}} \frac{1-q}{\log q^{-1}}=1,(1.8)$ gives us a distortion result for $f \in S^{*}\left(\frac{1}{2}\right)$ as

$$
\frac{r}{(1+r)} \leq|f(z)| \leq \frac{r}{(1-r)}, \quad \text { see }[4]
$$

For $n \in \mathbb{N}_{\circ}=\{0,1,2,3, \ldots\}$, the Ruscheweyh derivative D^{n} of order n, is defined as

$$
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}, \quad f \in A
$$

We now proceed to discuss the q-analogue of the Ruscheweyh derivative.
Let the function $F_{q, n+1}$ be defined as

$$
\begin{equation*}
F_{q, n+1}(z)=z+\sum_{m=2}^{\infty} \frac{[m+n-1, q]!}{[n, q]![m-1, q]!} z^{m} \tag{1.9}
\end{equation*}
$$

where the series converges absolutely in E.

Using (1.9), the q-Ruscheweyh differential operator of order $n, D_{q}^{n}: A \rightarrow A$ is defined for $f(z)$ given by (1.1) as

$$
\begin{align*}
D_{q}^{n} f(z) & =F_{q, n+1}(z) * f(z) \\
& =z+\sum_{m=2}^{\infty} \frac{[m+n-1, q]!}{[n, q]![m-1, q]!} a^{m} z^{m}, \quad \text { see }[9] . \tag{1.10}
\end{align*}
$$

We note that

$$
D_{q}^{0} f(z)=f(z) \quad \text { and } \quad D_{q}^{\prime} f(z)=z \partial_{q} f(z)
$$

Also (1.10) can be written as

$$
D_{q}^{n} f(z)=\frac{z \partial_{q}^{n}\left(z^{n-1} f(z)\right)}{[n, q]!}, \quad n \in \mathbb{N}
$$

As $q \rightarrow 1^{-1}, \lim _{q \rightarrow 1^{-}} F_{q, n+1}(z)=\frac{z}{(1-z)^{n+1}}$, and $\lim _{q \rightarrow 1^{-}} D_{q}^{n} f(z)=D^{n} f(z)$, that is, the q-Ruscheweyh derivative reduces to the Ruscheweyh derivative as $q \rightarrow 1^{-}$. See [18].
The following identity can easily be derived from (1.10).

$$
\begin{equation*}
z \partial_{q}\left(D_{q}^{n} f(z)\right)=\left(1+\frac{[n, q]}{q^{n}}\right) D_{q}^{n+1} f(z)-\frac{[n, q]}{q^{n}} D_{q}^{n} f(z) \tag{1.11}
\end{equation*}
$$

When $q \rightarrow 1^{-}$, (1.11) reduces to the well-known identity for the Ruscheweyh derivative as

$$
z\left(D^{n} f(z)\right)^{\prime}=(n+1) D^{n+1} f(z)-n D^{n} f(z)
$$

Using the q-operator D_{q}^{n}, we define the following.

Definition 1.2. Let $f \in A$ and let the operator $D_{q}^{n}: A \rightarrow A$ be defined by (1.10). Then $f \in S T_{q}(n)$, if and only if, $D_{q}^{n} f \in S T_{q}$ in E.

In other words $\frac{z \partial_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)} \prec \frac{1}{1-q z}$ implies $f \in S T_{q}(n)$. We note that, if

$$
p(z) \prec \frac{1}{1-q z}, \quad \text { then } \quad \operatorname{Re} p(z)>\frac{1}{1+q}, \quad z \in E .
$$

2. Main Results

Theorem 2.1. For $n \in \mathbb{N}_{\circ}, S T_{q}(n+1) \subset S T_{q}(n)$.
Proof. Let $f \in S T_{q}(n+1)$. Set

$$
\begin{equation*}
\frac{z \partial_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}=p(z) \tag{2.1}
\end{equation*}
$$

We note that $p(z)$ is analytic in E and $p(0)=1$. We shall show that $p(z) \prec \frac{1}{1-q z}$.
The q-logarithmic differentiation of (2.1) and the use of identity (1.11) yields

$$
\begin{equation*}
\frac{z \partial_{q}\left(D_{q}^{n+1} f(z)\right)}{D_{q}^{n+1} f(z)}=p(z)+\frac{z \partial_{q} p(z)}{p(z)+N_{q}}, \quad N_{q}=\frac{[n, q]}{q^{n}} . \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(z)=\frac{1}{1-q \phi(z)} \tag{2.3}
\end{equation*}
$$

$\phi(z)$ is analytic in E and $\phi(0)=0$. We shall show that $|\phi(z)|<1$, for all $z \in E$.
Suppose, on the contrary, that there exists a $z_{0} \in E$ such that $\left|\phi\left(z_{0}\right)\right|=1$.
Since $f \in S T_{q}(n+1)$, it follows from (2.2) that

$$
\operatorname{Re}\left\{p(z)+\frac{z \partial_{q} p(z)}{p(z)+N_{q}}\right\}>\frac{1}{1+q}, \quad N_{q}=\frac{[n, q]}{q^{n}}
$$

Using (2.3), we have
(2.4) $\operatorname{Re}\left[p(z)+\frac{z \partial_{q} p(z)}{p(z)+N_{q}}\right]=\operatorname{Re}\left[\frac{1}{1-q \phi\left(z_{0}\right)}+\frac{q z_{0} \partial_{q} \phi\left(z_{0}\right)}{\left(1-q \phi\left(z_{0}\right)\right)\left[\left(1+N_{q}\right)-q N_{q} \phi\left(z_{0}\right)\right]}\right]$.

Let $\phi\left(z_{0}\right)=e^{i \theta}$. Then

$$
\begin{equation*}
\operatorname{Re} \frac{1}{1-q \phi\left(z_{0}\right)}=\frac{1-q \cos \theta}{1-2 q \cos \theta+q^{2}} \tag{2.5}
\end{equation*}
$$

Also

$$
\begin{equation*}
z_{0} \partial_{q} \phi\left(z_{0}\right)=k \phi\left(z_{0}\right), \quad k \geq 1 \tag{2.6}
\end{equation*}
$$

by using q-Jacks's Lemma given in [1].
Using (2.5), (2.6), $\phi\left(z_{0}\right)=e^{i \theta}$ in (2.4), we have
(2.7) $\operatorname{Re}\left\{\frac{z \partial_{q}\left(D_{q}^{n+1} f\left(z_{0}\right)\right)}{D_{q}^{n+1} f\left(z_{0}\right)}\right\}=\operatorname{Re}\left\{\frac{1}{1-q e^{i \theta}}+\frac{q k e^{i \theta}}{\left(1-q e^{i \theta}\right)\left(N_{q}+1-q N_{q} e^{i \theta}\right)}\right\}$.

In (2.7), we take $\theta=\pi$, and this gives us

$$
\operatorname{Re}\left\{\frac{z \partial_{q}\left(D_{q}^{n+1} f(z)\right)}{D_{q}^{n+1} f(z)}-\frac{1}{1+q}\right\}<0, \quad z \in E
$$

which is a contradiction. Thus, $|\phi(z)|<1$ for all $z \in E$ and this proves $p(z) \prec \frac{1}{1-q z}$. Consequently, $f \in S T_{q}(n)$ in E.

Using the identity (1.11) and the definition, the proof of the following result is straightforward.

Theorem 2.2. Let $f \in S T_{q}(n)$ and let $I_{n} f: A \rightarrow A$ be defined as

$$
I_{n} f(z)=\frac{[n+1, q]}{q^{n} z^{n}} \int_{0}^{z} t^{n-1} f(t) \mathrm{d}_{q} t, \quad n \in \mathbb{N}_{\circ}
$$

Then $I_{n} f(z) \in S T_{q}(n+1)$.
This operator was introduced by Bernardi [2] for $q \rightarrow 1^{-}$. For $n=1, I_{1} f(z)$ is the q-analogue of the Libera integral operator, see [15, 16].

In [19], it has been proved that $\cap_{0<q<1} S_{q}^{*}(\alpha)=S^{*}(\alpha), 0 \leq \alpha<1$. From this we can easily deduce that
(i). $\cap_{0<q<1} S T_{q}=S^{*}\left(\frac{1}{2}\right)$.
(ii). $f \in\left[\cap_{0<q<1} S T_{q}(n)\right]$ implies $D^{n} f \in S^{*}\left(\frac{1}{2}\right)$.

We have the following.
Theorem 2.3. $\cap_{n=0}^{\infty} S T_{q}(n)=\{i d\}$ where id is the identity function.
Proof. Let $f(z)=z$. Then it follows trivially that $z \in S T_{q}(n)$, for $n \in \mathbb{N}_{\text {。 }}$. On the contrary, assume $f \in \cap_{n=0}^{\infty} S T_{q}(n)$ with $f(z)$ given by (1.1).
From (1.5) and (1.10), we deduce that $f(z)=z$.
Theorem 2.4. Let $f \in S T_{q}(n)$ and be given by (1.1). Then

$$
a_{m}=O(1) \frac{([n, q]!)([m-1, q]!)}{[m, q]([m+n-1, q]!)} m^{\left(q q_{1}+\frac{1}{2}\right)}, \quad q_{1}=\frac{1-q}{\log q^{-1}},
$$

where $O(1)$ is a constant depending on q.

Proof. Let

$$
D_{q}^{n} f(z)=z+\sum_{m=2}^{\infty} A_{m}(n) z^{m}
$$

Then, from (1.10), we have

$$
A_{m}(n)=\frac{[m+n-1, q]!}{[n, q]![m-1, q]!} a_{m}
$$

Since $f \in S T_{q}(n), \quad D_{q}^{n} f \in S T_{q}$, and we can write

$$
z \partial_{q}\left(D_{q}^{n} f(z)\right)=\left(D_{q}^{n} f(z)\right)(p(z)), \quad p(z) \prec \frac{1}{1-q z}
$$

The Cauchy Theorem, (1.8) and the Schwartz inequality gives us

$$
[m, q]\left|A_{m}(n)\right| \leq c_{1}(q) \frac{1}{(1-r)^{q q_{1}+\frac{1}{2}}}, \quad q_{1}=\frac{1-q}{\log q^{-1}}
$$

where $c_{1}(q)$ is a constant. Taking $r=1-\frac{1}{m},(m \rightarrow \infty)$, we obtain the desired result.

As a special case for $n=0, D_{q}^{0} f \in S T_{q}$ and $a_{m}=O(1) \cdot m^{\left(q q_{1}-\frac{1}{2}\right)}, m \rightarrow \infty$.
We observe here that, $\lim _{q \rightarrow 1^{-}} S T_{q}=S^{*}\left(\frac{1}{2}\right)$ and $f(z) \prec \frac{z}{1-z}$. Using the Schwartz inequality and subordination, we get

$$
a_{m}=O(1) \cdot \frac{n!(m-1)!}{(m+n-1)!}
$$

Acknowledgements

The author would like to thank the Rector of COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environment.

REFERENCES

1. K. Ademogullari and Y. Kahramaner, q-harmonic mappings for which analytic part is q-convex function, Nonlin. Anal. Diff. Eqn., 4(2016), 283-293.
2. S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
3. T. Ernest, The History of q-Calculus and a New Method, Licentia Dissertation, Uppsala, 2001.
4. A. W. Goodman, Univalent Function, Vol. I, Mariner Publishing Company, Inc., Florida 1983.
5. M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables, 14(1990), 77-84.
6. F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Trans. Of Royal Soc. of Edinburgh, 46(1909), 253-281.
7. F. H. Jackson, On q-definite integrals, Quart. J. Pure. Appl. Math., 41 (1910), 193-203.
8. V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, Newy York, 2002.
9. S. Kanas and D. Raducanu, Some classes of analytic functions related to Conic domains, Math. Slovaca, 64(2014), 1183-1196.
10. K. I. Noor, On generalized q-close-to-convexity, Appl. Math. Inform. Sci. 11(5) (2017), 1383-1388
11. K. I. Noor, On generalized q-Bazilevic functions, J. Adv. Math. Stud. 10(2017), 418424.
12. K. I. Noor, Some classes of q-alpha starlike and related analytic functions, J. Math. Anal. 8(4)(2017), 24-33.
13. K. I. Noor and R. S. Badar, On a class of quantum alpha-convex functions, J. Appl. math. Informatics, 36(2018).
14. K. I. Noor and M. A. Noor, Linear combinations of generalized q-starlike functions, Appl. Math. Info. Sci. 11(2017), 745-748.
15. K. I. Noor and S. Riaz, Generalized q-starlike functions, Stud. Scient. Math. Hungerica, 54(2017), 1-14.
16. K. I. Noor, S. Riaz and M. A. Noor, On q-Bernardi Integral Operator, TWMS J. Pure Appl. Math., 8(2017), 3-11.
17. K. I. Noor and H. Shahid, On dual sets and neighborhood of new classes of analytic functions involving q-derivative, Iran. J. Sci. Technol. Trans, Sci. (2018).
18. ST. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
19. S. K. Sahoo and N. L. Sharma, On a generalization of starlike functions of order alpha, arXiv:1404.3988VI [math. CV], April 2014.
20. H. E. O. Ucar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276(2016), 122-126.

Khalida Inayat Noor
Department of Mathematics
COMSATS University Islamabad
Islamabad, Pakistan
khalidan@gmail.com

[^0]: Received March 21, 2018; accepted: July 07, 2018
 2010 Mathematics Subject Classification. Primary: 30C45, 30C10; Secondary: 47B38

