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Abstract. The purpose of this paper is to state some fixed point results for generalized
rational type contraction mappings in partially ordered b-metric spaces that generalize
the main results of [7] and [22]. Also, some examples are given to illustrate the results.
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1. Introduction and preliminaries

In 1977, Jaggi [16] proved the following theorem for a contractive condition of
rational type.

Theorem 1.1. [16, Theorem 1] Let (X, d) be a complete metric space and T : X −→ X be
a mapping such that

d(Tx,Ty) � α
d(x,Tx)d(y,Ty)

d(x, y)
+ βd(x, y)

for all x, y ∈ X, x � y and some α, β ≥ 0 with α + β < 1. Then T has a unique fixed point
in X.

In 2010, Harjani et al. [12] proved a version of Theorem 1.1 in partially ordered
metric spaces. In 2011, Luong et al. [22] proved the following theorem for general-
ized weak contractions satisfying rational expressions in partially ordered metric
spaces, which is a generalization of the result of [12].

Denote by Ψ the family of all lower semi-continuous functions ψ : [0,∞) −→
[0,∞) such that ψ(t) = 0 if and only if t = 0.

Theorem 1.2. [22, Theorem 2.1] . Let (X,�, d) be a complete, partially ordered metric
space and T : X −→ X be a mapping such that
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1. T is a non-decreasing mapping.

2. There exists ψ ∈ Ψ such that d(Tx,Ty) ≤M(x, y)−ψ
(
M(x, y)

)
for all x, y ∈ X with

x � y, where

M(x, y) = max
{d(x,Tx)d(y,Ty)

d(x, y)
, d(x, y)

}
.

3. T is continuous or X has the property: if {xn} is a non-decreasing sequence in X such
that lim

n→∞ xn = x, then x = sup xn.

4. There exists x0 ∈ X such that x0 � Tx0.

Then T has a fixed point.

In 2013, Chandok et al. [7] established some common fixed point results for
weak contractive conditions satisfying rational type expressions in partially or-
dered metric spaces, which are generalizations of the the main results in [22].

Definition 1.1. [15] Let (X,�) be a partially ordered set and T, f : X −→ X be two
mappings. T is called monotone f -nondecreasing if for all x, y ∈ X, f x � f y implies
Tx � Ty.

Definition 1.2. [18] Let (X, d) be a metric space and T, f : X −→ X be two mappings.
The pair (T, f ) is called compatible if lim

n→∞ d(T fxn, fTxn) = 0 whenever {xn} is a

sequence in X such that lim
n→∞Txn = lim

n→∞ f xn = t for some t ∈ X.

Definition 1.3. [19] Let (X, d) be a metric space and T, f : X −→ X be two mappings.
The pair (T, f ) is called weakly compatible if they commute at their coincidence points,
that is, T fx = fTx for all x ∈ X with Tx = f x.

The main results of [7] were stated as follows.

Theorem 1.3. [7, Theorem 2.1] Let (X,�, d) be a partially ordered metric space and
T, f : X −→ X be two mappings such that

1. TX ⊂ fX and fX is a complete subspace of X.

2. T is a monotone f -nondecreasing mapping.

3. There exists ψ ∈ Ψ such that

d(Tx,Ty) ≤M(x, y) − ψ(M(x, y))

for all x, y ∈ X with f x � f y, f x and f y being comparable, where

M(x, y) = max
{

d( f x,Tx)d( f y,Ty)
d( f x, f y)

, d( f x, f y)
}
.
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4. T and f are continuous mappings.

5. T and f are compatible.

6. There exists x0 ∈ X such that f x0 � Tx0.

Then T and f have a coincidence point.

Theorem 1.4. [7, Theorem 2.2] Let (X,�, d) be a partially ordered metric space and
T, f : X −→ X be two mappings such that

1. TX ⊂ fX and fX is a complete subspace of X.

2. T is a monotone f -nondecreasing mapping.

3. There exists ψ ∈ Ψ such that d(Tx,Ty) ≤M(x, y)−ψ(M(x, y)) for all x, y ∈ X with
f x � f y, f x and f y being comparable, where

M(x, y) = max
{

d( f x,Tx)d( f y,Ty)
d( f x, f y)

, d( f x, f y)
}
.

4. If { f xn} is a non-decreasing sequence in X such that lim
n→∞ f xn = f x, then f x = sup f xn.

5. T and f are weakly compatible.

6. There exists x0 ∈ X such that f x0 � Tx0.

Then T and f have a common fixed point. Moreover, the set of common fixed points of T
and f is well ordered if and only if T and f have only one common fixed point.

There have been many generalizations of a metric space and many fixed point
theorems on generalized metric spaces have been stated [3, 6, 17, 25]. The notion
of a b-metric space was introduced by Bakhtin in [4] and then extensively used by
Czerwik in [8, 9] as follows.

Definition 1.4. [9] Let X be a non-empty set and d : X ×X −→ [0,∞) be a function
such that for all x, y, z ∈ X and some s ≥ 1.

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ s
(
d(x, z)+ d(z, y)

)
.

Then d is called a b-metric on X and (X, d, s) is called a b-metric space.
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The first important difference between a metric and a b-metric is that the b-
metric need not be a continuous function in its two variables, see [21, Example
13]. In recent years, many fixed point theorems on b-metric spaces were stated, the
readers may refer to [1, 2, 5, 10, 13, 14, 24, 26, 27, 28, 29] and references therein.

The purpose of this paper is to state some fixed point results for generalized
rational type contraction mappings in partially ordered b-metric spaces that gen-
eralize the main results of [7] and [22]. Also, some examples are given to illustrate
the results.

First, we recall some notions and lemmas which will be useful in what follows.

Definition 1.5. [9] Let (X, d, s) be a b-metric space.

1. A sequence {xn} is called convergent to x, written lim
n→∞ xn=x, if lim

n→∞ d(xn, x)=0.

2. A sequence {xn} is called Cauchy in X if lim
n,m→∞ d(xn, xm) = 0.

3. (X, d, s) is called complete if every Cauchy sequence is a convergent sequence.

Definition 1.6. [20] A function ϕ : [0,∞) −→ [0,∞) is called an altering distance
function if

1. ϕ is continuous and non-decreasing.

2. ϕ(t) = 0 if and only if t = 0.

Lemma 1.1. [11] Let X be a nonempty set and f : X −→ X a mapping. Then there exists
a subset E ⊂ X such that fE = fX and f : E −→ X is one-to-one.

2. Main results

The following result is a sufficient condition for the existence of the fixed point
for a generalized rational type contraction mapping in partially ordered b-metric
spaces.

Theorem 2.1. Let (X, d, s,�) be a complete, partially ordered b-metric space and T : X −→ X
be a mapping such that

1. T is a non-decreasing mapping.

2. There exist ψ ∈ Ψ and an altering distance function ϕ such that

(2.1) ϕ
(
sd(Tx,Ty)

)
≤ ϕ
(
M(x, y)

)
− ψ
(
M(x, y)

)
for all x, y ∈ X with x � y, where

M(x, y) = max
{

d(x,Tx)d(y,Ty)
d(x, y)

, d(x, y)
}
.
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3. T is continuous.

4. There exists x0 ∈ X such that x0 � Tx0.

Then T has a fixed point.

Proof. Let x0 ∈ X such that x0 � Tx0, we construct a sequence {xn} in X by
xn+1 = Txn for n ≥ 0. Since T is a non-decreasing mapping, by induction, we can
show that

x0 � x1 � . . . � xn � xn+1 � . . .
If there exists n ≥ 0 such that xn = xn+1, then xn = Txn, that is, xn is a fixed point of
T. So, we suppose xn � xn+1 for all n ≥ 0. Since xn � xn−1 for all n ≥ 1, from (2.1),
we have

ϕ
(
d(xn+1, xn)

)
= ϕ

(
d(Txn,Txn−1)

)
(2.2)

≤ ϕ
(
sd(Txn,Txn−1)

)
≤ ϕ

(
M(xn, xn−1)

)
− ψ(M(xn, xn−1))

where

M(xn, xn−1) = max
{

d(xn,Txn)d(xn−1,Txn−1)
d(xn, xn−1)

, d(xn, xn−1)
}

(2.3)

= max
{
d(xn, xn+1), d(xn−1, xn)

}
.

It follows from (2.2) and (2.3) that

ϕ
(
d(xn+1, xn)

)
≤ ϕ

(
max

{
d(xn+1, xn), d(xn−1, xn)

})
(2.4)

−ψ
(
max

{
d(xn+1, xn), d(xn−1, xn)

})
.

If there exists n ≥ 1 such that d(xn+1, xn) > d(xn, xn−1), then from (2.4), we have

ϕ
(
d(xn+1, xn)

)
≤ ϕ

(
d(xn+1, xn)

)
− ψ(d(xn+1, xn))(2.5)

< ϕ
(
d(xn+1, xn)

)
.

It is a contradiction. Hence, d(xn+1, xn) ≤ d(xn−1, xn) for all n ≥ 1. Then, (2.4)
becomes

ϕ
(
d(xn+1, xn)

)
≤ ϕ

(
d(xn, xn−1)

)
− ψ(d(xn, xn−1))(2.6)

< ϕ
(
d(xn, xn−1)

)

for all n ≥ 1 and {d(xn+1, xn)} is a non-increasing sequence of non-negative real
numbers. Hence, there exists r ≥ 0 such that lim

n→∞ d(xn+1, xn) = r. Now, we shall
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show that r = 0. Suppose to the contrary that r > 0. Taking the upper limit as
n→∞ in (2.6) and using the property of ϕ and ψ, we get

(2.7) ϕ(r) ≤ ϕ(r) − lim inf
n→∞ ψ(d(xn, xn−1)) ≤ ϕ(r) − ψ(r) < ϕ(r).

It is a contradiction. Therefore, r = 0, that is,

(2.8) lim
n→∞ d(xn+1, xn) = 0.

Now, we shall prove that {xn} is a Cauchy sequence. If otherwise, then there
exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} with
n(k) > m(k) > k such that for every k ∈N, we have

(2.9) d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε.

So, we have

ε ≤ d(xm(k), xn(k))(2.10)
≤ sd(xm(k), xn(k)−1) + sd(xn(k)−1, xn(k))

≤ s2d(xm(k), xm(k)−1) + s2d(xm(k)−1, xn(k)−1) + sd(xn(k)−1, xn(k)).

Taking the upper limit as k→∞ in (2.10) and using (2.8), we get

ε

s2 ≤ lim sup
k→∞

d(xm(k)−1, xn(k)−1).(2.11)

We also have

d(xm(k)−1, xn(k)−1) ≤ sd(xm(k)−1, xm(k)) + sd(xm(k), xn(k)−1)(2.12)
< sd(xm(k)−1, xm(k)) + sε.

Taking the upper limit as k→∞ in (2.12) and using (2.8), we get

lim sup
k→∞

d(xm(k)−1, xn(k)−1) ≤ sε.(2.13)

Therefore, from (2.11) and (2.13), we get

(2.14)
ε

s2 ≤ lim sup
k→∞

d(xm(k)−1, xn(k)−1) ≤ sε.

Similarly, we also have

(2.15)
ε

s2 ≤ lim inf
k→∞

d(xm(k)−1, xn(k)−1) ≤ sε.

Since xn(k)−1 � xm(k)−1, from (2.1) we have

ϕ
(
sd(xn(k), xm(k))

)
(2.16)

= ϕ
(
sd(Txn(k)−1,Txm(k)−1)

)
≤ ϕ

(
M(xn(k)−1, xm(k)−1)

)
− ψ(M(xn(k)−1, xm(k)−1)),
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where

M(xn(k)−1, xm(k)−1)(2.17)

= max
{d(xn(k)−1,Txn(k)−1)d(xm(k)−1,Txm(k)−1)

d(xn(k)−1, xm(k)−1)
, d(xn(k)−1, xm(k)−1)

}

= max
{d(xn(k)−1, xn(k))d(xm(k)−1, xm(k))

d(xn(k)−1, xm(k)−1)
, d(xn(k)−1, xm(k)−1)

}
.

Taking the upper limit and the lower limit as k→∞ in (2.17) and using (2.8), (2.14),
(2.15), we get

(2.18)
ε

s2 ≤ lim sup
k→∞

M(xn(k)−1, xm(k)−1) ≤ sε

and

(2.19)
ε

s2 ≤ lim inf
k→∞

M(xn(k)−1, xm(k)−1) ≤ sε.

Taking the upper limit as k→∞ in (2.16) and using (2.9), (2.18), (2.19), we obtain

ϕ(sε)(2.20)

≤ ϕ
(
s lim sup

k→∞
d(xn(k), xm(k))

)

≤ ϕ
(
lim sup

k→∞
M(xn(k)−1, xm(k)−1)

)
− ψ
(
lim inf

k→∞
M(xn(k)−1, xm(k)−1)

)

≤ ϕ
(
sε
)
− ψ
(
lim inf

k→∞
M(xn(k)−1, xm(k)−1)

)
< ϕ(sε).

It is a contradiction. Thus, {xn} is a Cauchy sequence in X. Since (X, d, s) is a
complete b-metric space, there exists x ∈ X such that lim

n→∞ xn = x. Since T is a

continuous mapping, then x = lim
n→∞ xn = lim

n→∞Txn−1 = T( lim
n→∞ xn−1) = Tx. It implies

that x is a fixed point of T.
The next result is another one for the existence of the fixed point for a generalized

rational type contraction mapping in partially ordered b-metric spaces.

Theorem 2.2. Let (X, d, s,�) be a complete, partially ordered b-metric space where d is
continuous in each variable and T : X −→ X be a mapping such that

1. T is a non-decreasing mapping.

2. There exist ψ ∈ Ψ and an altering distance function ϕ such that

ϕ
(
sd(Tx,Ty)

)
≤ ϕ

(
M(x, y)

)
− ψ
(
M(x, y)

)
(2.21)

for all x, y ∈ X with x � y, where

M(x, y) = max
{d(x,Tx)d(y,Ty)

d(x, y)
, d(x, y)

}
.
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3. If {xn} is a non-decreasing sequence in X such that lim
n→∞ xn = x, then x = sup xn.

4. There exists x0 ∈ X such that x0 � Tx0.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.1, we have {xn} is a non-decreasing
sequence. If there exists n ≥ 0 such that xn = xn+1, then xn = Txn, that is, xn is a fixed
point of T. Therefore, we assume that xn � xn+1 for all n ≥ 0. Also, from the proof
of Theorem 2.1, we have lim

n→∞ xn = x. By the assumption (3), we have x = sup xn.

Particularly, xn ≺ x for all n ≥ 0. Since T is a non-decreasing mapping, we have
Txn � Tx for all n ≥ 0, that is, xn+1 � Tx for all n ≥ 0. Moreover, as xn ≺ xn+1 � Tx
for all n ≥ 0 and x = sup xn, we obtain

(2.22) x � Tx.

Consider the sequence {yn} in X that is constructed by y0 = x, yn+1 = Tyn for
n ≥ 0. Since x � Tx, we have y0 � Ty0. By using the similar argument as in the proof
of Theorem 2.1, we obtain that {yn} is a non-decreasing sequence and lim

n→∞ yn = y

for some y ∈ X. By the assumption (3), we have sup yn = y. Now suppose that
x � y. Since xn ≺ x = y0 � Tx = Ty0 � yn � y for all n ≥ 0, from (2.21) we have

ϕ
(
d(yn+1, xn+1

)
= ϕ

(
d(Tyn,Txn)

)
(2.23)

≤ ϕ
(
sd(Tyn,Txn)

)
≤ ϕ

(
M(yn, xn)

)
− ψ(M(yn, xn))

where

M(yn, xn) = max
{d(yn,Tyn)d(xn,Txn)

d(yn, xn)
, d(yn, xn)

}
(2.24)

= max
{d(yn, yn+1)d(xn, xn+1)

d(yn, xn)
, d(yn, xn)

}
.

Taking the limit as n → ∞ in (2.24) and using the continuity in each variable of d,
we obtain lim

n→∞M(yn, xn) = max{0, d(y, x)} = d(y, x). Then, taking the limit as n→∞
in (2.23) and using the property of ϕ and ψ, we have

ϕ
(
d(y, x)

)
≤ ϕ

(
d(y, x)

)
− ψ
(
d(y, x)

)
< ϕ
(
d(y, x)

)
.

It is a contradiction. Therefore, x = y. Since Tx � y, we have Tx � x. Then,
from (2.22), we have Tx = x, that is, x is a fixed point of T.

In what follows, we shall prove the uniqueness of the fixed point in Theorem2.1
and Theorem 2.2.

Theorem 2.3. Assume that
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1. Either the assumptions of Theorem 2.1 or the assumptions of Theorem 2.2 hold.

2. For each x, y ∈ X, there exists z ∈ X that is comparable to x and y.

Then T has a unique fixed point.

Proof. From Theorem 2.1 and Theorem 2.2, we conclude that T has a fixed
point. Suppose that x, y ∈ X are two fixed points of T. By the assumption (2), there
exists z ∈ X such that z is comparable to x and y. We define the sequence {zn} by
z0 = z, zn+1 = Tzn for n ≥ 0. Since z is comparable to x, we may assume that z � x.
Since T is a non-decreasing, by induction, we can show that zn � x for all n ≥ 0.
Suppose that there exists n0 ≥ 0 such that zn0 = x, then zn = Tzn−1 = Tx = x for all
n ≥ n0. Hence, lim

n→∞ zn = x. On the other hand, if zn � x for all n ≥ 0, we have

ϕ
(
d(x, zn)

)
= ϕ

(
d(Tx,Tzn−1)

)
(2.25)

≤ ϕ
(
sd(Tx,Tzn−1)

)
≤ ϕ

(
M(x, zn−1)

)
− ψ(M(x, zn−1))

where

M(x, zn−1) = max
{d(x,Tx)d(zn−1,Tzn−1)

d(x, zn−1)
, d(x, zn−1)

}
(2.26)

= max
{d(x, x)d(zn−1, zn)

d(x, zn−1)
, d(x, zn−1)

}
= d(x, zn−1).

From (2.25) and (2.26), we have

ϕ
(
d(x, zn)

)
≤ ϕ

(
d(x, zn−1)

)
− ψ(d(x, zn−1))(2.27)

< ϕ
(
d(x, zn−1)

)
for all n ≥ 1. Then from the property of ϕ, we conclude that d(x, zn) ≤ d(x, zn−1) for
all n ≥ 1, that is, {d(x, zn)} is a non-increasing sequence of positive real numbers.
Therefore, there exists α ≥ 0 such that lim

n→∞ d(x, zn) = α. We shall show that α = 0.

Suppose to the contrary that α > 0. Taking the upper limit as n→ ∞ in (2.27) and
using the property of ϕ and ψ, we have

ϕ(α) = ϕ
(

lim
n→∞ d(x, zn)

)
≤ ϕ

(
lim
n→∞ d(x, zn−1)

)
− lim inf

n→∞ ψ
(
d(x, zn−1)

)
≤ ϕ(α) − ψ(α) < ϕ(α).

It is a contradiction. Hence, α = 0, that is, lim
n→∞ d(x, zn) = 0. Thus, lim

n→∞ zn = x.

Therefore, in both cases, we have

(2.28) lim
n→∞ zn = x.
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Similarly, we may show that

(2.29) lim
n→∞ zn = y.

From (2.28) and (2.29), we get x = y. Therefore, T has a unique fixed point.

Remark 2.1. Since a b-metric space is a metric space when s = 1, so our results can be
viewed as a generalization of corresponding results in [22].

By using Theorem 2.1, Theorem 2.2 and Theorem 2.3, we obtain the following
corollaries as a generalization of [7, Theorem 2.1] and [7, Theorem 2.2] in partially
ordered b-metric spaces.

Corollary 2.1. Let (X, d, s,�) be a partially ordered b-metric space and T, f : X −→ X be
two mappings such that

1. TX ⊂ fX and fX is a complete subspace of X.

2. T is a monotone f -nondecreasing mapping.

3. There exist ψ ∈ Ψ and an altering distance function ϕ such that

(2.30) ϕ
(
sd(Tx,Ty)

)
≤ ϕ
(
Mf (x, y)

)
− ψ
(
Mf (x, y)

)

for all x, y ∈ X with f x � f y, where

Mf (x, y) = max
{d( f x,Tx)d( f y,Ty)

d( f x, f y)
, d( f x, f y)

}
.

4. T and f are continuous mappings.

5. T and f are compatible.

6. There exists x0 ∈ X such that f x0 � Tx0.

Then T and f have a coincidence point.

Proof. By Lemma 1.1, there exists E ⊂ X such that fE = fX and f : E −→ X is
one-to-one. Now, define a map h : fE −→ fE by h( f x) = Tx. Since f is one-to-one
on E, h is well-defined. Then, fE = fX is complete and (2.30) becomes

ϕ
(
sd
(
h( f x), h( f y)

))
≤ ϕ

(
Mf (x, y)

)
− ψ
(
Mf (x, y)

)

for all x, y ∈ X with f x � f y, where

Mf (x, y) = max
{d( f x, h( f x))d( f y, h( f y))

d( f x, f y)
, d( f x, f y)

}
.
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Let x0 ∈ E such that f x0 � Tx0 = h( f x0). Choose x1 ∈ E such that f x1 = Tx0 =
h( f x0) = hy0. By continuing this process, we obtain a sequence { f xn} in fE such
that f xn+1 = Txn = h( f xn) for n ≥ 0. By using the similar argument as in the proof of
Theorem 2.1, we obtain that { f xn} is a Cauchy sequence in fE. Since fE is complete,
there exists u ∈ fE such that lim

n→∞ f xn = u ∈ fX. Then

lim
n→∞ f xn = lim

n→∞Txn−1 = u.

Since the pair (T, f ) is compatible, we have

(2.31) lim
n→∞ d( f (Txn),T( f xn)) = 0.

Also, we have

(2.32) d(Tu, f u) ≤ sd(Tu,T( f xn)) + s2d(T( f xn), f (Txn)) + s2d( f (Txn), f u).

Taking the limit as n→ ∞ in (2.32) and using the continuity of T, f and (2.31), we
get d(Tu, f u) = 0, that is, Tu = f u. Therefore, u is a coincidence point of T and f .

Corollary 2.2. Let (X, d, s,�) be a partially ordered b-metric space where d is continuous
in each variable and T, f : X −→ X be two mappings such that

1. TX ⊂ fX and fX is a complete subspace of X.

2. T is a monotone f -nondecreasing mapping.

3. There exist ψ ∈ Ψ and an altering distance function ϕ such that

(2.33) ϕ
(
sd(Tx,Ty)

)
≤ ϕ
(
Mf (x, y)

)
− ψ
(
Mf (x, y)

)

for all x, y ∈ X with f x � f y, where

Mf (x, y) = max
{d( f x,Tx)d( f y,Ty)

d( f x, f y)
, d( f x, f y)

}
.

4. If { f xn} is a non-decreasing sequence in X such that lim
n→∞ f xn = f x, then f x = sup f xn.

5. If z is a coincidence point of T and f , then f z � f ( f z).

6. T and f are weakly compatible.

7. There exists x0 ∈ X such that f x0 � Tx0.

Then T and f have common fixed point. Moreover, the set of common fixed points of T and
f is well ordered if and only if T and f have only one common fixed point.
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Proof. By Lemma 1.1, there exists E ⊂ X such that fE = fX and f : E −→ X is
one-to-one. Now, define a map h : fE −→ fE by h( f x) = Tx. Since f is one-to-one
on E, h is well-defined. Then, fE = fX is complete and (2.33) becomes

ϕ
(
sd
(
h( f x), h( f y)

))
≤ ϕ

(
Mf (x, y)

)
− ψ
(
Mf (x, y)

)

for all x, y ∈ X with f x � f y, where

Mf (x, y) = max
{d( f x, h( f x))d( f y, h( f y))

d( f x, f y)
, d( f x, f y)

}
.

Moreover, other assumptions of Theorem 2.2 are fulfilled. Therefore, by using
Theorem 2.2, there exists z ∈ X such that f z = h( f z) = Tz, that is, z is a coincidence
point of T and f .

Now suppose that T and f are weakly compatible. Let w = Tz = f z. Then,
Tw = T( f z) = f (Tz) = fw. Suppose that Tw � w. Then, fw � f z and f z � f ( f z) =
fw, from (2.33), we have

ϕ
(
d(Tw,w)

)
= ϕ

(
d(Tw,Tz)

)
≤ ϕ

(
sd(Tw,Tz)

)

≤ ϕ
(
max

{d( fw,Tw)d( f z,Tz)
d( fw, f z)

, d( fw, f z)
})

−ψ
(
max

{d( fw, fw)d(w,w)
d(Tw,w)

, d(Tw,w)
})

= ϕ
(
max

{
0, d(Tw,w)

})
− ψ
(
max

{
0, d(Tw,w)

})
< ϕ

(
d(Tw,w)

)
.

It is a contradiction. Therefore, Tw = w. Then, Tw = fw = w, that is, w is a common
fixed point of T and f .

Finally, from Theorem 2.3, we conclude that the set of common fixed points of T
and f is well ordered if and only if T and f have only one common fixed point.

Remark 2.2. By using the similar argument as in the proof of Corollary 2.1 and Corol-
lary 2.2, we see that [7, Theorem 2.1] is a consequence of [22, Theorem 2.1] and [7,
Theorem 2.2] is a consequence of [22, Theorem 2.2] and [22, Theorem 2.4].

In what follows, we give some examples to support our results. The following
example is an illustration of the existence of the fixed point in case d is continuous
in each variable.

Example 2.1. Let X = {1, 2, 3, 4}with the usual order ≤. Define a b-metric d on X as follows.

d(1, 1) = d(2, 2) = d(3, 3) = d(4, 4) = 0,
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d(1, 2) = d(2, 1) = d(1, 3) = d(3, 1) = d(2, 3) = d(3, 2) = 1,

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = 4,

d(3, 4) = d(4, 3) = 10.

Then (X, d, s) is a complete b-metric space with s = 2. Let T : X −→ X be defined by

T1 = T2 = T3 = 1,T4 = 2.

Define two functions ϕ(t) = t and ψ(t) = t
2 for all t ∈ [0,∞). We consider the following two

cases.

Case 1. For x, y ∈ {1, 2, 3} and x > y. Then

ϕ
(
2d(Tx,Ty)

)
= 0 ≤ ϕ

(
M(x, y)

)
− ψ
(
M(x, y)

)
.

Case 2. For x = 4 and y ∈ {1, 2, 3}. Then d(Tx,Ty) = d(2, 1) = 1, M(4, 3) = 10 and
M(4, y) = 4 if y ∈ {1, 2}. Thus

ϕ
(
2d(Tx,Ty)

)
= 2 ≤ M(x, y)

2
= ϕ
(
M(x, y)

)
− ψ
(
M(x, y)

)
.

By the above two cases, we conclude that the condition (2.1) of Theorem 2.1 and the con-
dition (2.21) of Theorem 2.2 hold. Moreover, other assumptions of Theorem 2.1 and Theo-
rem 2.2 are fulfilled. Therefore, Theorem 2.1 and Theorem 2.2 are applicable to T, ϕ,ψ and
(X, d, s,≤).

However, it is easy to see that d is not a metric on X. This proves that [22, Theorem 2.1]
and [22, Theorem 2.2] are not applicable to T, ϕ,ψ and (X, d, s,≤).

The following example is an illustration of the existence of the fixed point in
case d is a non-continuous b-metric.

Example 2.2. Let X =
{
0, 1, 1

2 ,
1
3 , . . . ,

1
n , . . .

}
with the usual order ≤. Define a b-metric d on X

as follows.

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x = y
1 if x � y ∈ {0, 1}
|x − y| if x, y ∈

{
0, 1

2n ,
1

2m : n � m ≥ 1
}

4 if otherwise.

Then, (X, d, s) is a complete b-metric space with s = 8
3 but d is a non-continuous b-metric, see

[21, Example 13]. Let T : X −→ X be defined by T0 = 0, T 1
n =

1
8n for all n ≥ 1. Define two

functions ϕ(t) = t and ψ(t) = 2t
3 for all t ∈ [0,∞). Then, for x, y ∈ X, x � y, we consider the

following two cases.

Case 1. For x = 1
n with n ≥ 1 and y = 0, we have d(Tx,Ty) = d

(
1
8n , 0
)
= 1

8n , M(x, y) = 1
n or

M(x, y) ∈ {1, 4}. Thus

ϕ
(8
3

d(Tx,Ty)
)
≤ M(x, y)

3
= ϕ
(
M(x, y)

)
− ψ
(
M(x, y)

)
.

Case 2. For x = 1
n and y = 1

m with m > n ≥ 1, we have

d(Tx,Ty) = d
( 1
8n
,

1
8m

)
=

1
8

( 1
n
− 1

m

)
,
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M(x, y) ≥ 1
n
− 1

m
or M(x, y) = 4.

Hence

ϕ
(8
3

d(Tx,Ty)
)
≤ M(x, y)

3
= ϕ
(
M(x, y)

)
− ψ
(
M(x, y)

)
.

By the above two cases, we conclude that the condition (2.1) of Theorem 2.1 holds. Moreover,
other assumptions of Theorem 2.1 are fulfilled. Therefore, Theorem 2.1 is applicable to T,
ϕ,ψ and (X, d, s,≤).

However, it is easy to see that d is not a metric on X. This proves that [22, Theorem 2.1]
and [22, Theorem 2.2] are not applicable to T, ϕ,ψ and (X, d, s,≤).

Finally, we apply Theorem 2.3 to study the existence and uniqueness of solutions
to the nonlinear integral equation.

Example 2.3. Let C[a, b] be the set of all continuous functions on [a, b], the b-metric d with
s = 2p−1 defined by

d(x, y) = sup
t∈[a,b]
{|x(t) − y(t)|p}

for all x, y ∈ C[a, b] and some p ≥ 1 and the partial order� given by x � y if a � x(t) ≤ y(t) � b
for all t ∈ [a, b]. Consider the nonlinear integral equation

(2.34) x(t) = �(t) +
∫ b

a
K(t, s, x(s))ds

where t ∈ [a, b], � : [a, b] −→ R and K : [a, b] × [a, b] × R −→ R. Suppose that the following
statements hold.

1. � is continuous and K(t, s, x(s)) is integrable with respect to s on [a, b].

2. Tx ∈ C[a, b] for all x ∈ C[a, b], where Tx(t) = �(t) +
∫ b

a
K(t, s, x(s))ds for all t ∈ [a, b].

3. For all s, t ∈ [a, b] and x, y ∈ X with x � y,

0 ≤ K(t, s, x(s)) − K(t, s, y(s)) ≤ ξ(t, s)|x(s) − y(s)|
where ξ : [a, b] × [a, b] −→ [0,∞) is a continuous function satisfying

sup
t∈[a,b]

( ∫ b

a
ξp(t, s)ds

)
<

1
2p−1(b − a)p−1

.

4. There exists x0 ∈ C[a, b] such that x0(t) ≤ �(t) +
∫ b

a
K(t, s, x0(s))ds for all t ∈ [a, b].

Then, the nonlinear integral equation (2.34) has a unique solution x ∈ C[a, b].

Proof. Consider T : C[a, b] −→ C[a, b] defined by Tx(t) = �(t) +
∫ b

a
K(t, s, x(s))ds

for all x ∈ C[a, b] and t ∈ [a, b]. It follows from the conditions (1) and (2) that T is
well-defined. Notice that the existence of a solution to (2.34) is equivalent to the
existence of a fixed point of T. Now, we prove that all assumptions of Theorem 2.3
are satisfied.
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(1). Let x, y ∈ C[a, b] with x � y. From the condition (3), K(t, s, x(s)) ≥ K(t, s, y(s))
for all s, t ∈ [a, b]. It implies that Tx(t) ≥ Ty(t) for all t ∈ [a, b] and hence Tx � Ty.
Then, T is a non-decreasing mapping.

(2). Let 1 ≤ q < ∞ with 1
p +

1
q = 1. For all x, y ∈ C[a, b] with x � y and t ∈ [a, b],

from condition (3), we have

2p−1|Tx(t)− Ty(t)|p ≤ 2p−1
( ∫ b

a
|K(t, s, x(s))− K(t, s, y(s))|ds

)p

≤ 2p−1
[( ∫ b

a
ds
) 1

q
( ∫ b

a
|K(t, s, x(s))− K(t, s, y(s))|pds

) 1
p
]p

≤ 2p−1(b − a)
p
q
( ∫ b

a
ξp(t, s)|x(s)− y(s)|pds

)

≤ 2p−1(b − a)p−1
( ∫ b

a
ξp(t, s)ds

)
M(x, y)

≤ λM(x, y)
= M(x, y)− (1 − λ)M(x, y)

where λ = 2p−1(b − a)p−1
(

sup
t∈[a,b]

∫ b

a
ξp(t, s)ds

)
∈ [0, 1). It implies that

2p−1d(Tx,Ty) ≤M(x, y) − (1 − λ)M(x, y).

Therefore, the condition (2.21) in Theorem 2.2 holds with ψ(t) = (1−λ)t andϕ(t) = t
for all t ≥ 0.

(3). By using the similar argument as in the proof of [23, Thoerem 3.1], we see
that the assumption (3) in Theorem 2.2 also holds.

(4). From the assumption (4), there exists x0 ∈ C[a, b] such that x0 � Tx0.

(5). For each x, y ∈ C[a, b], put z = max{x, y}, we have z ∈ C[a, b] and z is
comparable to x and y

From the above, all assumptions of Theorem 2.3 hold. Therefore, by Theo-
rem 2.3, T has a unique fixed point x ∈ C[a, b] and hence the integral equation (2.34)
has a unique solution x ∈ C[a, b].

The following example guarantees the existence of the function K that satisfies
all assumptions in Example 2.3.

Example 2.4. Let C[0, π2 ] be the set of all continuous functions on [0, π2 ], the b-metric d with
s = 2 defined by

d(x, y) = sup
t∈[0, π2 ]

{|x(t) − y(t)|2}

for all x, y ∈ C[0, π2 ] and the partial order � given by

x � y if 0 ≤ x(t) ≤ y(t) ≤ π
2 for all t ∈ [0, π2 ].
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Consider the nonlinear integral equation

x(t) = −
√

96
π7 t2 + t +

√
96
π7

∫ π
2

0
t2s sin x(s)ds

for all x ∈ C[0, π2 ]. Put Tx(t) = −
√

96
π7 t2 + t +

√
96
π7

∫ π
2

0
t2s sin x(s)ds, �(t) = −

√
96
π7 t2 + t and

K(t, s, x(s)) =
√

96
π7 t2s sin x(s) for all x ∈ C[0, π2 ] and all s, t ∈ [0, π2 ]. Then

(1). � is continuous on [0, π2 ]. Since x ∈ C[0, π2 ], K(t, s, x(s)) is integrable with respect to s
on [0, π2 ] .

(2). For every t ∈ [0, π2 ] and the sequence {tn} ⊂ [0, π2 ] with lim
n→∞ tn = t. Then, for all

x ∈ C[0, π2 ], we have

|Tx(tn) − Tx(t)| ≤ |�(tn) − �(t)| +
√

96
π7

∫ π
2

0
s|t2

n − t2|| sin x(s)|ds

≤ |�(tn) − �(t)| +
√

3
2π3 |t2

n − t2|.

It implies that lim
n→∞Tx(tn) = Tx(t) and hence Tx ∈ C[0, π2 ] for all x ∈ C[0, π2 ].

(3). For all s, t ∈ [0, π2 ] and x, y ∈ C[0, π2 ] with x � y, we have 0 ≤ y(s) ≤ x(s) ≤ π
2 .

Therefore,

0 ≤ K(t, s, x(s)) − K(t, s, y(s)) =

√
96
π7 t2s| sin x(s) − sin y(s)|

≤ ξ(t, s)|x(s) − y(s)|

where ξ : [0, π2 ] × [0, π2 ] −→ [0,∞) defined by ξ(t, s) =
√

96
π7 t2s. It easy to check that ξ is a

continuous function and sup
t∈[0, π2 ]

( ∫ π
2

0
ξ2(t, s)ds

)
=

1
4
<

1
π
.

(4). By choosing x0(t) = t for all t ∈ [0, π2 ], we have Tx0(t) = t for all t ∈ [0, π2 ]. Therefore,
x0(t) ≤ Tx0(t) for all t ∈ [0, π2 ].

From the above, all assumptions to K and � in Example 2.3 are satisfied.
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29. W. Shatanawi, A. Pitea and R. Lazović: Contraction conditions using comparison
functions on b-metric spaces. Fixed Point Theory Appl. 2014:135 (2014), 1–11.

Nguyen T. Hieu
Faculty of Mathematics and Information Technology Teacher Education
Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam
ngtrunghieu@dthu.edu.vn

Nguyen V. Dung
Faculty of Mathematics and Information Technology Teacher Education
Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam

nvdung@dthu.edu.vn


	Introduction and preliminaries
	Main results

