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Abstract. The purpose of the present paper is to study generalized φ-recurrent, gen-
eralized concirculary φ-recurrent N(κ)-paracontact metric manifolds and generalized
φ-recurrent paracontact metric manifolds of constant curvature.
Keywords:generalized φ-recurrent, generalized concirculary φ -recurrent, N(κ)-paracontact
metric manifold.

1. Introduction

Almost paracontact metric structures are the natural odd-dimensional analogue
to almost paraHermitian structures, just like almost contact metric structures corre-
spond to the almost Hermitian ones. The study of almost paracontact geometry was
introduced by Kaneyuki and Williams in [6] and then it was continued by many other
authors. A systematic study of almost paracontact metric manifolds was carried out
in paper of Zamkovoy, [10]. An important class among paracontact metric manifolds is
that of the κ-spaces, which satisfy the nullity condition [2]. This class includes the para-
Sasakian manifolds [6, 10], the paracontact metric manifolds satisfying R(X,Y )ξ = 0
for all X,Y vector fields on the manifold [11], etc.

Let M be an 2n + 1-dimensional connected semi-Riemannian manifold with semi-
Riemannian metric g and Levi-Civita connection ∇. M is called locally symmetric
if its curvature tensor is parallel with respect to ∇. The notion of locally symmetric
manifold has been weakend such as recurrent manifold by Walker [9], in 1977 Takahashi
[8] introduced the notion of local φ -symmetry on a Sasakian manifold. Generalizing
the notion of local φ-symmetry, De et al. [3] introduced and studied the notion of
φ-recurrent Sasakian manifold. Then in [4] and [7], De and Gazi and Peyghan et al.
studied φ-recurrent N(κ)-contact metric manifolds. Dubey [5] introduced the notion of
generalized recurrent manifold.

Motivated by these considerations, the author make the first contribution to study
generalized φ-recurrent N(κ)-paracontact metric manifolds (which includes both the
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notion of local φ-symmetry and also φ-recurrence) and generalized concirculary φ-
recurrent N(κ)-paracontact metric manifolds.

The paper is organized as follows:

Section 2 is preliminary section, where we recall basic facts which we will need
throughout the paper. In Section 3, we prove that a generalized φ-recurrent N(κ)-
paracontact metric manifold (M2n+1, g) is an η-Einstein manifold for κ 6= −1, 0. We
show that in a generalized φ-recurrent N(κ)-paracontact metric manifold, the charac-
teristic vector field ξ and the vector field ρ1κ + ρ2 associated to the 1-form Aκ + B

are co-directional. We find the relation between associated 1-forms A and B for a
three dimensional generalized φ-recurrent N(κ)-paracontact metric manifold. In Sec-
tion 4, we mainly give the relation between associated 1-forms A and B in a gen-
eralized φ-recurrent N(κ 6= 0)-paracontact metric manifold (M2n+1, g) of constant
curvature c 6= 0. In Section 5, we prove that a generalized concirculary φ-recurrent
N(κ)-paracontact metric manifold (M2n+1, g) is an η-Einstein manifold for κ 6= −1, 0.
We give the relation between associated 1-forms A and B for a generalized concircu-
lary φ-recurrent N(κ)-paracontact metric manifold and we show that in a generalized
concirculary φ-recurrent N(κ)-paracontact metric manifold, the characteristic vector
field ξ and the vector field ρ1c+ ρ2 associated to the 1-form Ac+B are co-directional.
Finally, we show that for a three dimensional generalized concirculary φ-recurrentN(κ)-
paracontact metric manifold, r is not necessarily be a constant.

2. Preliminaries

Let M be a (2n + 1)-dimensional differentiable manifold and φ is a (1, 1) tensor
field, ξ is a vector field and η is a one-form on M. Then (φ, ξ, η) is called an almost
paracontact structure on M if

(i) φ2 = Id− η ⊗ ξ, η(ξ) = 1,

(ii) the tensor field φ induces an almost paracomplex structure on the distribution D =
ker η, that is the eigendistributions D±, corresponding to the eigenvalues ±1, have
equal dimensions, dimD+ = dimD− = n.

The manifold M is said to be an almost paracontact manifold if it is endowed with
an almost paracontact structure [10].

Let M be an almost paracontact manifold. M will be called an almost paracontact
metric manifold if it is additionally endowed with a pseudo-Riemannian metric g of a
signature (n+ 1, n), i.e.

g(φX,φY ) = −g(X,Y ) + η(X)η(Y ).(2.1)

For such manifold, we have

η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0.(2.2)

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X, Y ) = g(X,φY ),(2.3)

usually called fundamental form.
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For an almost paracontact manifold, there exists an orthogonal basis {X1, . . . , Xn, Y1, . . . ,

Yn, ξ} such that g(Xi, Xj) = δij , g(Yi, Yj) = −δij and Yi = φXi, for any i, j ∈
{1, . . . , n}. Such basis is called a φ-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N
(1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ,(2.4)

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ
2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is said
to be normal [10]. The normality condition says that the almost paracomplex structure
J defined on M × R

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable.

If dη(X,Y ) = g(X,φY ), then (M,φ, ξ, η, g) is said to be paracontact metric man-
ifold. In a paracontact metric manifold one defines a symmetric, trace-free operator
h = 1

2
Lξφ, where Lξ, denotes the Lie derivative. It is known [10] that h anti-commutes

with φ and satisfies

i)hξ = 0, ii)trh = trhφ = 0, iii)∇ξ = −φ+ φh,(2.5)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).

Moreover h = 0 if and only if ξ is a Killing vector field. In this case (M,φ, ξ, η, g) is
said to be a K-paracontact manifold. Similarly as in the class of almost contact metric
manifolds [1], a normal almost paracontact metric manifold will be called para-Sasakian
if Φ = dη.

On an almost paracontact metric manifold M , if the Ricci operator satisfies

Q = αid+ βη ⊗ ξ,

where both α and β are smooth functions, then the manifold is said to be an
η-Einstein manifold. An η-Einstein manifold with β vanishing and α a constant is
obviously an Einstein manifold.

The κ-nullity distribution N(κ) of a semi-Riemannian manifold M is defined by

N(κ) : p → Np(κ) = {Z ∈ TpM | R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y )} ,(2.6)

for some real constant κ. If the characteristic vector field ξ belongs to N(κ), then
we call a paracontact metric manifold an N(κ)-paracontact metric manifold. For a
N(κ)-paracontact metric manifold [2] we have,

R(X,Y )ξ = κ(η(Y )X − η(X)Y ),(2.7)

S(X, ξ) = 2nκη(X),(2.8)

h
2 = (1 + κ)φ2

.(2.9)

for all X,Y vector fields on M , where κ is constant and S is the Ricci tensor.
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Lemma 2.1. [2]In any (2n + 1)-dimensional paracontact (κ, µ)-manifold (M,φ, ξ, η, g)
such that κ 6= −1, the Ricci operator Q is given by

Q = (2(1− n) + nµ)I + (2(n− 1) + µ)h+ (2(n− 1) + n(2κ− µ))η ⊗ ξ.(2.10)

Using (2.10), we have

S(φX, φY ) = S(X,Y )− 4(1− n)g(X,Y ) + (4(1− n)− 2nκ)η(X)η(Y ).(2.11)

Definition 2.1. A N(κ)-paracontact metric manifold is said to be a generalized φ-
recurrent if its curvature tensor R satisfies the condition

φ
2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ),(2.12)

where A and B are two 1-forms, B is non zero and they are defined by

A(X) = g(X,ρ1), B(X) = g(X,ρ2),(2.13)

where ρ1 and ρ2 are vector fields associated with 1-forms A,B respectively.

Definition 2.2. A (2n+1)-dimensionalN(κ)-paracontact metric manifold is called a gen-
eralized concircular φ-recurrent if its concircular curvature tensor C

C(X,Y )Z = R(X,Y )Z −
r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ],(2.14)

satisfies the condition

φ
2((∇WC)(X,Y )Z) = A(W )C(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ),(2.15)

where A and B are defined as (2.13) and r = tr(S) is the scalar curvature.

In the above definitions, X, Y, Z,W are arbitrary vector fields and not necessarily
orthogonal to ξ.

Remark 2.1. A flat manifold satisfies R = 0 and ∇R = 0, so flat manifolds are trivial
examples of generalized φ-recurrent paracontact metric manifolds.

3. Generalized φ-recurrent N(κ) -paracontact metric manifolds

Theorem 3.1. For κ 6= −1, 0, a generalized φ-recurrent N(κ)-paracontact metric mani-
fold (M2n+1, g) is an η-Einstein manifold.

Proof. In view of (2.12), we get

(∇WR)(X,Y )Z − η((∇WR)(X,Y )Z)ξ(3.1)

= A(W )R(X,Y )Z +B(W )(g(Y,Z)X − g(X,Z)Y ).
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Taking the inner product on both sides of (3.1) with U , we obtain

g((∇WR)(X,Y )Z,U) − η((∇WR)(X,Y )Z)η(U) = A(W )g(R(X,Y )Z,U)

+B(W )(g(Y,Z)g(X,U)

−g(X,Z)g(Y,U)).(3.2)

Let ei, 1 ≤ i ≤ 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (3.2) and getting the summation over i, one can
get

(∇WS)(Y,Z) −

2n+1
∑

i=1

εiη((∇WR)(ei, Y )Z)η(ei)

= A(W )S(Y,Z) + 2nB(W )g(Y,Z).(3.3)

Now, let calculate the second term of the left hand side of the above equation by replacing
Z by ξ. Using (2.6) and the fact that (∇W g) = 0, we get

εig((∇WR)(ei, Y )ξ, ξ) = 0.(3.4)

Putting Z = ξ in (3.3) and using (2.8) and (3.4), we obtain

(∇WS)(Y, ξ) = 2nη(Y )(κA(W ) +B(W )).(3.5)

Using the property (iii) of (2.5) and (2.8) in (∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇WY, ξ) −
S(Y,∇W ξ), we have

(∇WS)(Y, ξ) = 2nκ(∇W η)(Y ) + S(Y, φW − φhW )

= 2nκg(−φW + φhW,Y ) + S(Y, φW − φhW ).(3.6)

Comparing equations (3.5) and (3.6), we get

2nη(Y )(κA(W ) +B(W )) = 2nκg(−φW + φhW, Y ) + S(Y, φW − φhW ).(3.7)

Replacing Y by φY in the last equation and using (2.1) and (2.11), we obtain

0 = (2nκ− 4(1− n))g(W,Y ) + (−2nκ+ 4(1− n))g(W,hY )

+(−2nκ+ 4(1− n)− 2nκ)η(Y )η(W ) + S(Y,W )− S(Y, hW ).(3.8)

Employing (2.9) and (2.10) in (3.8),we get

S(Y,W ) = 2(−n− κ+ 1)g(W,Y ) + 2(nκ+ n− 1)g(hW,Y )

+2(n(κ+ 1) + κ− 1)η(Y )η(W ).(3.9)

Putting W = hW in (3.9) and using again (2.9) and (2.10), we have

2κg(hW, Y ) = 2nκ(κ+ 1)g(W,Y )− 2nκ(κ+ 1)η(Y )η(W ).

By the assumption of κ 6= 0, the last equations returns to

g(hW,Y ) = n(κ+ 1)(g(W,Y )− η(Y )η(W )).(3.10)

Using (3.10) in (3.9), we get

S(Y,W ) = αg(W,Y ) + βη(Y )η(W ),

where α = 2[(−n−κ+1)+n(κ+1)(nκ+n−1)], β = 2[n(κ+1)+(κ−1)−n(κ+1)(nκ+n−1)].
Hence, we can conclude that the manifold is η-Einstein manifold.
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Theorem 3.2. For a generalized φ-recurrent N(κ)-paracontact metric manifold (M2n+1, g),
the characteristic vector field ξ and the vector field ρ1κ+ρ2 associated to the 1-form Aκ+B

are co-directional.

Proof. Two vector fields P and Q are said to be co-directional if P = fQ, where f is a
non-zero scalar, that is g(P,X) = fg(Q,X) for all X.

Taking inner product of (3.1) with ξ, we have

A(W )g(R(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X) − g(X,Z)η(Y )) = 0.(3.11)

Then by the use of second Bianchi identity, we can write

A(W )g(R(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X)− g(X,Z)η(Y ))

+A(Y )g(R(W,X)Z, ξ) +B(Y )(g(X,Z)η(W )− g(W,Z)η(X))

+A(X)g(R(Y,W )Z, ξ) +B(X)(g(W,Z)η(Y )− g(Y,Z)η(W ))

= 0.(3.12)

From (2.6), it follows that

g(R(X,Y )Z, ξ) = κ(−η(Y )g(X,Z) + η(X)g(Y,Z)).(3.13)

Using (3.13) in (3.12), we get

κ







A(W )[(−η(Y )g(X,Z) + η(X)g(Y,Z))]
+A(Y )[(−η(X)g(W,Z) + η(W )g(X,Z))]
A(X)[(−η(W )g(Y,Z) + η(Y )g(W,Z))]







+B(W )(g(Y,Z)η(X)− g(X,Z)η(Y ))

+B(Y )(g(X,Z)η(W )− g(W,Z)η(X))

+B(X)(g(W,Z)η(Y )− g(Y,Z)η(W ))

= 0.(3.14)

Replacing Y = Z by ei in (3.14) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

(2n− 1) [κ(A(W )η(X)− A(X)η(W )) +B(W )η(X)−B(X)η(W )] = 0.(3.15)

Putting X = ξ in the last equation, we have

κ(A(W )− η(W )η(ρ1)) = −(B(W )− η(W )η(ρ2))

η(W )(κη(ρ1) + η(ρ2)) = κA(W ) +B(W ).(3.16)

where η(ρ1) = g(ξ, ρ1) = A(ξ) and η(ρ2) = g(ξ, ρ2) = B(ξ). From (3.16), we complete
the proof of the theorem.

Theorem 3.3. Let (M3, g) be a generalized φ-recurrent N(κ)-paracontact metric mani-
fold. Then B(W ) = −κA(W ).

Proof. We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold
satisfies

R(X,Y )Z = g(Y,Z)QX−g(X,Z)QY+g(QY,Z)X−g(QX,Z)Y−
r

2
(g(Y,Z)X−g(X,Z)Y ).

(3.17)



On Generalized φ-Recurrent Metric Manifolds 665

where Q is the Ricci-operator, g(QX,Y ) = S(X,Y ) and r is the scalar curvature of the
manifold. Let (M3, g) be a generalized φ-recurrent N(κ)-paracontact metric manifold.
Replacing Z by ξ in (3.17) and using (2.8), we have

R(X,Y )ξ = (2κ−
r

2
)(η(Y )X − η(X)Y ) + η(Y )QX − η(X)QY.(3.18)

Comparing (2.7) with (3.18), we get

(κ−
r

2
)(η(Y )X − η(X)Y ) = η(X)QY − η(Y )QX.(3.19)

Putting Y = ξ in (3.19) and using (2.8), we obtain

QX = (
r

2
− κ)X + (3κ−

r

2
)η(X)ξ,(3.20)

which gives

S(X,Y ) = (
r

2
− κ)g(X,Y ) + (3κ−

r

2
)η(X)η(Y ).(3.21)

By taking account of (3.20) and (3.21) in (3.17), one can get

R(X,Y )Z = (3κ−
r

2
)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+(
r

2
− 2κ)(g(Y,Z)X − g(X,Z)Y ).(3.22)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = −
dr(W )

2
(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+
dr(W )

2
(g(Y,Z)X − g(X,Z)Y )

+(3κ−
r

2
)









(g(Y,Z)η(X)− g(X,Z)η(Y ))∇W ξ

+(g(Y,Z)ξ − η(Z)Y )(∇W η)(X)
−(g(X,Z)ξ − η(Z)X)(∇W η)(Y )
+(η(Y )X − η(X)Y )(∇W η)(Z).









.(3.23)

Now, let Y be a non-zero vector field orthogonal to ξ and X = Z = ξ. Using (2.5), (3.23)
follows that

(∇WR)(ξ, Y )ξ = −2(3κ−
r

2
)(∇W η)(ξ)Y = 0.(3.24)

By virtue of (2.12) and (3.24), we obtain

A(W )R(ξ,Y )ξ −B(W )Y = 0.(3.25)

From (2.7), we have

R(ξ, Y )ξ = −κY.(3.26)

If we use (3.26) in (3.25), it follows that the requested relation holds. This completes the
proof of the theorem.
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4. Generalized φ-recurrent paracontact metric manifolds of constant

curvature

Theorem 4.1. [10]If a paracontact manifold M2n+1 is of constant sectional curvature c

and dimension 2n+ 1 > 5, then c = −1 and |h|2 = 0.

Theorem 4.2. If a generalized φ-recurrent paracontact metric manifold (M2n+1, g) is of
constant curvature and (2n+ 1) > 5, then A(W ) = B(W ).

Proof. Let (M2n+1, g) be a generalized φ-recurrent paracontact metric manifold of con-
stant curvature c and (2n + 1) > 5. From Theorem 4.1, we have c = −1. So, we can
write

R(X,Y )Z = −(g(Y,Z)X − g(X,Z)Y ).(4.1)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = 0.(4.2)

Now, let Y be a non-zero vector field orthogonal to ξ and X = Z = ξ. From (4.1), we
have

R(ξ, Y )ξ = Y.(4.3)

By using (2.12), (4.2) and (4.3), we have

0 = A(W )−B(W )

which completes the proof.

Theorem 4.3. If a generalized φ-recurrent N(κ 6= 0)-paracontact metric manifold (M2n+1, g)
is of constant curvature c 6= 0, then B(W ) = −κA(W ).

Proof. Let us consider a (2n+1)-dimensional generalized φ-recurrentN(κ 6= 0)-paracontact
metric manifold which has constant curvature c. So, we have

R(X,Y )Z = c(g(Y,Z)X − g(X,Z)Y ).(4.4)

Replacing Z by ξ in (4.4), we get

R(X,Y )ξ = c(η(Y )X − η(X)Y ).(4.5)

From (2.7) and (4.5), we obtain

c(η(Y )X − η(X)Y ) = κ(η(Y )X − η(X)Y ).(4.6)

Now, let Y be a non-zero vector field orthogonal to ξ and X = ξ. So, (4.6) returns to
c = κ 6= 0. Because of the manifold is N(κ)-paracontact metric manifold, we have

R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y ).(4.7)

Taking the covariant derivative of the last equation according to W , we deduce that

(∇WR)(X,Y )Z = −κ((∇W g)(X,Z)Y − ((∇W g)(Y,Z)X)) = 0.(4.8)
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Putting Y = Z = ξ in (2.12), and taking account of (4.7) and (4.8), we obtain

0 = (X − η(X)ξ)(A(W )κ+B(W )).(4.9)

If X is a non-zero vector field orthogonal to ξ, from (4.9), we get

0 = A(W )κ+B(W ).

Remark 4.1. If a generalized φ-recurrentN(κ 6= 0)-paracontact metric manifold (M2n+1, g)
is of constant curvature c 6= 0, and (2n+ 1) > 5, then κ = −1.

5. Generalized concirculary φ-recurrent N(κ)-paracontact metric

manifolds

Theorem 5.1. For κ 6= −1, 0, a generalized concirculary φ-recurrent N(κ)-paracontact
metric manifold (M2n+1, g) is an η-Einstein manifold.

Proof. Let us consider a generalized concirculary φ-recurrent N(κ)-paracontact metric
manifold. From (2.15), we have

(∇WC)(X,Y )Z−η((∇WC)(X,Y )Z)ξ = A(W )C(X,Y )Z+B(W )(g(Y,Z)X− g(X,Z)Y ).
(5.1)
Taking the inner product on both sides of (5.1) with U , we obtain

g((∇WC)(X,Y )Z,U) − η((∇WC)(X,Y )Z)η(U) = A(W )g(C(X,Y )Z,U)

+B(W )(g(Y,Z)g(X,U)(5.2)

−g(X,Z)g(Y,U)).

Let ei, 1 ≤ i ≤ 2n + 1 be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (5.2) and taking summation over i, we thus get

(∇WS)(Y,Z) =
dr(W )

2n+ 1
g(Y,Z)−

dr(W )

(2n+ 1)2n
(g(Y,Z)− η(Y )η(Z))

= A(W )(S(Y,Z)−
r

2n+ 1
g(Y,Z)) +B(W )2ng(Y,Z).(5.3)

If we make use of the property (iii) of (2.5) and (2.8) in (5.3), we obtain

(∇WS)(Y, ξ) =
dr(W )

2n+ 1
η(Y )

+ A(W )η(Y )

(

2nκ−
r

2n+ 1

)

+B(W )2nη(Y ).(5.4)

On the other hand, using again the property (iii) of (2.5) and (2.8), we can evaulate
(∇WS)(Y, ξ) as

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ)

= −2nκg(Y, φW − φhW ) + S(Y, φW − φhW ).(5.5)
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Comparing (5.4) to (5.5), we have

S(Y, φW − φhW ) = 2nκg(Y, φW − φhW ) +
dr(W )

2n+ 1
η(Y )

+A(W )η(Y )

(

2nκ−
r

2n+ 1

)

+B(W )2nη(Y ).(5.6)

If we use (2.9), (2.10) and (2.11) after putting φY instead of Y in (5.6), we get

S(Y,W ) = 2(−n− κ+ 1)g(Y,W ) + 2(n− 1 + nκ)g(Y, hW )

+2((n− 1) + κ(n+ 1))η(Y )η(W ).(5.7)

If we replace W by hW in the last equation, we can immediately observe that

g(Y, hW ) = n(1 + κ)(g(Y,W )− η(Y )η(W )).(5.8)

Using (5.8) in (5.7), we have

S(Y,W ) = αg(W,Y ) + βη(Y )η(W ),

where α = 2((−n−κ+1)+(n−1+nκ)n(1+κ)), β = 2((n−1)+κ(n+1)−(n−1+nκ)n(1+κ)).
Namely, manifold is η-Einstein manifold.

Theorem 5.2. Let (M2n+1, g) be a generalized concirculary φ-recurrent N(κ)-paracontact
metric manifold. Then ( r

(2n+1)2n
− κ)A(W ) = B(W ).

Proof. Putting Y = Z = ei in (5.2) and taking summation over i, one can get

(∇WS)(X,U)−
dr(W )

2n+ 1
g(X,U)− (∇WS)(X, ξ)η(U) +

dr(W )

2n+ 1
η(X)η(U)

= A(W )(S(X,U)−
r

2n+ 1
g(X,U)) +B(W )2ng(X,U).(5.9)

Putting U = ξ in (5.9) and using (2.8), we have

A(W )(2nκ−
r

2n+ 1
)η(X) + 2nB(W )η(X) = 0.(5.10)

Setting X = ξ in the last equation, we get the requested relation which completes the
proof of the theorem.

Theorem 5.3. For a generalized concirculary φ-recurrent N(κ)-paracontact metric man-
ifold (M2n+1, g), the characteristic vector field ξ and the vector field ρ1γ + ρ2 associated
to the 1-form Aγ +B are co-directional.

Proof. Two vector fields P and Q are said to be co-directional if P = fQ, where f is a
non-zero scalar, that is g(P,X) = fg(Q,X) for all X.

Taking inner product of (5.1) with ξ, we have

A(W )g(C(X,Y )Z, ξ) +B(W )(g(Y,Z)η(X)− g(X,Z)η(Y )) = 0.(5.11)
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In virtue of (2.14) and (5.11), we get

A(W )g(R(X,Y )Z, ξ) =

(A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X)− g(X,Z)η(Y )).(5.12)

Then by the use of second Bianchi identity, we obtain

A(W )g(R(X,Y )Z, ξ) + A(Y )g(R(W,X)Z, ξ) + A(X)g(R(Y,W )Z, ξ)

= (A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X) − g(X,Z)η(Y )) +

(A(Y )
r

(2n+ 1)2n
−B(Y ))(g(X,Z)η(W )− g(W,Z)η(X)) +

(A(X)
r

(2n+ 1)2n
−B(X))(g(W,Z)η(Y )− g(Y,Z)η(W )).(5.13)

From (2.6), it follows that

g(R(X,Y )Z, ξ) = κ(−η(Y )g(X,Z) + η(X)g(Y,Z)).

Using the last equation in (5.13), we get

A(W )[κ(−η(Y )g(X,Z) + η(X)g(Y,Z))] +

A(Y )[κ(−η(X)g(W,Z) + η(W )g(X,Z))] +

A(X)[κ(−η(W )g(Y,Z) + η(Y )g(W,Z))]

= (A(W )
r

(2n+ 1)2n
−B(W ))(g(Y,Z)η(X) − g(X,Z)η(Y )) +

(A(Y )
r

(2n+ 1)2n
−B(Y ))(g(X,Z)η(W )− g(W,Z)η(X)) +

(A(X)
r

(2n+ 1)2n
−B(X))(g(W,Z)η(Y )− g(Y,Z)η(W )).(5.14)

Replacing Y = Z by ei in (5.14) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

(1− 2n)

(

(κ− r
(2n+1)2n

)(A(X)η(W )− A(W )η(X))

+B(X)η(W )−B(W )η(X)

)

= 0.(5.15)

Putting X = ξ in the last equation, we have

η(W )(η(ρ2) + γη(ρ1)) = A(W )γ +B(W ),(5.16)

where γ = (κ − r
(2n+1)2n

), η(ρ1) = g(ξ, ρ1) = A(ξ) and η(ρ2) = g(ξ, ρ2) = B(ξ). From

(5.16), we complete the proof of the theorem.

Theorem 5.4. Let (M3, g) be a generalized concirculary φ-recurrent N(κ)-paracontact

metric manifold. Then B(W ) = − dr(W )
6

+ ( r
6
− κ)A(W ).

Proof. Using (3.22) in (2.14), we get

C(X,Y )Z = (3κ−
r

2
)(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+(
r

3
− 2κ)(g(Y,Z)X − g(X,Z)Y ).(5.17)
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It is readily taken that the covariant derivative of the above expression

(∇WC)(X,Y )Z = −
dr(W )

2
(g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y )

+
dr(W )

3
(g(Y,Z)X − g(X,Z)Y )

+(3κ−
r

2
)









(g(Y,Z)η(X) − g(X,Z)η(Y ))∇W ξ

+(g(Y,Z)ξ − η(Z)Y )(∇W η)(X)
−(g(X,Z)ξ − η(Z)X)(∇W η)(Y )
+(η(Y )X − η(X)Y )(∇W η)(Z).









.(5.18)

Let us assume that Y is a non-zero vector field orthogonal to ξ and X = Z = ξ. Using the
property (iii) of (2.5) and (5.18), we have

(∇WC)(ξ, Y )ξ =
dr(W )

6
Y.(5.19)

It follows (2.12) and (5.19) from that

A(W )C(ξ,Y )ξ −B(W )Y =
dr(W )

6
Y.(5.20)

From (2.7) and (2.14), we have

C(ξ, Y )ξ = (−κ+
r

6
)Y.(5.21)

If we employ (5.21) in (5.20), we immediately see that one is able to get the requested
equation.

Remark 5.1. In a three dimensional generalized concirculary φ-recurrentN(κ)-paracontact
metric manifold, r is not necessarily be a constant.
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