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Abstract. We will obtain an abstract version of the Korovkin type approximation the-
orems with respect to the concept of statistical relative convergence in modular spaces
for double sequences of positive linear operators. We will give an application showing
that our results are stronger than classical ones. We will also study an extension to
non-positive operators.
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1. Introduction

As we know, Korovkin([15]) proved an approximation theorem via simple and
easy criterion to check if a sequence of positive linear operators converges uniformly
to the function to be approximated. Many researchers studied some versions of this
theorem in different spaces and Bardaro and Mantellini studied this theorem on
modular spaces which is the natural generalization of Lp (p > 0), Orlicz, Lorentz,
and Köthe spaces ([5]) and so on([7, 8]). In addition, general versions of the Ko-
rovkin theorem were studied in which a various kind of convergence methods is
used, particularly statistical convergence methods([2, 3, 14, 22]). More recently,
Demirci and Orhan ([9]) have introduced statistical relative uniform convergence of
single sequences by using the notions of the natural density and the relative uni-
form convergence. Then, many researchers defined some versions of this interesting
convergence method and proved Korovkin type approximation theorems for single
and double sequences of linear operators in different spaces (see [11, 12, 13, 21, 23]).
In [10], we studied Korovkin type theorems in modular function spaces for func-
tions defined on a compact set I2 where I = [a, b] , using the classical test set{

1, x, y, x2 + y2
}
. In this paper, we will study generalized versions of the Korovkin
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type approximation theorems for a double sequence of positive linear operators
(Tm,n) acting on an abstract modular function space. Then, we will give an ap-
plication showing that our results are non-trivial extensions of the existing ones.
Finally, we will study an extension to non-positive linear operators.

2. Preliminaries

Now we shall recall some well known notations and properties of modular spaces.

Assume G be a locally compact Hausdorff topological space endowed with a
uniform structure U ⊂ 2G×G that generates the topology of G (see, [17]). Let B be
the σ−algebra of all Borel subsets of G and µ : B → R is a positive σ−finite regular
measure. Let L0 (G) be the space of all real valued µ−measurable functions on G
with identification up to sets of measure µ zero, C (G) be the space of all continuous
real valued functions on G, Cb (G) be the space of all continuous real valued and
bounded functions on G and Cc (G) be the subspace of Cb (G) of all functions with
compact support on G. In this case, we say that a functional ρ : L0 (G)→ [0,∞] is
a modular on L0 (G) if it satisfies the following conditions:

(i) ρ (f) = 0 if and only if f = 0 µ−almost everywhere on G,

(ii) ρ (−f) = ρ (f) for every f ∈ L0 (G) ,

(iii) ρ (αf + βg) ≤ ρ (f) + ρ (g) for every f, g ∈ L0 (G) and for any α, β ≥ 0 with
α+ β = 1.

A modular ρ is N−quasi convex if there exists a constant N ≥ 1 such that the
inequality

ρ (αf + βg) ≤ Nαρ (Nf) +Nβρ (Ng)

holds for every f, g ∈ L0 (G) , α, β ≥ 0 with α + β = 1. Note that if N = 1, then ρ
is called convex. Furthermore, a modular ρ is N−quasi semiconvex if there exists
a constant N ≥ 1 such that

ρ (αf) ≤ Nαρ (Nf)

holds for every f ∈ L0 (G) and α ∈ (0, 1] .

The modular space Lρ (G) generated by ρ, is given by

Lρ (G) :=

{
f ∈ L0 (G) : lim

λ→0+
ρ (λf) = 0

}
and the space of the finite elements of Lρ (G) , is given by

Eρ (G) := {f ∈ Lρ (G) : ρ (λf) <∞ for all λ > 0} .

Also, note that if ρ is N−quasi semiconvex, then the space{
f ∈ L0 (G) : ρ (λf) <∞ for some λ > 0

}
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coincides with Lρ (G) .

We will need the following notions.

A modular ρ is said to be monotone if ρ(f) ≤ ρ(g) for |f | ≤ |g| . A modular ρ
is finite if χA ∈ Lρ (G) whenever A ∈ B with µ (A) < ∞. A modular ρ is strongly
finite if χA ∈ Eρ (G) for all A ∈ B such that µ (A) <∞ and a modular ρ is said to
be absolutely continuous if there exists an α > 0 such that: for every f ∈ L0 (G)
with ρ (f) <∞, the following conditions hold:

◦ for each ε > 0 there exists a set A ∈ B such that µ (A) <∞ and ρ
(
αfχG\A

)
≤

ε,

◦ for every ε > 0 there is a δ > 0 with ρ (αfχB) ≤ ε for every B ∈ B with
µ (B) < δ.

If a modular ρ is monotone and finite, then C (G) ⊂ Lρ (G) . If ρ is monotone
and strongly finite, then C (G) ⊂ Eρ (G) . Also, if ρ is monotone, strongly finite and
absolutely continuous, Cc (G) = Lρ (G) with respect to the modular convergence
(for details and properties see also [16, 18, 20]).

Now we recall the statistical relative modular and strong convergence for double
sequences (see also [10]).

Definition 2.1. Let (fm,n) be a double function sequence whose terms belong
to Lρ (G) . Then, (fm,n) is said to be statistically relatively modularly convergent
to a function f ∈ Lρ (G) if there exists a function σ(u), called a scale function
σ ∈ L0 (G) , |σ(u)| 6= 0 such that

st2 − lim
m,n

ρ

(
λ0

(
fm,n − f

σ

))
= 0 for some λ0 > 0.

Also, (fm,n) is statistically relatively F−norm convergent (or, statistically relatively
strongly convergent) to f iff

st2 − lim
m,n

ρ

(
λ

(
fm,n − f

σ

))
= 0 for every λ > 0.

The two notions of convergence are equivalent if and only if the modular satisfies
a ∆2−condition, i.e. there exists a constant M > 0 such that ρ (2f) ≤ Mρ (f) for
every f ∈ L0 (G) , see [19].

Note that if the scale function is a non-zero constant, then statistical modular
convergence is the special case of statistical relative modular convergence. More-
over, if σ(u) is bounded, statistical relative modular convergence implies statistical
modular convergence. However, if σ(u) is unbounded, then statistical relative mod-
ular convergence does not imply statistical modular convergence.
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3. Korovkin type approximation theorems

We now prove some Korovkin type theorems with respect to an abstract finite
set of test functions e0, e1, ..., ek in the sense of the statistical relative convergence.

Let T = (Tm,n) be a double sequence of positive linear operators from D into
L0 (G) with Cb (G) ⊂ D ⊂ L0 (G) . Let ρ be monotone and finite modular on L0 (G)
and σ ∈ L0 (G) is an unbounded function satisfying σ(u) 6= 0. Assume further that
the double sequence T, together with modular ρ, satisfies the following property:

there exists a subset XT ⊂ D∩Lρ (G) with Cb (G) ⊂ XT such that the inequality

(3.1) st2 − lim sup
m,n

ρ

(
λ

(
Tm,nh

σ

))
≤ Rρ (λh)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R.

Set e0 (v) ≡ 1 for all v ∈ G, let er, r = 1, 2, ..., k and ar, r = 0, 1, 2, ..., k, be
functions in Cb (G) . Put

(3.2) Pu (v) =

k∑
r=0

ar (u) er (v) , u, v ∈ G,

and suppose that Pu (v) , u, v ∈ G, satisfies the following properties:

(P1) Pu (u) = 0, for all u ∈ G,

(P2) for every neighbourhood U ∈ U there is a positive real number η with Pu (v) ≥
η whenever u, v ∈ G, (u, v) /∈ U (see for examples [4]).

In order to obtain our main theorem, we will first give the following result.

Theorem 3.1. Let ρ be a monotone, strongly finite and N−quasi semiconvex
modular. Suppose that er and ar, r = 0, 1, 2, ..., k, satisfy properties (P1) and
(P2) . Let T = (Tm,n) be a double sequence of positive linear operators from D into
L0 (G) and assume that σr (u) is an unbounded function satisfying |σr (u)| ≥ br > 0
(r = 0, 1, 2, ..., k). If

(3.3) st2 − lim
m,n

ρ

(
λ0

(
Tm,ner − er

σr

))
= 0 for some λ0 > 0,

r = 0, 1, 2, ..., k, in Lρ (G) then for every f ∈ Cc (G)

(3.4) st2 − lim
m,n

ρ

(
γ

(
Tm,nf − f

σ

))
= 0 for some γ > 0

in Lρ (G) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} . If

st2 − lim
m,n

ρ

(
λ

(
Tm,ner − er

σr

))
= 0 for every λ > 0,
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r = 0, 1, 2, ..., k, in Lρ (G) then for every f ∈ Cc (G)

st2 − lim
m,n

ρ

(
λ

(
Tm,nf − f

σ

))
= 0 for every λ > 0

in Lρ (G) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} .

Proof. We first claim that, for every f ∈ Cc (G) ,

(3.5) st2 − lim
m,n

ρ

(
γ

(
Tm,nf − f

σ

))
= 0 for some γ > 0.

To see this assume that f ∈ Cc (G) . Then, since G is endowed with the uniform
structure U , f is uniformly continuous and bounded on G. By the uniform continuity
of f, choose ε ∈ (0, 1] , there exists a set U ∈ U such that |f (u)− f (v)| ≤ ε whenever
u, v ∈ G, (u, v) ∈ U.

For all u, v ∈ G let Pu (v) be as in (3.2), and η > 0 satisfy condition (P2) . Then
for u, v ∈ G, (u, v) /∈ U, we have |f (u)− f (v)| ≤ 2M

η Pu (v) where M := sup
v∈G
|f (v)| .

Therefore, in any case we get |f (u)− f (v)| ≤ ε+ 2M
η Pu (v) for all u, v ∈ G, namely,

(3.6) −ε− 2M

η
Pu (v) ≤ f (u)− f (v) ≤ ε+

2M

η
Pu (v) .

Since Tm,n is linear and positive, by applying Tm,n to (3.6) for every m,n ∈ N we
have

−εTm,n (e0;u)− 2M

η
Tm,n (Pu;u) ≤ f (u)Tm,n (e0;u)− Tm,n (f ;u)

≤ εTm,n (e0;u) +
2M

η
Tm,n (Pu;u) .

Hence

|Tm,n (f ;u)− f (u)| ≤ |Tm,n (f ;u)− f (u)Tm,n (e0;u)|
+ |f (u)| |Tm,n (e0;u)− e0 (u)|

≤ εTm,n (e0;u) +
2M

η
Tm,n (Pu;u)

+M |Tm,n (e0;u)− e0 (u)|
≤ ε+ (ε+M) |Tm,n (e0;u)− e0 (u)|

+
2M

η

k∑
r=0

ar (u) |Tm,n (er;u)− er (u)| .

Let γ > 0. Now for each r = 0, 1, 2, ..., k and u ∈ G, choose M0 > 0 such that
|ar (u)| ≤ M0 and multiplying the both sides of the above inequality by 1

|σ(u)| , the

last inequality gives that

γ

∣∣∣∣Tm,n (f ;u)− f (u)

σ (u)

∣∣∣∣ ≤ γε

|σ (u)|
+Kγ

k∑
r=0

∣∣∣∣Tm,n (er;u)− er (u)

σ (u)

∣∣∣∣
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where K := ε+M + 2M
η M0. Now, applying the modular ρ to both sides of the above

inequality, since ρ is monotone and σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} , we get

ρ

(
γ

(
Tm,nf − f

σ

))
≤ ρ

(
γε

|σ|
+Kγ

k∑
r=0

∣∣∣∣Tm,ner − erσr

∣∣∣∣
)
.

Thus, we can see that

ρ

(
γ

(
Tm,nf − f

σ

))
≤ ρ

(
(k + 2) γε

σ

)
+

k∑
r=0

ρ

(
(k + 2)Kγ

(
Tm,ner − er

σr

))
.

Let λ0 > 0 be as in the hypothesis (3.3), such λ0 > 0, by hypothesis, does exist. Let
γ > 0 be with (k + 2)Kγ ≤ λ0 and since ρ is N−quasi semiconvex and strongly
finite, we have,

(3.7) ρ

(
γ

(
Tm,nf − f

σ

))
≤ Nερ

(
(k + 2) γN

σ

)
+

k∑
r=0

ρ

(
λ0

(
Tm,ner − er

σr

))
.

For a given ε∗ > 0, choose an ε ∈ (0, 1] such that Nερ
(

(k+2)γN
σ

)
< ε∗. Now define

the following sets:

Sγ : =

{
(m,n) : ρ

(
γ

(
Tm,nf − f

σ

)
)

)
≥ ε∗

}

Sγ,r : =

(m,n) : ρ

(
λ0

(
Tm,ner − er

σr

))
≥
ε∗ −Nερ

(
(k+2)γN

σ

)
k + 1

 ,

where r = 0, 1, 2, ..., k. Then, it is easy to see that Sγ ⊆
k⋃
r=0

Sγ,r. So, we can see that

δ2 (Sγ) ≤
k∑
r=0

δ2 (Sγ,r) .

Using the hypothesis (3.3), we get

δ2 (Sγ) = 0,

which proves our claim (3.5).

The last part of theorem can be proved similarly to the first one.

Now, we can give our main theorem of this paper.

Theorem 3.2. Let ρ be a monotone, strongly finite, absolutely continuous and
N−quasi semiconvex modular. Suppose that er and ar, r = 0, 1, 2, ..., k, satisfy
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properties (P1) and (P2) . Let T = (Tm,n) be a double sequence of positive linear
operators satisfying (3.1) and assume that σr (u) is an unbounded function satisfying
|σr (u)| ≥ br > 0 (r = 0, 1, 2, ..., k). If

st2 − lim
m,n

ρ

(
λ

(
Tm,ner − er

σr

))
= 0 for every λ > 0,

r = 0, 1, 2, ..., k in Lρ (G) , then for every f ∈ D ∩ Lρ (G) with f − Cb (G) ⊂ XT,

st2 − lim
m,n

ρ

(
λ0

(
Tm,nf − f

σ

))
= 0 for some λ0 > 0

in Lρ (G) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} and D, XT are as before.

Proof. Let f ∈ D ∩ Lρ (G) with f − Cb (G) ⊂ XT. It is known from [6, 18]
that there exists a sequence (gk,j) ⊂ Cc (G) such that ρ (3λ∗0f) < ∞ and P −
lim
k,j
ρ (3λ∗0 (gk,j − f)) = 0 for some λ∗0 > 0. This means that, for every ε > 0, there

is a positive number k0 = k0 (ε) with

(3.8) ρ (3λ∗0 (gk,j − f)) < ε for every k, j ≥ k0.

For all m,n ∈ N, by linearity and positivity of the operators Tm,n, we have

λ∗0 |Tm,n (f ;u)− f (u)| ≤ λ∗0 |Tm,n (f − gk0,k0 ;u)|+ λ∗0 |Tm,n (gk0,k0 ;u)− gk0,k0 (u)|
+λ∗0 |gk0,k0 (u)− f (u)|

holds for every u ∈ G. Now, applying the modular ρ in the last inequality and using
the monotonicity of ρ and moreover multiplying both sides of the above inequality
by 1
|σ(u)| , we get

ρ

(
λ∗0

(
Tm,nf − f

σ

))
≤ ρ

(
3λ∗0

(
Tm,n (f − gk0,k0)

σ

))
+ ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
+ρ

(
3λ∗0

(
gk0,k0 − f

σ

))
.

Hence, observing |σ| ≥ b > 0, (b = max {br : r = 0, 1, 2, ..., k}), we can write that

ρ

(
λ∗0

(
Tm,nf − f

σ

))
≤ ρ

(
3λ∗0

(
Tm,n (f − gk0,k0)

σ

))
+ ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
+ρ

(
3λ∗0
b

(gk0,k0 − f)

)
.(3.9)



568 S. Yıldız and K. Demirci

Then using the (3.8) in (3.9), we have

ρ

(
λ∗0

(
Tm,nf − f

σ

))
≤ ε+ ρ

(
3λ∗0

(
Tm,n (f − gk0,k0)

σ

))
+ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
.

By property (3.1) and also using the facts that gk0,k0 ∈ Cc (G) and f − gk0,k0 ∈ XT,
we obtain

st2 − lim sup
m,n

ρ

(
λ∗0

(
Tm,nf − f

σ

))
≤ ε+Rρ (3λ∗0 (f − gk0,k0)) + st2 − lim sup

m,n
ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
≤ ε (1 +R) + st2 − lim sup

m,n
ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
also, resulting from previous theorem,

0 = st2 − lim
m,n

ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
= st2 − lim sup

m,n
ρ

(
3λ∗0

(
Tm,ngk0,k0 − gk0,k0

σ

))
which gives

0 ≤ st2 − lim sup
m,n

ρ

(
λ∗0

(
Tm,nf − f

σ

))
≤ ε (1 +R) .

From arbitrariety of ε > 0, it follows that

st2 − lim sup
m,n

ρ

(
λ∗0

(
Tm,nf − f

σ

))
= 0.

Furthermore,

st2 − lim
m,n

ρ

(
λ∗0

(
Tm,nf − f

σ

))
= 0,

and this completes the proof.

Remark 3.1. Note that, in Theorem 3.2, in general it is not possible to obtain statistical
relative strong convergence unless the modular ρ satisfies the ∆2−condition.

If one replaces the scale function by a nonzero constant, then the condition (3.1)
is reduced to

(3.10) st2 − lim sup
m,n

ρ (λ (Tm,nh)) ≤ Rρ (λh)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case, the
next result immediately follows from our Theorem 3.2.
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Corollary 3.1. Let ρ be a monotone, strongly finite, absolutely continuous and
N−quasi semiconvex modular. Suppose that er and ar, r = 0, 1, 2, ..., k, satisfy
properties (P1) and (P2) . Let T = (Tm,n) be a double sequence of positive linear
operators satisfying (3.10). If (Tm,ner) is statistically strongly convergent to er,
r = 0, 1, 2, ..., k, in Lρ (G) , then (Tm,nf) is statistically modularly convergent to f
in Lρ (G) such that f is any function belonging to D∩Lρ (G) with f−Cb (G) ⊂ XT.

If one replaces the statistical limit by the Pringsheim limit, then the condition
(3.1) is reduced to

(3.11) P − lim sup
m,n

ρ

(
λ

(
Tm,nh

σ

))
≤ Rρ (λh)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case, the
following result immediately follows from our Theorem 3.2.

Corollary 3.2. Let ρ be a monotone, strongly finite, absolutely continuous and
N−quasi semiconvex modular. Suppose that er and ar, r = 0, 1, 2, ..., k, satisfy
properties (P1) and (P2) . Let T = (Tm,n) be a double sequence of positive linear
operators satisfying (3.11) and assume that σr (u) is an unbounded function satisfy-
ing |σr (u)| ≥ br > 0 (r = 0, 1, 2, ..., k). If (Tm,ner) is relatively strongly convergent
to er to the scale function σr, r = 0, 1, 2, ..., k, in Lρ (G) then (Tm,nf) is rela-
tively modularly convergent to f to the scale function σ in Lρ (G) where σ (u) =
max {|σr (u)| : r = 0, 1, 2, ..., k} and f is any function belonging to D ∩ Lρ (G) with
f − Cb (G) ⊂ XT.

Now, we give an application showing that in general, our results are stronger
than classical ones.

Example 3.1. Let us consider G = [0, 1]2 ⊂ R2 and let ϕ : [0,∞)→ [0,∞) be a continu-
ous and convex function with ϕ (0) = 0, ϕ (x) > 0 for any x > 0 and limx→∞ ϕ (x) =∞.
Then, the functional ρϕ defined by

ρϕ(f) :=

1∫
0

1∫
0

ϕ (|f (x, y)|) dxdy for f ∈ L0 (G) ,

is a convex modular on L0 (G) and

Lϕ(G) :=
{
f ∈ L0 (G) : ρϕ (λf) < +∞ for some λ > 0

}
is the Orlics space generated by ϕ.

For every (x, y) ∈ G, let e0 (x, y) = a3 (x, y) = 1, e1 (x, y) = x, e2 (x, y) = y, e3 (x, y) =
a0 (x, y) = x2 + y2, a1 (x, y) = −2x, a2 (x, y) = −2y. For every m,n ∈ N, u1, u2 ∈ [0, 1] ,
let Km,n (u1, u2) = (m+ 1) (n+ 1)um

1 u
n
2 and for f ∈ C (G) and x, y ∈ [0, 1] set

Mm,n (f ;x, y) =

1∫
0

1∫
0

Km,n (u1, u2) f (u1x, u2y) du1du2.
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Then we get

1∫
0

1∫
0

Km,n (u1, u2) du1du2

= (m+ 1)

 1∫
0

um
1 du1

 (n+ 1)

 1∫
0

un
2 du2

 = 1,

and hence, Mm,n (e0;x, y) = e0 (x, y) = 1. Also, we know from [3] that

|Mm,n (e1;x, y)− e1 (x, y)| ≤ 1

m+ 2
, |Mm,n (e2;x, y)− e2 (x, y)| ≤ 1

n+ 2
,∣∣Mm,n

(
e21;x, y

)
− e21 (x, y)

∣∣ ≤ 2

m+ 3
,
∣∣Mm,n

(
e22;x, y

)
− e22 (x, y)

∣∣ ≤ 2

n+ 3
,

and for each m,n ≥ 2, f ∈ Lϕ(G) we get ρϕ(Mm,nf) ≤ 32ρϕ(f). Moreover, (Mm,n)
satisfies the condition (14) in [22] with XM = Lϕ(G) and (Mm,nf) is modulary convergent
to f ∈ Lϕ(G). Using the operators M = (Mm,n) , we define the double sequence of positive
linear operators T = (Tm,n) on Lϕ(G) as follows:

Tm,n (f ;x, y) = (1 + gm,n (x, y))Mm,n (f ;x, y) , for f ∈ Lϕ(G),

x, y ∈ [0, 1] and m,n ∈ N, where gm,n : G→ R defined by

gm,n (x, y) =


1, m = k2 and n = l2(
m2 + 1

)
n3xy, (x, y) ∈

(
0, 1

m

)
×
(
0, 1

n

)
;m 6= k2 and n 6= l2

0, (x, y) /∈
(
0, 1

m

)
×
(
0, 1

n

)
; m 6= k2 and n 6= l2

k, l = 1, 2, ... If ϕ (x) = xp for 1 ≤ p <∞, x ≥ 0 then Lϕ(G) = Lp(G) and we have for any
function f ∈ Lϕ(G), ρϕ(f) = ‖f‖pp . From now on we have p = 1.

It is clear that

ρ (λ0 (gm,n − g)) = ‖λ0 (gm,n − g)‖1

= λ0

{
1, m = k2 and n = l2

(m2+1)n
4m2 , m 6= k2 and n 6= l2

, k, l = 1, 2, ...,

where g = 0, then (gm,n) does not converge statistically modularly to g = 0. Now, we

choose σr (x, y) = σ (x, y) (r = 0, 1, 2, 3) where σ (x, y) =

{ 1
x2y

, (x, y) ∈ (0, 1]× (0, 1]

1, otherwise
on L1 (G) . Then, it can be seen that, for every h ∈ L1 (G) , λ > 0 and for positive constant
R0 that

st2 − lim sup
m,n

∥∥∥∥λ(Tm,nh

σ

)∥∥∥∥
1

≤ R0 ‖λh‖1 .

Now, observe that

Tm,n (e0;x, y)− e0 (x, y) = gm,n (x, y) ,

Tm,n (e1;x, y)− e1 (x, y) ≤ 1 + gm,n (x, y)

m+ 2
+ gm,n (x, y) ,

Tm,n (e2;x, y)− e2 (x, y) ≤ 1 + gm,n (x, y)

n+ 2
+ gm,n (x, y) ,

Tm,n (e3;x, y)− e3 (x, y) ≤ (1 + gm,n (x, y))

(
2

m+ 3
+

2

n+ 3

)
+ 2gm,n (x, y) .
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Hence, we can see, for any λ > 0, that∥∥∥∥λ(Tm,ne0 − e0
σ

)∥∥∥∥
1

=
∥∥∥λ(gm,n

σ

)∥∥∥
1

= λ

{
1, m = k2 and n = l2

m2+1
12m4 , m 6= k2 and n 6= l2

, k, l = 1, 2, ...,(3.12)

then, we get

st2 − lim
m,n

∥∥∥∥λ(Tm,ne0 − e0
σ

)∥∥∥∥
1

= 0.

Also, we have∥∥∥∥λ(Tm,ne1 − e1
σ

)∥∥∥∥
1

≤
∥∥∥∥λσ

(
1 + gm,n

m+ 2
+ gm,n

)∥∥∥∥
1

≤ λ

m+ 2

∥∥∥∥1 + gm,n

σ

∥∥∥∥
1

+
∥∥∥λ(gm,n

σ

)∥∥∥
1

≤ 1

m+ 2

(
λ

6
+
∥∥∥λ(gm,n

σ

)∥∥∥
1

)
+
∥∥∥λ(gm,n

σ

)∥∥∥
1
,

from above inequality, since the equality (3.12), we have

st2 − lim
m,n

∥∥∥∥λ(Tm,ne1 − e1
σ

)∥∥∥∥
1

= 0.

Similarly, we get

st2 − lim
m,n

∥∥∥∥λ(Tm,ne2 − e2
σ

)∥∥∥∥
1

= 0.

Finally, since ∥∥∥∥λ(Tm,ne3 − e3
σ

)∥∥∥∥
1

≤
∥∥∥∥λσ

(
(1 + gm,n (x, y))

(
2

m+ 3
+

2

n+ 3

)
+ 2gm,n (x, y)

)∥∥∥∥
1

≤
(

2

m+ 3
+

2

n+ 3

)(
λ

6
+
∥∥∥λ(gm,n

σ

)∥∥∥
1

)
+ 2

∥∥∥λ(gm,n

σ

)∥∥∥
1
,

then,

st2 − lim
m,n

∥∥∥∥λ(Tm,ne3 − e3
σ

)∥∥∥∥
1

= 0.

So, our new operator T = (Tm,n) satisfies all conditions of Theorem 3.2 and therefore we
obtain

st2 − lim
m,n

∥∥∥∥λ0

(
Tm,nf − f

σ

)∥∥∥∥
1

= 0

for some λ0 > 0, for any f ∈ L1 (G) . However, (Tm,ne0) is neither relatively modularly
convergent to the scale function σ nor statistically modularly convergent. Thus (Tm,n)
does not fulfil the Corollary 3.1 and 3.2.
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4. An Extension to Non-Positive Operators

In this section, we relax the positivity condition of linear operators in the Ko-
rovkin theorems. In [1, 3, 4] there are some positive answers. Following this ap-
proach, we give some positive answers for statistical relative modular convergence
and prove a Korovkin type approximation theorem.

Let I be a bounded interval of R, C2 (I) (resp. C2
b (I)) be the space of all

functions defined on I, (resp. bounded and) continuous together with their first
and second derivatives, C+ :=

{
f ∈ C2

b (I) : f ≥ 0
}
, C2

+ :=
{
f ∈ C2

b (I) : f ′′ ≥ 0
}
.

Let er, r = 1, 2, ..., k and ar, r = 0, 1, 2, ..., k, be functions in C2
b (I) , Pu (v) ,

u, v ∈ I, be as in (3.2), and suppose that Pu (v) satisfies the properties (P1) , (P2)
and

(P3) there is a positive real constant S0 such that P ′′u (v) ≥ S0 for all u, v ∈ I (Here
the second derivative is intended with respect to v).

Now we prove the following Korovkin type approximation theorem for not nec-
essarily positive linear operators.

Theorem 4.1. Let ρ and σr be as in Theorem 3.1 and er, ar, r = 0, 1, 2, ..., k
and Pu (v) , u, v ∈ I, satisfies the properties (P1) , (P2) and (P3) . Assume that
T = (Tm,n) be a double sequence of linear operators and Tm,n

(
C+ ∩ C2

+

)
⊂ C+

for all m,n ∈ N. If Tm,ner is statistically relatively modularly convergent to er to
the scale function σr in Lρ (I) for each r = 0, 1, 2, ..., k, then Tm,nf is statistically
relatively modularly convergent to f to the scale function σ in Lρ (I) for every
f ∈ C2

b (I) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} .
If Tm,ner is statistically relatively strongly convergent to er to the scale func-

tion σr, r = 0, 1, 2, ..., k, in Lρ (I) then Tm,nf is statistically relatively strongly
convergent to f to the scale function σ in Lρ (I) for every f ∈ C2

b (I) where
σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} .

Furthermore, if ρ is absolutely continuous, T satisfies the property (3.1) and
Tm,ner is statistically relatively strongly convergent to er to the scale function σr,
r = 0, 1, 2, ..., k, in Lρ (I) then Tm,nf is statistically relatively modularly convergent
to f to the scale function σ in Lρ (I) for every f ∈ D∩Lρ (G) with f −Cb (I) ⊂ XT
where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., k} .

Proof. Let f ∈ C2
b (I) . Since f is uniformly continuous and bounded on I, given

ε > 0 with 0 < ε ≤ 1, there exists a δ > 0 such that |f (u)− f (v)| ≤ ε for all
u, v ∈ I, |u− v| ≤ δ. Let Pu (v) , u, v ∈ I, be as in (3.2) and let η > 0 be associated
with δ, satisfying (P2) . As in Theorem 3.1, for every β ≥ 1 and u, v ∈ I, we have

(4.1) −ε− 2Mβ

η
Pu (v) ≤ f (u)− f (v) ≤ ε+

2Mβ

η
Pu (v)

where M = sup
v∈I
|f (v)| . From (4.1) it follows that

(4.2) h1,β (v) := ε+
2Mβ

η
Pu (v) + f (v)− f (u) ≥ 0,
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(4.3) h2,β (v) := ε+
2Mβ

η
Pu (v)− f (v) + f (u) ≥ 0.

Let H0 satisfy (P3) . For each v ∈ I, we get

h′′1,β (v) ≥ 2MβH0

η
+ f ′′ (v) , h′′2,β (v) ≥ 2MβH0

η
− f ′′ (v) .

Because of f ′′ is bounded on I, we can choose β ≥ 1 in such a way that h′′1,β (v) ≥ 0,

h′′2,β (v) ≥ 0 for each v ∈ I. Hence h1,β , h2,β ∈ C+ ∩ C2
+ and then, by hypothesis

(4.4) Tm,n (hj,β ;u) ≥ 0 for all m,n ∈ N, u ∈ I and j = 1, 2.

From (4.2)-(4.4) and the linearity of Tm,n, we get

εTm,n (e0;u) +
2Mβ

η
Tm,n (Pu;u) + Tm,n (f ;u)− f (u)Tm,n (e0;u) ≥ 0,

εTm,n (e0;u) +
2Mβ

η
Tm,n (Pu;u)− Tm,n (f ;u) + f (u)Tm,n (e0;u) ≥ 0,

thus,

−εTm,n (e0;u)− 2Mβ

η
Tm,n (Pu;u) ≤ f (u)Tm,n (e0;u)− Tm,n (f ;u)

≤ εTm,n (e0;u) +
2Mβ

η
Tm,n (Pu;u) .

By arguing similarly as in the proof of Theorem 3.1, multiplying the inequality by
1

|σ(u)| , using the modular ρ and for m,n ∈ N, we have the assertion of the first part.

The other parts can be proved similarly as in the proofs of Theorems 3.1 and
3.2.
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