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SOME NEW ESTIMTES OF APPROXIMATION OF FUNCTIONS BY
FOURIER-JACOBI SUMS

Radouan Daher and Salah El ouadih

Abstract. In this paper, several direct and inverse theorems are proved concerning the
approximation of one-variable functions from the space ]L;“’ﬁ ) by partial sums of Fourier-
Jacobi series.
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1. Introduction and Preliminaries

It is well known that many problems for partial differential equations are re-
duced to a power series expansion of the desired solution in terms of special
functions or orthogonal polynomials (such as Laguerre, Hermite, Jacobi, etc., poly-
nomials). In particular, this is associated with the separation of variables as applied
to problems in mathematical physics (see, e.g.,[2]-[3]). In [8], Abilov et al. proved
several estimates for the Fourier-Bessel series in the space LL»([0, 1], x¥*1), p > -1,
on certain classes of functions characterized by the generalized continuity modulus,
using a translation operator.

In this paper, we also discuss this subject. More specifically, several direct and
inverse theorems are proved concerning the approximation of functions form the
space nga’ﬁ ) by partial sums of Fourier-Jacobi series, analogous of the statements
proved in [8]. For this purpose, we use a generalized translation operator which
was defined by Flensted-Jensen and Koornwinder (see [5]).

Throughout the paper, a and f are arbitrary real numbers witha > g > —1/2and
a # —1/2. Weputw(x) = (1-x)*(1+x)f and consider problems of the approximation
of functions in the Hilbert spaces L,([-1, 1], w(x)dx).

Let Pﬁ,a’ﬁ )(x) be the Jacobi orthogonal polynomials, n € Ny := {0, 1,2, .....} (see [4] or
[1]). The polynomials Pf,“'ﬁ )(x), n € Ny, form a complete orthogonal system in the
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Hilbert space Ly([-1, 1], w(x)dx).
It is known (see [4], Ch. IV) that

@h) ()] = PO (1) = (roy = T@F D)
max (P01 = PIP() = () = e
The polynomials
P(a’ﬂ)(x)
R(arﬂ)( ),: n
' ()= s,
P, (1)

are called normalized Jacobi polynomials.
In what follows it is convenient to change the variable by the formula x = cost,t €
I :=[0, ]. We use the notation

7

) 1 . t 2a+1 t 2ﬁ+1
p(t) = w(cos t) sin t = 2%*F* (sm E) (cos E)

Pu(t) = P\ D) = R (cos ), n € Ny

Let ]Lgx’ﬁ ) denote the space of square integrable functions f(f) on the closed interval
I with the weight function p(t) and the norm

Ifll = fo FORp(bE

The Jacobi differential operator is defined as

et oo o)
=ap @t gty TPy )
The function ¢,(t) satisfies the differential equation

B = =Au@Pn, Ap=nn+a+p+1),neNy,
with the initial conditions ¢,,(0) = 1 and ¢,,(0) = 0.

Lemma 1.1. The following inequalities are valid for Jacobi functions @, (t)
1. For t € (0, 7t/2] we have

lpn(B)] < 1.

2. For t € [0, /2] we have
1= @u(t) < At

3. For every y there is a number c; = ca(y,, ) > 0 such that for all n and t with
y < nt < Bt we have

l@u(B)] < co(nt) ™12,

Proof. (See [7], Proposition 3.5.) [
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Recall from [7], the Fourier-Jacobi series of a function f € ]L;a’ﬂ ) is defined by

4D =Y a(Nonte),
n=0
where ]
- Pn o )
on= llpall an(f) = f, Pu) = fo FO@u(t)p(t)dt.
Let

[y

m—

Suf®) =Y an(HPa(t),

n

be a partial sum of series (1.1), and let

Em(f) = ll?f”f - Pm”/

denote the best approximation of f € nga’ﬁ ) by polynomials of the form

m—

P(t) = CnPn(t), cn € R.

1
=0

TER DN IO
En(f) = lIf = Sufll = 1| Y laa(HP-

The Jacobi generalized translation is defined by the formula

=

It is well known that

Tuf(H) = f ’ FO)K(th, 0)p(6)d0, 0<th<m,
0

where K(t, s, 0) is a certain function (see [6]).
Below are some properties (see [7]):

1) T - IL;‘X’/3 N lL;a’/3 ) is a continuous linear operator,

G0 Tl < MI£11,

(iii) Ti(pu(t)) = @a(M)@nlt),

(iv) an(Thf) = @u()an(f),

W ITwf = fl =0, h—0,

(vi) B(T1f) = Tw(Bf).

For every function f € nga’ﬁ ) we define the differences A¥ f of order, k € N =

h
{1,2,3,..}, with step h, 0 < h < 71, and the modulus of smoothness ((f, 6) by the
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formulae
ALF(E) = Auf(8) = (Ti = Df(D),

where I is the identity operator in ]L;a’ﬂ ),

k
AGf(t) = AT F(8) = (Ti = DFF(D) = Z(—l)k_l(f)TZf(t), k>1,

i=0

Qx(f, ) = sup [IA;fl, 6> 0,
0<h<d

where

Tf(t) = f(H), T, f(t)=Tu(T; ' f(H), i=12,..,k

Let W}, r € Ny, denote the class of functions f € nga’ﬁ ) that have generalized
derivatives satisfying 8'f € IL(Z“’ﬁ),
ie.,

W; = {f c ]L(zarﬂ) . Brf c ]L(za,ﬂ)}’

where Bf = f, B'f = B(B1f),r=1,2,...

Lemma1.2. If f € W], then
r 1 v
a(f) = (U8, reNo.
Proof. Since B is self-adjoint (see [7]), we have

1
an(f) = <f/(Pn>:_A_<f/B(pn>

1 1
—A—n<BfI(Pn> = —A—nﬂn(gf)-

This completes the proof. [

Lemma1.3. If
fO =) aHu(t),
n=0
then

Tif(H) = ) @u(han(H)n(t).

n=0

Here, the convergence of the series on the right-hand side is understood in the sense of
(a,p)

L
o
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Proof. By the definition of the operator T},
Tn(@n(1)) = @u(H)Pu(t).
Therefore, for any polynomial

N
QB = Y au(HPa(t),

n=0

since T}, is linear, we have
N

(12) TiQn(t) = ) @ulhan(F)n(t).
n=0

Since Tj is a linear bounded operator in nga’ﬁ ) and the set of all polynomials On(f)

is everywhere dense in lL;a’/3 ) passage to the limit in (1.2) gives the required equal-
ity,. O

Remark. Since

Tif(t) = f(5) = Y (@al1) = Dan(FPn(t),

n=0

the Parseval’s identity gives

ITf = fI? =Y (1 = @u(i)lan(HP,
n=0

If f € W), from Lemma 1.2, we have

(13) IAKB HIP = Y (1 = pum)* A2 lan(F)P.
n=0

2. Estimate of Best Approximation

The goal of this work is to prove several estimates for E,,(f) in certain classes of
functions in IL(za’ﬁ )

Theorem 2.1. Let r € Ny, k € IN. Then there is a constant ¢ > 0 such that, for every
fews,
En(f) = O(A,; (B’ f,cm™)),

when m — +oo.
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Proof. Let f € WJ. By the Holder inequality, we have

e8]

E2(H)= ) @nlan(HP = )" (1 = pu()lan(f)P

< (Z |an(f>|2) (Z lan (A1 - (Pn(h))Zk)

1

< E2(0) T [A‘f’ Y AR - %(h»”‘] .
From (1.3), we have

Y (1= @um*A21an(HP < IAKS HIP.
Therefore

@1 BN <Y eulan(HP + (E20) T (n21ak@ piR)*.

n=m

From Lemma 1.1, we have

Y Pulmlan(HP < ca(mi) ™ 2EL(f).

—-a-1

Choose a constant c3 such that the numbercys =1 — €20, 2 s positive.

Setting 1 = c3/m in the inequality (2.1), we have

GEL(P) < P (7185, B P

2k—1

By raising both sides to the power k and simplifying by (E,,(f))™ " we finally obtain

CEEn(f) < Ay QB f, csm™),

for all m > 0. The theorem is proved withc =¢3. O

Theorem 2.2. Let f € nga’ﬁ ) Then, foreach k € IN,

Qi(f,m™) =0 [m“*k Y Ai"‘lEi(f)] :
n=1
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Proof. From (1.3), one can veify

IARAIE = ) (1 = pu(n)Plan( DI
n=0

Letm € Nand 0 < h < 1/m. An application of Lemma 1.1 imples

00 m—1 oo
Y (1= o)X an(HR = Y (1 = pulh)Xlan( )P + Z(l — ) lau(FP
n=0 n=0 =
m—1
= O[h‘“‘ Alan(HP + Z |an(f>|2]
n=1
m—1
= O(m_4k) [Z /\Zklan(f +m* Z la (f)l ]

= O(m-4’<)[ A [Z lan(IF - Z 2 ()l D
n= [=n+1
+ O(m—4k)m4kZ |an(f)|2

= O(m™) ) (A% 2% Z lan(HP.
n=1

By the equality A% — A% = O(AZ"1), we obtain

IALFI? = O [m-‘”‘ Y Aﬁ“Ei(f)),
n=1

which implies
Qi(f,m™) =0 [m““‘ Y. A%’”Eﬁf)] :
n=1
This completes the proof of the theorem. [

Theorem 2.3. Let f € nga’ﬁ ), If the series

e8]

Y n*7E(f), reN,

n=1

converges, then f € W} and

QB fm)=0

n=m

[m—4k Z A%lr+2k—1E%(f)] + Z an_lEn(f)] ,
n=1

where 1,k € IN.
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Proof. Let f € lL;a’/3 ). By the equality A% — A% = O(AZ1), we obtain
o 12
IBA =) Aiﬂan(f)ﬁ]
n=1

[y [i R - Y P
n=1 i=n

1/2

i=n+1

o0 ) 1/2 I 1/2
= (Y07 -2 )Y (HP| =0 2&“&0)}
n=1 i=n n=1
=0| Y AE(H) | = O[Z 72 VE,( f)].
n=1 n=1
Since the series .
Y TE(f), reN,
n=1

converges, we see that f € WJ.
Let j,m € N be such that

1 1 .
W E, m—[h ]

From (1.3), we have

IAKBAIE = Y (1= @A Ian(AR + Y (1= pu)*A lan(HP = I + .
n=0

n=m+1

Estimate the summands I; and .
By Lemma 1.1, it is easy to see that

L= ) (= u)*AZlan( PP
n=0

= O™ Y AFAXlan(FP = O™ Y A% Han(f)P

n=1 n=1
= O(h*) Y A [Z (A=) |an<f>|2]
n=1 i=n i=n+1

— O(m—4k) Z(/\%IHQY _ Aik_—iin) Z |an(f)|2
n=1 i=n

= 0

4k Z /\%sz—l Ei ( f)] )

n=1
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By (1.3), we have

(o)

Y (= @u)*AZlan(f)P

n=m+1

co 21
ol Z(1—(Pz(h))2k/\12"|ﬂn(f)|2]

n=j+1 [=2n-1

I

= 0| Y A8 (Sar() — Sare (f))llz],

n=j+1

ie.,

n*=0 Z AR B (Spr(f) — Syt (f))ll}

n=j+1

In view of

IARAL< 2511l 1B (San f = Sprs Il < ALulISan f = Sy 1.

we obtain

1AL B(S2r (f) = Sar (N 2A5,11820(f) = S (N
200, (If = Sz (O + IIf = S (NI
247, (Ex(f) + Ex(f))

2°2A%,..Ea ().

ININ A

IN

Therefore

I;/Z — O[ Z 22"("+1)+1E2u—1(f)] -0

n=j+1

221‘+1 Z 227(n+1)E2n (f)} )

n=j

Note that for n € IN we derive
2Yl
(22) 247’ Z l27’—1 > 241‘(211—1)27—1271—1 — 221‘(n+1)_
1=21-1
Using (2.2) and the fact that E;(f) is monotone decreasing with respect to [ , we get
the following inequality for n € IN:

on

22r(n+1)E2” (f) <% Z lzr_lEl(f).

1=0n-1

Consequently, we find that

0= O(Z 2 E,( f)].

n=m



10 R. Daher and S. El ouadih

Combining the estimates for I; and I, gives

1
2

IAKB Il = O|[m™ Y Aﬁ"“"‘lEﬁf)] +) P EL()]-
n=1 n=m

Theorem 2.3 is proved. [
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