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Abstract. In this paper, we obtain some inequalities of Wirtinger type by using some
classical inequalities and means for convex functions and establish some applications to
special means for positive real numbers.
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1. Introduction

Let f be a periodic function with period 2π and let f ′ ∈ L2. Then, if
2π
∫

0

f (x) dx =

0, the following inequality holds

2π
∫

0

f2 (x) dx 6

2π
∫

0

f ′2 (x) dx,(1.1)

with equality if and only if f (x) = A cosx+B sinx, where A and B are constants.

Inequality (1.1) is known in the literature as Witinger’s inequality. The proof
of W. Wirtinger was first published in 1916 in the book (see [1]) by W. Blaschke.
There are many studies which generalize and extend Wirtinger’s inequality in the
literature, (see [2], [3]). However, Inequality (1.1) was known before this, though
with other conditions on the function f. For example, in 1905, E.Almansi proved
that

b
∫

a

f2 (x) dx 6

(

b− a

2π

)2
b

∫

a

[f ′ (x)]
2
dx,(1.2)
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under the condition that f and f ′ are continuous on the interval (a, b) , that f (a) =

f (b) and that
b
∫

a

f (x) dx = 0.

Theorem 1.1. (Hölder inequality) Let f (x) and g (x) be positive continuous func-
tions on [a, b] . If p > 1 and 1

p
+ 1

q
= 1, then

b
∫

a

f (x) g (x)dx 6





b
∫

a

f (x)
p
dx





1

p




b
∫

a

g (x)
q
dx





1

q

.(1.3)

Theorem 1.2. (Reverse Hölder inequality) For two positive functions f and g

satisfying 0 < m 6
fp

gq 6 M < ∞, on the set X, and for p, q > 1 with 1
p
+ 1

q
= 1,

we get




∫

X

fpdµ





1

p




∫

X

gqdµ





1

q

6

(

M

m

)
1

pq
∫

X

fg dµ.

Definition 1.1. A function I ⊆ R → R is said to be convex (concave) if whenever
x, y ∈ [a, b] and t ∈ [0, 1] , the following inequality holds:

f (tx+ (1− t) y) 6 (≥) tf (x) + (1− t) f (y) .(1.4)

Anderson mentioned mean function in [4] as follows:

Definition 1.2. A function M : (0,∞) → (0,∞) is called a mean function if

(a) Symmetry: M (x, y) = M (y, x) ;

(b) Reflexivity: M (x, x) = x;

(c) Monotonicity: min {x, y} 6 M (x, y) 6 max {x, y} ;

(d) Homogeneity: M (λx, λy) = λM (x, y) , for any positive scalar λ.

Definition 1.3. Let I → (0,∞) be continuous, where I is a subinterval of (0,∞) .
Let M and N be any two mean functions. We say f is MN -convex (concave) if
f (M (x, y)) 6 (>)N (f (x) , f (y)) for all x, y ∈ I.

Taking into account Definition 1.3, MN -convex function will be defined by the
formulas:

1. f is AA-convex iff (1.4) holds;

2. f is AG-convex iff

f (tα+ (1− t)) 6 [f (α)]
t
[f (β)]

t
, 0 6 t 6 1;
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3. f is AH-convex iff

f ((1− t)α+ tβ) 6
f (α) f (β)

tf (α) + (1− t) f (β)
, 0 6 t 6 1;

4. f is GA-convex iff

f
(

αtβ1−t
)

6 tf (α) + (1− t) f (β) , 0 6 t 6 1;

5. f is GG-convex iff

f
(

αtβ1−t
)

6 [f (α)]t [f (β)]1−t
, 0 6 t 6 1;

6. f is GH-convex iff

f
(

α1−tβt
)

6
f (α) f (β)

tf (α) + (1− t) f (β)
, 0 6 t 6 1;

7. f is HA-convex iff

f

(

αβ

(1− t)α+ tβ

)

6 tf (α) + (1− t) f (β) , 0 6 t 6 1;

8. f is HG-convex iff

f

(

αβ

(1− t)α+ tβ

)

6 [f (α)]
t
[f (β)]

1−t
, 0 6 t 6 1;

9. f is HH-convex iff

f

(

αβ

(1− t)α+ tβ

)

6
f (α) f (β)

(1− t) f (α) + tf (β)
, 0 6 t 6 1.

The main aim of this paper is to prove some new Wirtinger-type integral in-
equalities for convex and MN -convex functions.

2. Main Results

Theorem 2.1. Let f and f ′ be continuous functions on the interval (a, b) , with

a < b, f (a) = f (b) and
b
∫

a

f (x) dx = 0. If (f ′)
2
is convex on [a, b] , then

b
∫

a

[f (x)]2 dx 6
(b− a)3

(2π)
2

[f ′ (a)]
2
+ [f ′ (b)]

2

2
(2.1)
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Proof: Since (f ′)
2
is a convex function on [a, b] , therefore for t ∈ [0, 1] we have

1

b− a

b
∫

a

[f ′ (x)]
2
dx =

1
∫

0

[f ′ (ta+ (1− t) b)]
2
dt

6

1
∫

0

[

t[f ′ (a)]
2
+ (1− t) [f ′ (b)]

2
]

dt =
[f ′ (a)]

2
+ [f ′ (b)]

2

2
.

Now multiplying both sides of the above inequality by (b−a)3

(2π)2
and with (1.2), we get

the desired inequality in (2.1).

Theorem 2.2. Let f and f ′ be continuous functions on the interval (a, b) , with

a < b, f (a) = f (b) and
b
∫

a

f (x) dx = 0. If f ′ is convex on [a, b] , then

b
∫

a

[f (x)]
2
dx 6

(b− a)3

(2π)
2

{

(f ′ (a))2 + (f ′ (a)) (f ′ (a)) + (f ′ (b))2

3

}

.(2.2)

Proof: We have

(

b− a

2π

)2
b

∫

a

[f ′ (x)]
2
dx =

(b− a)
3

(2π)
2

1
∫

0

[f ′ (ta+ (1− t) b)]
2
dt

6
(b − a)3

(2π)
2

1
∫

0

[tf ′ (a) + (1− t) f ′ (b)]
2
dt

=
(b − a)

3

(2π)
2

{

(f ′ (a))
2
+ (f ′ (a)) (f ′ (a)) + (f ′ (b))

2

3

}

.

By applying (1.2), we get (2.2).

Theorem 2.3. Let f and f ′ be continuous functions on the interval (a, b) with

a < b, f (a) = f (b) and
b
∫

a

f (x) dx = 0. If f ′ is positive, (f ′)
1

α and (f ′)
1

β are convex

on [a, b] , then the following inequality holds

b
∫

a

[f (x)]
2
dx 6 α (b− a)

3 [f ′ (a)]
1

α + [f ′ (b)]
1

α

8π2
+ β (b− a)

3 [f ′ (a)]
1

β + [f ′ (b)]
1

β

8π2
,(2.3)

where α, β > 0 and α+ β = 1.
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Proof: By using the well-known inequality cd 6 αc
1

α + βd
1

β (α, β, c, d > 0 and

α+ β = 1), the convexity of (f ′)
1

α and (f ′)
1

β , we get

(

b− a

2π

)2
b

∫

a

[f ′ (x)]
2
dx =

(b− a)
3

(2π)
2

1
∫

0

f ′ (ta+ (1− t) b) f ′ (ta+ (1− t) b) dt

6
(b− a)

3

(2π)2







α

1
∫

0

[f ′ (ta+ (1− t) b)]
1

α dt+ β

1
∫

0

[f ′ (ta+ (1− t) b)]
1

β dt







6
(b− a)

3

(2π)
2







α

1
∫

0

[tf ′ (a) + (1− t) f ′ (b)]
1

α dt+ β

1
∫

0

[tf ′ (a) + (1− t) f ′ (b)]
1

β dt







6
(b− a)

3

(2π)
2

{

α

1
∫

0

[

t (f ′ (a))
1

α + (1− t) (f ′ (b))
1

α

]

dt

+β

1
∫

0

[

t (f ′ (a))
1

β + (1− t) (f ′ (b))
1

α

]

dt

}

=
(b− a)

3

(2π)
2

{

α
(f ′ (a))

1

α + (f ′ (b))
1

α

2
+ β

(f ′ (a))
1

β + (f ′ (b))
1

β

2

}

.

Combining with (1.2), we get the required inequality.

Theorem 2.4. Let f and f ′ be continuous on the interval (a, b) , with a < b,

f (a) = f (b) ,
b
∫

a

f (x) dx = 0 and f > 0. Let 0 < m 6
|f |p

|f |q 6 M < ∞ for p, q > 1

with 1
p
+ 1

q
= 1. If |f |

p
, |f |

q
are concave on [a, b] then

(m

M

)
1

pq

[f (a) + f (b)]
2
6

b− a

π2

b
∫

a

[f ′ (x)]
2
dx.(2.4)

Proof: Making changes to the variable, using the reverse Hölder inequality and
inequality |u+ v|

r
6 2r−1 (|u|

r
+ |v|

r
) , u, v ∈ R, we have

1

b− a

b
∫

a

[f (x)]
2
dx =

1
∫

0

[f (ta+ (1− t) b)]
2
dt

>

(m

M

)
1

pq





1
∫

0

|f (ta+ (1− t) b)|
p
dt





1

p




1
∫

0

|f (ta+ (1− t) b)|
q
dt





1

q
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>

(m

M

)
1

pq





1
∫

0

[t|f (a)|p + (1− t) |f (b)|p] dt





1

p

·





1
∫

0

[t|f (a)|
q
+ (1− t) |f (b)|

q
] dt





1

q

=
(m

M

)
1

pq

(

|f (a)|p + |f (b)|p

2

)
1

p
(

|f (a)|q + |f (b)|q

2

)
1

q

>

(m

M

)
1

pq

(

|f (a) + f (b)|
p

2p

)
1

p
(

|f (a) + f (b)|
q

2q

)
1

q

=
(m

M

)
1

pq (f (a) + f (b))2

4
.

By (1.2), we get the inequality (2.4).

Theorem 2.5. Let f and f ′ be continuous on the interval (a, b) , with a < b,

f (a) = f (b) and
b
∫

a

f (x) dx = 0. Then:

1. If |f ′| is AG convex, then

b
∫

a

[f (x)]
2
dx 6

(b− a)
3

8π2

[f ′ (a) f ′ (b)]
2
− 1

ln [f ′ (a) f ′ (b)]
;

2. If |f ′| is AH convex, then

b
∫

a

[f (x)]2 dx 6
(b− a)3

(2π)
2 f ′ (a) f ′ (b) ;

3. If |f ′| is GA convex, then

b
∫

a

[f (x)]
2
dx 6

(

b− a

2π

)2
{[

−a+
2a

ln a
b

+ 2
b− a

ln2 a
b

]

[f ′ (a)]
2

+

[

−2 (a+ b)
1

ln a
b

− 4
b− a

ln2 a
b

]

f ′ (a) f ′ (b)

+

[

b+
2b

ln a
b

+
2 (b− a)

ln2 a
b

]

[f ′ (b)]
2

}

;
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4. If |f ′| is GG convex, then

b
∫

a

[f (x)]
2
dx 6

(

b − a

2π

)2

ln
a

b

b [f ′ (b)]
2
− a [f ′ (a)]

2

ln a [f ′ (a)]
2
− ln b [f ′ (b)]

2 ;

5. If |f ′| is HA convex, then

b
∫

a

[f (x)]
2
dx 6

1

(2π)
2

{

[

a (b− a)
(

b+ a (b− a)
2
)

− a2b ln
b

a

]

[f ′ (a)]
2

+

[

ab (b− a)
(

1− (b− a)2
)

− ab (a+ b) ln
b

a

]

f ′ (a) f ′ (b)

+

[

b (b− a)
(

a+ b (b− a)
2
)

− ab2 ln
b

a

]

[f ′ (b)]
2

}

.

Proof.

1. From (1.2) and by using the AG convexity of |f ′| we have

b
∫

a

[f (x)]
2
dx 6

(

b− a

2π

)2
b

∫

a

[f ′ (x)]
2
dx =

(b− a)
3

(2π)
2

1
∫

0

[f ′ (ta+ (1− t) b)]
2
dt

6
(b− a)

3

(2π)2

1
∫

0

[

(f ′ (a))
t
(f ′ (b))

t
]2

dt =
(b− a)

3

(2π)2

1
∫

0

[(f ′ (a)) (f ′ (b))]
2t
dt

=
(b− a)

3

8π2

[f ′ (a) f ′ (b)]
2
− 1

ln [f ′ (a) f ′ (b)]
;

2. Since |f ′| is an AH-convex function, we can write

b
∫

a

[f (x)]2 dx 6

(

b− a

2π

)2 b
∫

a

[f ′ (x)]
2
dx =

(b− a)
3

(2π)2

1
∫

0

[f ′ ((1− t) a+ tb)]
2
dt

6
(b− a)

3

(2π)
2

1
∫

0

[

f ′ (a) f ′ (b)

tf ′ (a) + (1− t) f ′ (b)

]2

dt =
(b − a)

3

(2π)
2 f ′ (a) f ′ (b) ;
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3. Taking into account that |f ′| is GA- convex, we have

b
∫

a

[f (x)]
2
dx 6

(

b − a

2π

)2
b

∫

a

[f ′ (x)]
2
dx =

(

b− a

2π

)2

ln
a

b

0
∫

1

[

f ′
(

atb1−t
)]2

atb1−tdt

6

(

b− a

2π

)2

ln
a

b

0
∫

1

[tf ′ (a) + (1− t) f ′ (b)]
2
atb1−tdt

= b

(

b− a

2π

)2

ln
a

b

{

[

(f ′ (a))
2
− 2f ′ (a) f ′ (b) + (f ′ (b))

2
]

0
∫

1

t2
(a

b

)t

dt

+
[

2f ′ (a) f ′ (b)− 2 (f ′ (b))
2
]

0
∫

1

t
(a

b

)t

dt+ (f ′ (b))
2

0
∫

1

(a

b

)t

dt

}

=

(

b− a

2π

)2
{[

−a+
2a

ln a
b

+ 2
b− a

ln2 a
b

]

[f ′ (a)]
2

+

[

−2 (a+ b)
1

ln a
b

− 4
b− a

ln2 a
b

]

f ′ (a) f ′ (b)

+

[

b +
2b

ln a
b

+
2 (b− a)

ln2 a
b

]

[f ′ (b)]
2

}

;

4. Since |f ′| is GG-convex, we have

b
∫

a

[f (x)]
2
dx 6

(

b− a

2π

)2 b
∫

a

[f ′ (x)]
2
dx

=

(

b− a

2π

)2

ln
a

b

0
∫

1

[

f ′
(

atb1−t
)]2

atb1−tdt

6

(

b− a

2π

)2

ln
a

b

0
∫

1

{

[f ′ (a)]
t
[f ′ (b)]

1−t
}2

atb1−tdt

= b

(

b − a

2π

)2

ln
a

b
[f ′ (b)]

2

0
∫

1

{

a [f ′ (a)]2

b [f ′ (b)]
2

}t

dt

=

(

b− a

2π

)2

ln
a

b

b [f ′ (b)]
2
− a (f ′ (a))

2

ln a [f ′ (a)]2 − ln b [f ′ (b)]2
;
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5. Since |f ′| is HA-convex, we have

b
∫

a

[f (x)]
2
dx 6

(

b − a

2π

)2
b

∫

a

[f ′ (x)]
2
dx

= ab
(b− a)

3

(2π)2

1
∫

0

[

f ′

(

ab

(1− t) a+ tb

)]2
1

[(1− t) a+ tb]2
dt

6 ab
(b− a)

3

(2π)
2

1
∫

0

[(

tf ′ (a) + (1− t) f ′ (b)

(1− t) a+ tb

)]2

dt

=
1

(2π)2

{

[

a (b− a)
(

b+ a (b− a)2
)

− a2b ln
b

a

]

[f ′ (a)]
2

+

[

ab (b − a)
(

1− (b− a)
2
)

− ab (a+ b) ln
b

a

]

f ′ (a) f ′ (b)

+

[

b (b− a)
(

a+ b (b− a)
2
)

− ab2 ln
b

a

]

[f ′ (b)]
2

}

.
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