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COMMON FIXED POINT THEOREMS USING (ψ1, ψ2, φ)-WEAK
CONTRACTION IN PARTIAL ORDERED METRIC SPACES

Penumarthy Parvateesam Murthy and Uma Devi Patel

Abstract. The purpose of this note is twofold: (i) to improve the results of Abkar and
Choudhury ([1]), and (ii) to obtain common fixed point theorems in partially ordered
metric spaces for three self-maps under the weaker condition of the commutativity in
line of Banach Fixed Point Theorem. The contraction condition used in our results
is weaker than the Banach Contraction Condition. We have supported our result by
providing illustrative examples.

Keywords: Common fixed points,(ψ1, ψ2, φ)-weak contractions, weakly commuting maps,
partially ordered metric spaces.

1. Introduction and Preliminaries

The most fundamental result in fixed point theory is the Banach Fixed Point Theo-
rem ([19]) which states that an operator T : X→ X satisfying the inequality

(1.1) d(Tx,Ty) ≤ kd(x, y)

for all x, y ∈ X, where k is a some constant in (0, 1) and X is a complete metric
space, has a unique fixed point which can be obtained by using the Picard itera-
tion scheme. After almost four decades Edelstein ([12]) established a fixed point
theorem in a complete metric space (X, d) by using the following inequality for
x � y ∈ X :

(1.2) d(Tx,Ty) < d(x, y).

After him, Kannan ([16]) obtained a fixed point theorem in a complete metric space
(X, d) by using the following inequality for all x, y ∈ X :

(1.3) d(Tx,Ty) ≤ β[d(x,Tx)+ d(y,Ty)]
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where β ∈ [0, 1
2 ).

It is interesting to note here that inequality (1.3) implies that the self-mapping
T is discontinuous. After the result of Kannan([16]) a spate of results appeared in
the literature on Metric Fixed Point Theory and its applications.
In 1984, Khan, Swalesh and Sessa ([11]) addressed a new category of fixed point
problems involving a control function which they called an altering distance func-
tion in the setting of Rakotch ([17]) and Boyd and Wong([5]).

Definition 1.2.([11]) (Altering distance function) A function ψ : [0,∞) → [0,∞)
is called an altering distance function if it satisfies the following conditions:

1. ψ is a monotonically increasing and continuous function;

2. ψ(t) = 0 if and only if t = 0.

In the meantime, after Banach’s Fixed Point Theorem, it was quite natural to ask if
there existed any condition that was weaker than the contraction condition. It was
Rhoades([2] who, inspired by Alber and Gurerre-Delabriere ([24], extended the
same into a complete metric space. Rhoades ([2]) established a fixed point theorem
in a complete metric space by using the following contraction condition:

A mapping T : X→ X satisfying the condition

(1.4) d(Tx,Ty) ≤ d(x, y)− ϕ(d(x, y)),

where x, y ∈ X and ϕ : [0,∞)→ [0,∞) is a continuous and nondecreasing function
such that ϕ(t) = 0 if and only if t = 0.

Remark: In the above condition if ϕ(t) = (1 − k)t where k ∈ (0, 1), then we have the
condition (1.1) of Banach.

So, in view of (1.1), condition (1.4) is a weaker condition.

In recent years, fixed points are also obtained in partially ordered metric spaces
endowed with a partial ordering ( refer([9], [8], [14]).
Throughout this paper (X, d) stands for a complete metric space and ′ �′ is a partial
order on X.

A mapping T : X → X is said to be non-decreasing if T(x) � T(y), whenever
x � y.

In this paper we shall assume that X has the following property:

(1.5) I f a non − decreasin� sequence {xn} conver�es to z∈X, then xn � z f or each n≥0.

Abkar and Choudhury ([1]) proved the following theorem in a partially ordered
metric space using (φ,ψ) contraction condition initially introduced by Doric ([4]).
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Here we list the statements of theorems 2.2, 2.3 and 3.1 as given in ([1]):

Theorem 1.1. Let (X, d) be a complete partially ordered metric space with a
partial order ’�’ and the property described in (1.3). Let T, S : X → X be two
self-mappings such that for all comparable x, y ∈ X with

(1.6) ψ1(d(Tx, Sy))) ≤ ψ2(M(x, y)) − φ(M(x, y))

where

M(x, y) = max{d(x, y), d(x,Tx), d(y, Sy)), 1
2 (d(y,Tx)+ d(x, Sy))},

ψ1, ψ2 : [0,∞) → [0,∞) are continuous monotone non-decreasing functions and
φ : [0,∞) → [0,∞) is a lower semi-continuous function which satisfies ψ1(t) −
ψ2(t)+ φ(t) > 0. If X has the property (1.5) and if there exists a point x0 ∈ X satisfy-
ing x0 � Sx0 � TSx0 � S(TS)x0 � (TS)2x0 � .... Then there exists a point u ∈ X such
that Su = Tu = u.

Theorem 1.2. Let (X, d) be a complete metric space with a partial order’�’ and
the property described in (1.3). Let T : X → X be a self-mapping which is non-
decreasing and satisfies the following inequality:

(1.7) ψ1(d(Tx,Ty))) ≤ ψ2(M(x, y))− φ(M(x, y))

for all comparable x, y ∈ X, where,

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)), 1
2 (d(y,Tx)+ d(x,Ty))}

and ψ1, ψ2, φ : [0,∞) → [0,∞) are such that ψ1andψ2 are continuous, φ is lower
semi-continuous and ψ1(t) − ψ2(t) + φ(t) > 0 for all t > 0. If X has the property
described in (1.5) and there exists a point x0 ∈ X such that x0 � Tx0, then T has a
fixed point.

Theorem 1.3. Let(X, d) be a complete metric space with a partial order ’�’ and
T : X → X be a self mapping which is non-decreasing and satisfies the following
inequality:

(1.8) ψ1(d(Tx,Ty))) ≤ ψ2(N(x, y))− h(Q(x, y))

for x, y ∈ X, where x and y are comparable, x � y,

N(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)), 1
2 (d(y,Tx)+ d(x,Ty))},

Q(x, y) = min{d(x, y), d(x,Tx), d(y,Ty)), 1
2 (d(y,Tx)+ d(x,Ty))},
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ψ1, ψ2, h : [0,∞)→ [0,∞) are such thatψ1 andψ2 are continuous, h : [0,∞)→ [0,∞)
monotone decreasing in (0,∞), lower semi-continuous in (0,∞) with h(t) > 0 for all
t > 0 and

ψ1(s) − ψ2(s) + h(s) > 0, s > 0.

Further, for all x ∈ X, we assume

(1.9) d(x,T2x) ≥ 2d(Tx,T2x)

If X has the property described in (1.5) and if there exists x0 ∈ X such that x0 � Tx0,
then T has a fixed point.

Remark: In Theorem 3.1 of ([1]), we observe that condition h(0) = 0 if and only
if t = 0 is missing on page 5 and equation (3.5) (page 5) is not used anywhere in the
proof. Similarly, on page 9 case 5 of the example should be written as x ≥ 3, y = 0.
Based on those observations, we rewrite the statement under conditions that are
weaker than those of ([1]). So, our theorem improves the results given in ([1]).
Now we rewrite the theorem presented in the next section as a corollary. Also,
we generalize Theorem 2.2 and Theorem 3.1 of Abkar and Choudhury ([1]) in
partially ordered metric spaces using the weakly commuting property for three
self-mappings and more control functions.

2. Section(Fixed Point Theorems for Three Self Mappings)

Definition 2.1. ([15]) Let T, S and f are self-maps of a complete metric space (X, d)
with a partially ordered relation ’�’ having the property described in (1.5) are said
to be weakly commuting with respect to S if and only if

d( fT f x, S f y) ≤ d(T f f x, S f y),

for all x ∈ X

Theorem 2.2. Let(X, d) be a complete ordered metric space with a partial order
’�’ and T, S, f : X → X be three self-mappings which are non-decreasing and
satisfy the following inequality:

(2.1) ψ1(d(T fx, S f y))) ≤ ψ2(M(x, y))− φ(M(x, y))

for x, y ∈ X, where x and y are comparable, x � y, where

(2.2) M(x, y) = max{d(x, y), d(x,T fx), d(y,S f y)),
1
2

(d(y,T fx)+ d(x, S f y))},
ψ1, ψ2 : [0,∞) → [0,∞) are continuous monotone non-decreasing functions and
φ : [0,∞)→ [0,∞) is lower semi-continuous with



Common Fixed Point Theorems Using... 449

ψ1(t) − ψ2(t) + φ(t) > 0, s > 0.

If X has the property described in (1.5) and if there exists x0 ∈ X such that

x0 � S fx0 � T f (S f (x0)) � S f (T f (S fx0))) � (T f (S f ))2x0 � . . .
and if T, S and f are a weakly commuting pair of maps with respect to S. then there
exists a point z ∈ X such that Sz = Tz = f z = z.

Proof. Let x0 ∈ X be any arbitrary point and let us define

x1 = S f (x0) and x2 = T f (x1) = T f (S f (x0)).

Inductively, we obtain

(2.3) x2n+1 = S f (x2n) and x2n+2 = T f (x2n+1)

Then from the condition of the theorem, it follows that

x0 � x1 � x2 � x3 � ...xn � xn+1 � .....
We have to prove that the following:

1. limn→∞d(xn, xn+1) = 0.

2. the sequence {xn} is a cauchy sequence, so that xn → z for some z ∈ X.

3. Sz = Tz = f z = z.

4. The common fixed point z is unique.

For this : putting x = x2n+1, y = x2n in (2.1) and (2.2), we have

(2.4) ψ1(d(x2n+2, x2n+1)) ≤ ψ2(d(M(x2n+1, x2n)) − φ(M(x2n+1, x2n))

where

M(x2n+1, x2n) = max{d(x2n+1, x2n), d(x2n+1,T fx2n+1), d(x2n,T fx2n)),
1
2 (d(x2n,T fx2n+1) + d(x2n+1, S fx2n))}

= max{d(x2n+1, x2n), d(x2n+1, x2n+2), d(x2n, x2n+1)),
1
2 (d(x2n, x2n+2) + d(x2n+1, x2n+1))}

= max{d(x2n+1, x2n), d(x2n+1, x2n+2), 1
2 (d(x2n, x2n+2))}.

If possible, for some n let,

(2.5) d(x2n, x2n+1) < d(x2n+1, x2n+2),
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By using a triangular inequality, we can write

(2.6)
d(x2n, x2n+2)

2
≤ d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
< d(x2n+1, x2n+2),

By the above inequalities (2.5) and (2.6), we get

(2.7) M(x2n+1, x2n) = d(x2n+1, x2n+2).

By (2.4) and (2.7) we get,

ψ1(d(x2n+2, x2n+1)) ≤ ψ2(d(x2n+1, x2n+2)) − φ(d(x2n+1, x2n+2)),

We arrive at a contradiction. Thus

(2.8) d(x2n+1, x2n+2) ≤ d(x2n, x2n+1).

Using the above inequality (2.8), we shall obtain the following

(2.9) M(x2n+1, x2n) = d(x2n, x2n+1).

We get

(2.10) ψ1(d(x2n+2, x2n+1)) ≤ ψ2(d(x2n, x2n+1)) − φ(d(x2n, x2n+1)).

Again, from (2.8), the sequence d(x2n, x2n+1) is a monotonic, decreasing sequence of
a non-negative real number, so there exists r > 0 such that

(2.11) limn→∞d(x2n, x2n+1) = r > 0.

Taking the limit n→∞ in the inequality in (2.10), we shall obtain

ψ1(r) ≤ ψ2(r) − φ(r),

which is a contradiction. Hence r = 0, that is

(2.12) limn→∞d(x2n, x2n+1) = 0.

Similarly, by replacing x = x2n+2 and y = x2n+1 in (2.1) and (2.2), we have

limn→∞d(x2n+1, x2n+2) = 0.

Thus we can write for all n ≥ 0,

(2.13) limn→∞d(xn, xn+1) = 0.
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Next we shall prove that {xn} is a cauchy sequence. It will be enough to show
that the subsequence {x2n} is a cauchy sequence. If not, we suppose {x2n} is not a
cauchy sequence so there exist ε > 0 and a sequence of natural number {2n(k)} and
{2m(k)} such that for every natural number k, 2n(k) > 2m(k) > 2k and

(2.14) d(x2m(k), x2n(k)) ≥ ε
corresponding to 2m(k). We can choose 2n(k) to be the smallest integer such that
(2.14) is satisfied. Then we have

(2.15) d(x2m(k), x2n(k)−1) < ε

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2n(k)−1) + d(x2n(k)−1, x2n(k)).

Taking k→∞ and using (2.13)-(2.15), we obtain

(2.16) limk→∞d(x2m(k), x2n(k)) = ε.

Similarly, we can have

d(x2m(k)−1, x2n(k)−1) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k), x2n(k)) + d(x2n(k)−1, x2n(k)),

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k)−1) + d(x2n(k)−1, x2n(k)).

Letting the limit k→∞, we get

(2.17) limk→∞d(x2m(k)−1, x2n(k)−1) = ε.

Now again,

d(x2m(k)−1, x2n(k)) ≤ d(x2m(k)−1, x2m(k)) + d(x2m(k), x2n(k)),

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k)).

Letting the limit k→∞, we get

(2.18) limk→∞d(x2m(k)−1, x2n(k)) = ε.

Now putting, x = x2m(k)−1 and y = x2n(k)−1 in (2.1) and (2.2), we obtain

(2.19) ψ1(d(T fx2m(k)−1, S fx2n(k)−1)) ≤ ψ1(d(x2m(k), x2n(k)))

≤ ψ2(d(M(x2m(k)−1, x2n(k)−1)) − φ(M(x2m(k)−1, x2n(k)−1))
where

M(x2m(k)−1, x2n(k)−1) = max{d(x2m(k)−1, x2n(k)−1), d(x2m(k−1, x2m(k)),

d(x2n(k)−1, x2n(k))), 1
2 (d(x2n(k)−1, x2m(k)) + d(x2m(k)−1, x2n(k)))}.

Letting the limit k→∞ in (2.19) and using (2.13)-(2.18), we get
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ψ1(ε) ≤ ψ2(ε) − φ(ε)

which is a contradiction. Hence the sequence {xn} is a cauchy sequence. Since (X, d)
is a complete metric space, therefore the sequence{xn} is a convergent sequence and
converges to a point say z.
Assume xn → z as n → ∞. Since {xn} is a monotonically increasing sequence, we
have xn � z for all n ≥ 0.

Next we shall obtain fixed points:
Step 1: Let d(z, S f z) � 0 and by putting x = x2n+1 and y = z in (2.1), we get

ψ1(d(T fx2n+1, S f z)) ≤ ψ2(M(x2n+1, z)) − φ(M(x2n+1, z)).

Taking n→ ∞, we get

(2.20) ψ1(z, S f z)) ≤ ψ2(M(z, z))− φ(M(z, z))

M(x2n+1, z) = max{d(x2n+1, z), d(x2n+1, x2n+2), d(z, S f z), 1
2 (d(z, x2n+2) + d(x2n+1, S f z))}

(2.21) limn→∞M(x2n+1, z) = d(z, S f z).

Using(2.20) and (2.21), we get

ψ1(d(z, S f z)) ≤ ψ2(d(z, S f z)) − φ(d(z, S f z))

which is a contradiction and d(z, S f z) = 0 implies z = S f z.

Step 2: Let d(z,T, f z) � 0 and by putting x = z and y = x2n in (2.1), we get,

ψ1(d(T fz, S fx2n)) ≤ ψ2(M(z, x2n)) − φ(M(z, x2n).

Taking n→ ∞we shall get

(2.22) ψ1d(z, S f z)) ≤ ψ2(M(z, z)) − φ(M(z, z))

M(z, x2n) = max{d(z, x2n), d(z,T fz), d(x2n, S fx2n), 1
2 (d(x2n,T fz) + d(z, S fx2n))}.

Using S f z = z, we obtain

(2.23) limn→∞M(z, x2n) =M(z, z) = d(z,T fz).

By (2.22) and (2.23), we get

ψ1(d(T fz, z)) ≤ ψ2(d(z,T fz))− φ(d(z,T fz))
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which is a contradiction. Hence, we have d(z,T fz) = 0⇒ z = T fz.

Now we shall assume T, S and f are weakly commuting maps with respect to
S. Let d( f z, z) � 0 and by putting x = f z and y = z in (2.1) and (2.2), since ψ1 is
monotonic nondecreasing,

(2.24) ψ1d( f z, z)) = ψ1d( fT f z, S f z)) ≤ ψ1d(T f f z, S f z)) ≤ ψ2M( f z, z)) − φ(M( f z, z))

where

M( f z, z) = max{d( f z, z), d( f z,T f ( f z)), d(z, S f z), 1
2 (d(z,T f ( f z)) + d( f z, S f z))}

M( f z, z) = max{d( f z, z), d( f z, f z), d(z, z), 1
2 (d(z, f z) + d( f z, z))} = d(z, f z).

By (2.24) and the above equation, it is implied that

ψ1(d( f z, z)) ≤ ψ2((d(z, f z))− φ(d(z, f z))

which is a contradiction. Hence d(z, f z) = 0⇒ f z = z.
Now T fz = z⇒ Tz = z and S f z = z⇒ Sz = z.
Hence Tz = Sz = f z = z.

Remark: When we take f = Identitymap of X in Theorem 2.1 then we get Theorem
2.2 of Abkar and Choudhury ([1]). When we take T = S, and f= identity map in
Theorem 2.1 we get Theorem 2.3 of Abkar and Choudhury ([1]).

Now we generalize Theorem 3.1 of Abkar and Choudhury ([1]) in a partially or-
dered metric space under the weakly commuting property for three self-mappings.

Theorem 2.3. Let(X, d) be a complete metric space with a partial order ’�’ and
T, S, f : X → X self-mappings which are non-decreasing and satisfy the following
inequality:

(2.25) ψ1(d(T fx, S f y))) ≤ ψ2(M(x, y))− φ(N(x, y))

for x, y ∈ X, where x and y are comparable for x � y where,

M(x, y) = max{d(x, y), d(x,T fx), d(y, S f y)), 1
2 (d(y,T fx)+ d(x, S f y))} and

N(x, y) = min{d(x, y), d(x,T fx), d(y, S f y)), 1
2 (d(y,T fx)+ d(x, S f y))}

ψ1, ψ2 : [0,∞) → [0,∞) are continuous, monotone non-decreasing functions and
φ : [0,∞) → [0,∞) is monotone decreasing in (0,∞), lower semi-continuous in
(0,∞) with φ(t) > 0 for all t > 0, φ(t) = 0 if and only if t = 0 and
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ψ1(s) − ψ2(s) + φ(s) > 0, s > 0.

If X has the property described in(1.5) and if there exists x0 ∈ X such that x0 �
S fx0 � T f (S f (x0)) � S f (T f (S fx0))) � (T f (S f ))2x0 � . . . and if T, S and f are a weakly
commuting pair of maps with respect to S.
then there exists a point u ∈ X such that Su = Tu = f u = u.

Proof. Let x0 ∈ X be any arbitrary point and let us define

x1 = S f (x0) and x2 = T f (x1) = T f (S f (x0)).

Define

x2n+1 = S f (x2n) and x2n+2 = T f (x2n+1) f or n = 0, 1, 2, ...

then from the condition of the theorem, it follows that

x0 � x1 � x2 � x3 � ...xn � xn+1 � ....
We have to prove that the following:

1. limn→∞d(xn, xn+1) = 0.

2. The sequence {xn} is a Cauchy sequence, so that xn → z for some z ∈ X.

3. Sz = Tz = f z = z.

4. The common fixed point z is unique.

For this : by putting x = x2n+1, y = x2n in (2.25), we get

(2.26) ψ1(d(x2n+2, x2n+1)) ≤ ψ2(d(M(x2n+1, x2n)) −Φ(N(x2n+1, x2n))

where

M(x2n+1, x2n) = max{d(x2n+1, x2n), d(x2n+1,T fx2n+1), d(x2n,T fx2n)),
1
2 (d(x2n,T fx2n+1) + d(x2n+1, S fx2n))}

= max{d(x2n+1, x2n), d(x2n+1, x2n+2), d(x2n, x2n+1)),
1
2 (d(x2n, x2n+2) + d(x2n+1, x2n+1))} and

N(x2n+1, x2n) = min{d(x2n+1, x2n), d(x2n+1, x2n+2), 1
2 (d(x2n, x2n+2))}.

If possible, for some n, let

(2.27) d(x2n, x2n+1) < d(x2n+1, x2n+2)
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By using the triangular inequality we have

(2.28)
d(x2n, x2n+2)

2
≤ d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
< d(x2n+1, x2n+2).

By (2.27) and (2.28), we can write

(2.29) M(x2n+1, x2n) = d(x2n+1, x2n+2).

Using the triangle inequality, we have
(2.30)

N(x2n+1, x2n) ≤ min{d(x2n+1, x2n), d(x2n+1, x2n+2),
1
2

(d(x2n, x2n+1), d(x2n+1, x2n+2))}
Using (2.27), we get

(2.31) d(x2n, x2n+1) <
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
Using (2.27), (2.30) and (2.31), we can write

(2.32) 0 < N(x2n+1, x2n) ≤ d(x2n, x2n+1) < d(x2n+1, x2n+2).

By (2.26), (2.29),(2.32) and by the monotone decreasing property of φ function, we
obtain

ψ1(d(x2n+1, x2n+2)) ≤ ψ2(d(x2n+1, x2n+2)) − φ(d(x2n+1, x2n+2)).

The above inequality implies that d(x2n+1, x2n+2) = 0, which is a contradiction.
Hence

(2.33) d(x2n+1, x2n+2) ≤ d(x2n, x2n+1)

for all n ≥ 0, then we have

(2.34) M(x2n+1, x2n) = d(x2n, x2n+1)

and

(2.35)
N(x2n+1, x2n) ≤ min{d(x2n+1, x2n), d(x2n+1, x2n+2),

1
2

(d(x2n, x2n+2))}
≤ d(x2n, x2n+1).

Using the monotone decreasing property of φ and for all n ≥ 0, we have

(2.36) ψ1(d(x2n+1, x2n+2)) ≤ ψ2(d(x2n, x2n+1)) − φ(d(x2n, x2n+1))

2.33 implies that the sequence d(x2n, x2n+1) is a monotone decreasing sequence of
non-negative real numbers, so there exists r > 0 such that

(2.37) limn→∞d(x2n, x2n+1) = r > 0.

Let if possible r � 0, taking the limit n→∞ in (2.36), employing the continuity of
ψ1 and ψ2 and lower semi-continuity of φ, so we have
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ψ1(r) ≤ ψ2(r) − φ(r),

We get a contradiction.

Hence

limn→∞d(x2n, x2n+1) = 0.

Repeating the above process by putting x = x2n+1 and y = x2n+2 in (2.25), we have

limn→∞d(x2n+1, x2n+2) = 0.

Hence we can write, for all n ≥ 0, we obtain

(2.38) limn→∞d(xn, xn+1) = 0.

Next, to prove that {xn} is a Cauchy sequence, it is sufficient to show that the
subsequence {x2n} is a Cauchy sequence. For the contrary, suppose {x2n} is not a
Cauchy sequence, so there exists ε > 0 and the sequence of natural number {2n(k)}
and {2m(k)} such that for every natural number k, 2n(k) > 2m(k) > 2k and

(2.39) d(x2m(k), x2n(k)) ≥ ε
Corresponding to 2m(k), we can choose 2n(k) is the smallest positive integer satis-
fying (2.39). Then we have

(2.40) d(x2m(k), x2n(k)−1) < ε

for k > 0,

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2n(k)−1) + d(x2n(k)−1, x2n(k)).

Taking k→∞ in the above inequality, then we have

(2.41) limk→∞d(x2m(k), x2n(k)) = ε.

Similarly, we have

d(x2m(k)−1, x2n(k)−1) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k), x2n(k)) + d(x2n(k)−1, x2n(k)),

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k)−1) + d(x2m(k)−1, x2n(k)).

Letting the limit k→∞, we obtain,

(2.42) limk→∞d(x2m(k)−1, x2n(k)−1) = ε

Now again,
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d(x2m(k)−1, x2n(k)) ≤ d(x2m(k)−1, x2m(k)) + d(x2m(k), x2n(k)),

d(x2m(k), x2n(k)) ≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k)).

Taking the limit k→∞, we obtain,

(2.43) limk→∞d(x2m(k)−1, x2n(k)) = ε.

Now putting, x = x2m(k)−1 and y = x2n(k)−1 in (2.25), we have

(2.44) ψ1(d(T fx2m(k)−1, S fx2n(k)−1)) ≤ ψ1(d(x2m(k), x2n(k)))

≤ ψ2(d(M(x2m(k)−1, x2n(k)−1)) −Φ(N(x2m(k)−1, x2n(k)−1))
where

(2.45) M(x2m(k)−1, x2n(k)−1) = max{d(x2m(k)−1, x2n(k)−1), d(x2m(k−1, x2m(k)),

d(x2n(k)−1, x2n(k))), 1
2 (d(x2n(k)−1, x2m(k)) + d(x2m(k)−1, x2n(k)))}

and

(2.46) N(x2m(k)−1, x2n(k)−1) = min{d(x2m(k)−1, x2n(k)−1), d(x2m(k−1, x2m(k)),

d(x2n(k)−1, x2n(k))), 1
2 (d(x2n(k)−1, x2m(k)) + d(x2m(k)−1, x2n(k)))}

Taking the limit n→∞, we get

(2.47) limn→∞M(x2m(k)−1, x2n(k)−1) = ε,

(2.48) limn→∞N(x2m(k)−1, x2n(k)−1) = 0.

By employing the property of φ,

(2.49) limin fk→∞φ(N(xm(k)−1, xn(k)−1)) = c > 0

Further, taking the limit inf as k→∞ (2.44), and using (2.47), (2.48) and continuity
of ψ, we obtain

ψ(ε) ≤ ψ(ε) − c

Next, we see that the constructions of (2.42) and (2.43) are valid whenever ε is
replaced by a smaller value. This is because of the fact that for any p ∈ X, {x :
d(p, x) < ε} ⊆ {x : d(p, x) < ε′} whenever ε′ < ε. Hence (2.49) is valid if ε is replaced
by a smaller value.
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Then taking ε→ 0 in (2.49) we obtain that c ≤ 0, which is a contradiction. Hence
sequence {xn} is a cauchy sequence.Let xn → z as n → ∞ again, {xn} is monotone
increasing sequence. Hence by the property of (1.1) we have xn � z for all n ≥ 0.
{xn} is a Cauchy sequence and the subsequence also converges to z.

Now we are ready to find the fixed point:

Step 1: Suppose d(z, S f z) � 0 and put x = x2n+1 and y = z, then by using (2.25), we
have

(2.50) ψ1(d(T fx2n+1, S f z)) ≤ ψ2(M(x2n+1, z)) − φ(M(x2n+1, z))

M(x2n+1, z) = max{d(x2n+1, z), d(x2n+1, x2n+2), d(z, S f z),
1
2 (d(z, x2n+2) + d(x2n+1, S f z))}

(2.51) limn→∞M(x2n+1, z) = d(z, S f z)and

N(x2n+1, z) = min{d(x2n+1, z), d(x2n+1, x2n+2), d(z, S f z),
1
2 (d(z, x2n+2) + d(x2n+1, S f z))}

(2.52) limn→∞N(x2n+1, z) =
1
2

d(z, S f z).

Taking the limit n→∞ in (2.50), we get

ψ1(d(z, S f z)) ≤ ψ2(d(z, S f z)) − φ( 1
2 d(z, S f z)).

Since φ is a monotone decreasing sequence,

ψ1(d(z, S f z) ≤ ψ2(d(z, S f z)) − φ(d(z, S f z))

which contradicts our assumption. Hence d(z, S f z) = 0, this implies that z = S f z.

Step 2: Let d(z,T fz) � 0 and let us put x = z and y = x2n; then by (2.25), we
obtain

(2.53) ψ1(d(T fz, S fx2n)) ≤ ψ2(M(z, x2n)) − φ(N(z, x2n)

M(z, x2n) = max{d(z, x2n), d(z,T fz), d(x2n, S fx2n), 1
2 (d(x2n,T fz) + d(z, S fx2n))}

and

N(z, x2n) = min{d(z, x2n), d(z,T fz), d(x2n, S fx2n), 1
2 (d(x2n,T fz) + d(z, S fx2n))}

By using S f z = z we get,

(2.54) limn→∞M(z, x2n) =M(z, z) = d(z,T fz),

(2.55) limn→∞N(z, x2n) = N(z, z) =
1
2

d(z,T fz).

Taking the limitn→∞ in (2.53), we get
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ψ1(d(T fz, z)) ≤ ψ2(d(z,T fz))− φ( 1
2 d(z,T fz)).

Since φ is a monotone decreasing sequence,

ψ1(d(z,T fz) ≤ ψ2(d(z,T fz))− φ(d(z,T fz))

which is a contradiction. Thus d(z,T fz) = 0. This implies that z = T fz.

Since T, S and f are a weakly commuting pair with respect to S. Let d( f z, z) � 0 and
let us put x = f z and y = z in (2.25) since ψ1 is monotonic nondecreasing,

(2.56)
ψ1(d( f z, z)) = ψ1(d( fT f z, S f z)) ≤ ψ1(d(T f f z, S f z))

≤ ψ2(M( f z, z)) − φ(N( f z, z)),

where
M( f z, z) = max{d( f z, z), d( f z,T f ( f z)), d(z, S f z),

1
2 (d(z,T f ( f z)) + d( f z, S f z))} = d(z, f z)

and

N( f z, z) = min{d( f z, z), d( f z,T f ( f z)), d(z, S f z),
1
2 (d(z,T f ( f z)) + d( f z, S f z))} = 0.

Using the above in (2.56), we get,

ψ1d( f z, z)) ≤ ψ2((d(z, f z))− φ(0)).

Since φ is a monotone decreasing sequence, we can write

ψ1(d(z, f z)) ≤ ψ2(d(z, f z)) − φ(d(z, f z)

This is a contradiction. Thus d(z, f z) = 0⇒ f z = z.
Therefore T fz = z⇒ Tz = z and S f z = z⇒ Sz = z. Hence Tz = Sz = f z = z.

When we take f = IX we shall have the following theorem for two self-maps.

Theorem 2.4. Let (X, d) be a complete partially ordered metric space with a partial
order ’�’ and let T, S : X → X be a self-mapping which is non-decreasing and
satisfies the following inequality:

(2.57) ψ1(d(Tx, Sy))) ≤ ψ2(M(x, y))− φ(N(x, y))

for x, y ∈ X, where x and y are comparable, x � y where

M(x, y) = max{d(x, y), d(x,Tx), d(y, Sy)), 1
2 (d(y,Tx)+ d(x, Sy))}

and
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N(x, y) = min{d(x, y), d(x,Tx), d(y, Sy)), 1
2 d(y,Tx)+ d(x, Sy))},

ψ1, ψ2 : [0,∞) → [0,∞) are continuous monotone non-decreasing functions and
φ : [0,∞) → [0,∞) is monotonic decreasing in (0,∞), lower semi-continuous in
(0,∞) with φ(t) > 0 for all t > 0, φ(t) = 0 if and only if t = 0 and

ψ1(s) − ψ2(s) + φ(s) > 0, s > 0.

If X has the property described in (1.5) and if there exists x0 ∈ X such that
x0 � Sx0 � T(S(x0)) � S(T(Sx0))) � (T(S))2x0 � .... then there exists a point z ∈ X
such that Sz = Tz = f z = z.

When we take S = T and f = IX, then we have a modified version Theorem
3.1 due to Abkar and Choudhary ([1]).

Theorem 2.5. Let (X, d) be a complete metric space with a partial order’ � ’.
Also, let T : X → X be a self-mapping which is non-decreasing and satisfies the
following inequality:

(2.58) ψ1(d(Tx,Ty))) ≤ ψ2(N(x, y))− φ(Q(x, y))

for x, y ∈ X, where x and y are comparable, x � y where,

N(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)), 1
2 (d(y,Tx)+ d(x,Ty))}

Q(x, y) = min{d(x, y), d(x,Tx), d(y,Ty)), 1
2 (d(y,Tx)+ d(x,Ty))}

ψ1, ψ2, φ : [0,∞)→ [0,∞) are such thatψ1 andψ2 are continuous,φ : [0,∞)→ [0,∞),
monotone decreasing in (0,∞), lower semi-continuous in (0,∞) with φ(t) > 0 for
all t > 0, φ(t) = 0 iff t = 0, Also

ψ1(t) − ψ2(t) + φ(t) > 0, t > 0.

If X has the property described in (1.5) and there exists x0 ∈ X such that x0 � Tx0,,
then T has a fixed point.

3. Section(Example)

Example 3.1. Let X = {0, 1, 2, 3, 4, 5, ...} and define

d(x, y) =
{

x + y : if x � y;
0 : if x = y.

Then X is a complete metric space. Suppose the partial order ′ �′ is defined on X as x � y
whenever y ≥ x. Also, define T,S and f : X→ X by:
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T(x) =
{

x − 1 : if x � 0;
0 : if x = 0; S(x) =

{
x
3 : if x � 0;
0 : if x = 0;

and f (x) =
{

2x − 1 : if x � 0;
0 : if x = 0.

Now we shall verify that T,S and f are weakly commuting maps with respect to S.
f T f (x) = f T(2x − 1) = f (2x − 2) = 2(2x − 2) − 1 = 4x − 5, S f y = S(2y − 1) = 2y−1

3 and
T f f x = T f (2x − 1) = T(2(2x − 1) − 1) = T(4x − 3) = 4x − 4.
Therefore,

d( f T f x,S f y) = 4x + 2y
3 − 16

3 ≤ 4x + 2y
3 − 13

3 = d(T f f x, S f y)

The above implies that for all x, y ∈ X, T,S and f are weakly commuting maps with respect
to S.

Let ψ1(t) = t for all t ≥ 0 and

ψ2(t) =
{

2t : if 0 ≤ t ≤ 1;
t + 1

t : if t > 1; and φ(t) =
{

1 : if t > 0;
0 : if t = 0.

We can see that ψ1(t) − ψ2(t) + φ(t) > 0 for each t > 0.
Now we shall verify the inequality of Theorem 2.2.
Without loss of generality we may assume that x > y .

ψ1(d(T fx,S f y))) ≤ ψ2(M(x, y)) − φ(M(x, y))

where,
M(x, y) = max{d(x, y), d(x,T fx), d(y, S f y)), 1/2(d(y,T fx) + d(x, S f y))}.

Then the following cases arise:
Case 1 : If x = 1 and y = 0;
ψ1(d(T fx,S f y)) = ψ1(T fx + S f y) = (2x + 2y

3 − 7
3 ) = − 1

3

M(x, y) = max{x + y, 3x − 2, 5y−1
3 , 1

2 (3x + 5y
3 − 7

3 )} = 1
ψ2(M(x, y)) − φ(M(x, y)) = ψ2(1) − φ(1) = 1 ≥ −1

3 = ψ1d(T fx,S f y).
The inequality is true in this case.

Case 2 : If x = 2 and y = 1;
ψ1(d(T fx,S f y)) = ψ1(2x + 2y

3 − 7
3 ) = 7

3

M(x, y) = max{x + y, 3x − 2, 5y−1
3 , 1

2 (3x + 5y
3 − 7

3 )} = max{3, 4, 2
3 ,

16
6 } = 4

ψ2(M(x, y)) − φ(M(x, y)) = ψ2(4) − φ(4) = 4 + 1
4 − 1 = 3.25 > 7

3 = ψ1(d(T fx,S f y)).
The inequality is true in this case as well.

Case 3 : If x = 2 and y = 0;
ψ1(d(T fx,S f y)] = ψ1(2x + 2y

3 − 7
3 ) = 5

3

M(x, y) = max{x + y, 3x − 2, 5y−1
3 , 1

2 (3x + 5y
3 − 7

3 )} = max{2, 4, −1
3 ,

11
6 } = 4

ψ2(M(x, y)) − φ(M(x, y)0 = ψ2(4) − φ(4) = 4 + 1
4 − 1 = 3.25 > 5

3 = ψ1(d(T fx,S f y)).
The inequality is true in this case, too.
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Case 4 : If x ≥ 3 and y = 0;
ψ1(d(T fx,S f y)) = ψ1(2x + 2y

3 − 7
3 ) = 2x − 7

3

M(x, y) = max{x + y, 3x − 2, 5y−1
3 , 1

2 (3x + 5y
3 − 7

3 )} = 3x − 2
ψ2(M(x, y)0−φ(M(x, y)) = ψ2(3x−20−φ(3x−2) = (3x−2)− 1

3x−2−1 ≥ (2x− 7
3 ) = ψ1(d(T fx,S f y)).

The inequality is true in this case as well.

Case 5 : If x ≥ 3 and y > 0;
ψ1(d(T fx,S f y)) = ψ1(2x + 2y

3 − 7
3 ) = 2x + 2y

3 +
7
3

M(x, y) = max{x + y, 3x − 2, 5y−1
3 , 1

2 (3x + 5y
3 − 7

3 )} = 3x − 2
ψ2(M(x, y)) − φ(M(x, y)0 = ψ2(3x − 2) − φ(3x − 2) = (3x − 2) − 1

3x−2 − 1 ≥ [2x + 2y
3 − 7

3 ] =
ψ1(d(T fx,S f y)).
The inequality is true in this case, too.
Hence we can see that x = 0 is the only common fixed point of T,S and f in X.
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