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Abstract. In this paper, we consider a non-linear impulsive Sturm-Liouville problem
on semiinfinite intervals in which the limit-circle case holds at infinity for THE Sturm-
Liouville expression. We prove the existence and uniqueness theorems for this problem.
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Completely continuous operator; Fixed point theorems.

1. Introduction

The theory of differential equations with impulses describes processes that are
subjected to abrupt changes in their states at certain moments. Such processes
arise in many fields of science and technology: chemical technology, biotechnology,
theoretical physics, industrial robotics, etc. For an introduction to the basic the-
ory of differential equations with impulses see Bainov and Simeonov ([3], [4], [5]),
Benchohra, Henderson and Ntouyas ([6]), Lakshmikantham, Bainov and Simeonov
([18]) Samoilenko and Perestyuk ([31]) and the references therein.

Recently, much work has been done on the existence of solutions to impulsive
Sturm-Liouville equations; for regular impulsive Sturm-Liouville problems see [2,
7, 9, 12-15, 25-27, 30, 33], for singular impulsive Sturm-Liouville equations see [1,
10, 18-19, 21-24, 29]. However, there is no paper concerned with the existence of
solutions to singular impulsive non-linear Sturm-Liouville problems that the limit-
circle case holds at infinity. In this paper, we fill the gap by using a special way to
pose boundary conditions at infinity.

Let us consider the following nonlinear Sturm-Liouville equation

(1.1) l (y) := −(p(x)y′)′ + q(x)y = f (x, y) , x ∈ I,
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where I := I1 ∪ I2, I1 := [a, c), I2 := (c,+∞), −∞ < a < c < +∞, and y = y (x)
is a desired solution.

Let L2(I) be a Hilbert space which is composed of all complex-valued functions
y satisfying

∫

∞

a

|y (x)|
2
dx <∞

in relation to the inner product

(y, z) :=

∫

∞

a

y (x) z (x)dx.

Denote by D the linear set of all functions y ∈ L2(I) such that y, py′ are locally
absolutely continuous functions on I, one-sided limits y(c±), (py′)(c±) exist and are
finite and l(y) ∈ L2(I). The operator L defined by Ly = l(y) is called the maximal
operator on L2(I).

For two arbitrary functions y, z ∈ D, we have Green’s formula

(1.2)

∫

∞

a

l (y) zdx−

∫

∞

a

yl (z)dx = [y, z]c− − [y, z]a + [y, z]∞ − [y, z]c+,

where [y, z]x = y(x)(pz′)(x) − (py′)(x)z(x) (x ∈ I) .

We assume that the following conditions are satisfied.

(A1) The points a and c are regular for the differential expression l. p and q

are real-valued, Lebesgue measurable functions on I and 1
p , q ∈ L1

loc(I). The point

c is regular if 1
p , q ∈ L1[c− ǫ, c+ ǫ] for some ǫ > 0. Moreover, the functions p and

q are such that all solutions of the the equation

(1.3) l (y) = 0

belong to L2 (I) , i.e., Weyl limit-circle case holds for the differential expression l

(see [1-3]).

(A2) The function f (x, y) is real-valued and continuous in (x, ζ) ∈ I × R, and

(1.4) |f (x, ζ)| ≤ g (x) + ϑ |ζ|

for all (x, ζ) in I × R, where g (x) ≥ 0, g ∈ L2 (I) , and ϑ is a positive constant.

If we define the operator F taking each function y(.) to the function f(., y(.)),
then the condition (4) is necessary and sufficient for F to map L2 (I) into itself (see
([17], Chapter 1)).

Denote by

u := u (x) =

{

u(1) (x) , x ∈ I1
u(2) (x) , x ∈ I2

, v := v (x) =

{

v(1) (x) , x ∈ I1
v(2) (x) , x ∈ I2

the solutions to the equation (1.3) satisfying the initial conditions

(1.5) u(1) (a) = 0, (pu(1)′) (a) = 1, v(1) (a) = −1, (pv(1)′) (a) = 0,
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and impulsive conditions

(1.6)
U (c+) = CU (c−) , U(x) :=

(

u (x)
(pu′) (x)

)

,

V (c+) = CV (c−) , V (x) :=

(

v (x)
(pv′) (x)

)

,

C ∈M2 (R) , detC = ρ > 0,

where M2 (R) denotes the 2× 2 matrices with entries from R.

Now, we introduce the Hilbert spaceH = L2 (I1)
·

+L2 (I2) with the inner product

〈y, z〉 :=

∫ c

a

y(1)z(1)dx+ γ

∫

∞

c

y(2)z(2)dx, γ =
1

ρ
,

where

y(x) =

{

y(1)(x), x ∈ I1
y(2)(x), x ∈ I2

, z(x) =

{

z(1)(x), x ∈ I1
z(2)(x), x ∈ I2.

We setW
(i)
x :=Wx

(

u(i), v(i)
)

= u(i)(x)(pv(i)′)(x)−(pu(i)′)(x)v(i)(x) (x ∈ Ii, i=1, 2) .

Then the equality W
(1)
x = ρW

(2)
x holds. For convenience, we denote Wx :=W

(1)
x =

ρW
(2)
x . Since the wronskian of any two solutions of Equation (1.3) is constant, we

have Wx (u, v) = 1. Then, u and v are linearly independent and they form a fun-
damental system of solutions of equation (1.3). By the condition A1, we get u,
v ∈ L2 (I) and moreover, u, v ∈ D. So, the values [y, u]∞ and [y, v]∞ exist and are
finite for every y ∈ D. By using Green’s formula (1.2) and the conditions (1.5)-(1.6),
we can get

(1.7)
[y, u]∞ = y (a) +

∫

∞

a u (x) l(y (x))dx,

[y, v]∞ = (py′) (a) +
∫

∞

a
v (x) l(y (x))dx.

Now, we will add to problem (1.1) the boundary conditions

(1.8)
y (a) cosα+ (py′) (a) sinα = d1,

[y, u]∞ cosβ + [y, v]∞ sinβ = d2,

and impulsive conditions

(1.9) Y (c+) = CY (c−) , Y =

(

y

py′

)

, detC = ρ > 0,

where α, β ∈ R, and d1, d2 are arbitrary given real numbers, and

(A3) ω := cosα sinβ − cosβ sinα 6= 0.

Since the function y in (1.8) satisfies Equation (1.1), we have

[y, u]∞ = y (a) +

∫

∞

a

u (x) f (x, y (x)) dx,

[y, v]∞ = (py′) (a) +

∫

∞

a

v (x) f (x, y (x)) dx.
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2. Green’s function

In this section, we construct an appropriate Green’s function. So, we will reduce
the boundary-value problem (1.1), (1.8), (1.9) to a fixed point problem.

Let us consider the linear boundary value problem

(2.1) −(p(x)y′)′ + q(x)y = h (x) , x ∈ I, h ∈ H,

(2.2)

y (a) cosα+ (py′) (a) sinα = 0,
[y, u]∞ cosβ + [y, v]∞ sinβ = 0, α, β ∈ R,

Y (c+) = CY (c−) , Y :=

(

y

py′

)

, detC = ρ > 0,















where y is a desired solution, u and v are solutions to the equation (1.3) under the
conditions (1.5)-(1.6).

Define

(2.3) ϕ (x) = cosαu (x) + sinαv (x) , ψ (x) = cosβu (x) + sinβv (x) ,

where Wx (ϕ, ψ) = ω. It is clear that these functions are solutions to the equation
(1.3) and are in H. Further, we have

[ϕ, u]x = ϕ (a) = − sinα, [ϕ, v]x = (pϕ)
′
(a) = cosα, (x ∈ I1),

[ψ, u]x = ψ (a) = − sinβ, [ψ, v]x = (pψ)
′
(a) = cosβ, (x ∈ I1),

[ψ, u]∞ = −ρ sinβ, [ψ, v]∞ = ρ cosβ,

Φ (c+) = CΦ (c−) , Φ(x) :=

(

ϕ (x)
(pϕ′) (x)

)

,

Ψ(c+) = CΨ(c−) , Ψ(x) :=

(

ψ (x)
(pψ′) (x)

)

.

Let us introduce the function

(2.4) G (x, t) =

{

ϕ(x)ψ(t)
ω , if a ≤ x ≤ t <∞, x 6= c, t 6= c,

ϕ(t)ψ(x)
ω , if a ≤ t ≤ x <∞, x 6= c, t 6= c.

G (x, t) is called the Green’s function of the boundary-value problem (2.1)-(2.2).
Since ϕ, ψ ∈ H, we have

(2.5)

∫

∞

a

∫

∞

a

|G (x, t)|
2
dxdt <∞,

i.e., G (x, t) is a Hilbert-Schmidt kernel.

Theorem 2.1. The function

(2.6) y (x) =

∫ c

a

G (x, t)h (t) dt+ γ

∫

∞

c

G (x, t) h (t) dt, x ∈ I,

is the solution of the boundary-value problem (2.1)-(2.2).
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Proof. By a variation of constants formula, the general solution of the equation
(2.1) has the form

(2.7) y (x) =











































































k1ϕ
(1) (x) + k2ψ

(1) (x)

+ψ(1)(x)
ω

∫ x

a ϕ
(1) (t)h (t) dt

+ϕ(1)(x)
ω

∫ c

x ψ
(1) (t)h (t) dt, x ∈ I1,

k3ϕ
(2) (x) + k4ψ

(2) (x)

+ γ
ωψ

(2) (x)
∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ωϕ

(2) (x)
∫

∞

x
ψ(2) (t)h (t) dt, x ∈ I2,

where k1, k2, k3 and k4 are arbitrary constants.

By (2.7), we get

(py)′ (x) =



















































































k1
(

pϕ(1)
)′

(x) + k2(pψ
(1))′ (x)

+
(pψ(1))′(x)

ω

∫ x

a
ϕ(1) (t)h (t) dt

+
(pϕ(1))′(x)

ω

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

k3
(

pϕ(2)
)′

(x) + k4(pψ
(2))′ (x)

+ γ
ω

(

pψ(2)
)′

(x)
∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ω

(

pϕ(2)
)′

(x)
∫

∞

x ψ(2) (t)h (t) dt, x ∈ I2.

Hence, we have

(2.8)

y (a) = k1ϕ
(1) (a) + k2ψ

(1) (a) + ϕ(1)(a)
ω

∫ c

a ψ
(1) (t)h (t) dt

= −k1 sinα− k2 sinβ − 1
ω sinα

∫ c

a ϕ
(1) (t) h (t) dt,

(py)
′
(a) = k1

(

pϕ(1)
)′

(a) + k2(pψ
(1))′ (a)

+ 1
ω

(

pϕ(1)
)′

(a)
∫ c

a ψ
(1) (t) h (t) dt

= k1 cosα+ k2 cosβ + 1
ω cosα

∫ c

a
ϕ(1) (t)h (t) dt.

Substituting (2.8) into (2.2), we get

k2 (cosα sinβ − sinα cosβ) = 0, k2ω = 0,



444 B.P. Allahverdiev and H. Tuna

i.e., k2 = 0. Further, we have

[y, u]x = y(x)(pu′)(x) − (py′)(x)u(x)

=























































k1[ϕ
(1), u]x +

1
ω [[ψ

(1) (x) , u]x
∫ x

a ϕ
(1) (t)h (t) dt

+ 1
ω [ϕ

(1) (x) , u]x
∫ c

x ψ
(1) (t)h (t) dt, x ∈ I1,

k3[ϕ
(2), u]x + k4[ψ

(2), u]x

+ γ
ω [ψ

(2), u]x
∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ω [ϕ

(2), u]x
∫

∞

x ψ(2) (t)h (t) dt, x ∈ I2.

Thus

[y, u]∞ = −k3ρ sinα− k4ρ sinβ −
γ

ω
ρ sinβ

∫

∞

c

ϕ(2) (t)h (t) dt.

Similarly, we get

[y, v]x = y(x)(pv′)(x) − (py′)(x)v(x)

=







































































k1[ϕ
(1), v]x

+ 1
ω [[ψ

(1) (x) , v]x
∫ x

a ϕ
(1) (t)h (t) dt

+ 1
ω [ϕ

(1) (x) , v]x
∫ c

x ψ
(1) (t)h (t) dt, x ∈ I1,

k3[ϕ
(2), v]x + k4[ψ

(2), v]x

+ γ
ω [ψ

(2), v]x
∫ x

c
ϕ(2) (t)h (t) dt

+ γ
ω [ϕ

(2), v]x
∫

∞

x ψ(2) (t)h (t) dt, x ∈ I2,

and

[y, v]∞ = k3ρ cosα+ k4ρ cosβ

+
γ

ω
ρ cosβ

∫

∞

c

ϕ(2) (t)h (t) dt.

From the conditions (2.2), we obtain

k3 (sinα cosβ − cosα sinβ) = 0.
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Hence, k3 = 0. Similarly, we have

Y (c+) =

(

y (c+)
(py′) (c+)

)

=

(

k4ψ
(2) (c+)

k4(pψ
(2))′ (c+)

)

+





γ
ωϕ

(2) (c+)
∫

∞

c
ψ(2) (t)h (t) dt

γ
ω

(

pϕ(2)
)′

(c+)
∫

∞

c
ψ(2) (t)h (t) dt





= k4

(

ψ(2) (c+)

(pψ(2))′ (c+)

)

+
γ

ω

∫

∞

c

ψ(2) (t)h (t) dt

(

ϕ(2) (c+)
(

pϕ(2)
)′

(c+)

)

= k4Ψ(c+) +

{

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt

}

Φ (c+)

and

Y (c−) =

(

y (c−)
(py′) (c−)

)

=

(

k1ϕ
(1) (c−)

k1
(

pϕ(1)
)′

(c−)

)

+







ψ(1)(c−)
ω

∫ c

a ϕ
(1) (t)h (t) dt

(pψ(1))
′

(c−)

ω

∫ c

a ϕ
(1) (t)h (t) dt







= k1

(

ϕ(1) (c−)
(

pϕ(1)
)′

(c−)

)

+
1

ω

∫ c

a

ϕ(1) (t)h (t) dt

(

ψ(1) (c−)
(

pψ(1)
)′

(c−)

)

= k1Φ (c−) +

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

Ψ(c−) .

By the conditions (2.2), we obtain

k4Ψ(c+) +

{

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt

}

Φ (c+)

= C

{

k1Φ (c−) +

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

Ψ(c−)

}

.
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Using the conditions (2.) and (2.), we get

Φ (c−)

{

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt− k1

}

= Ψ(c−)

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt− k4

}

,

(

ϕ(1) (c−)
(pϕ(1)′) (c−)

){

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt− k1

}

=

(

ψ(1) (c−)
(pψ(1)′) (c−)

){

1

ω

∫ c

a

ϕ(1) (t)h (t) dt− k4

}

.

So, we have the following linear equation system

k4ψ
(1) (c−)− k1ϕ

(1) (c−)

=

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

ψ(1) (c−)

−

{

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt

}

ϕ(1) (c−) ,

k4(pψ
(1)′) (c−)− k1(pϕ

(1)′) (c−)

=

{

1

ω

∫ c

a

ϕ(1) (t)h (t) dt

}

(pψ(1)′) (c−)

−

{

γ

ω

∫

∞

c

ψ(2) (t)h (t) dt

}

(pϕ(1)′) (c−) ,
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i.e.,
(

ψ(1) (c−) ϕ(1) (c−)
(pψ(1)′) (c−) (pϕ(1)′) (c−)

)(

k4
−k1

)

=

(

ψ(1) (c−) ϕ(1) (c−)

(pψ(1)′) (c−) (pϕ(1)′) (c−)

)

×





1
ω

∫ c

a
ϕ(1) (t)h (t) dt

− γ
ω

∫

∞

c
ψ(2) (t)h (t) dt



 .

Hence, we have the following determinant of this linear equation system
∣

∣

∣

∣

ψ(1) (c−) ϕ(1) (c−)

(pψ(1)′) (c−) (pϕ(1)′) (c−)

∣

∣

∣

∣

= −ω.

Since this determinant is different from zero, the solution of this system is unique.
If we solve this system, we have the following equalities

k1 =
γ

ω

∫

∞

c

ψ(2) (t)h (t) dt, k4 =
1

ω

∫ c

a

ϕ(1) (t)h (t) dt.

From what has already been done, we have

y (x) =











































































ϕ(1) (x) γω
∫

∞

c
ψ(2) (t)h (t) dt

+ψ(1)(x)
ω

∫ x

a
ϕ(1) (t)h (t) dt

+ϕ(1)(x)
ω

∫ c

x
ψ(1) (t)h (t) dt, x ∈ I1,

ψ(2) (x) 1
ω

∫ c

a ϕ
(1) (t)h (t) dt

+ γ
ωψ

(2) (x)
∫ x

c ϕ
(2) (t)h (t) dt

+ γ
ωϕ

(2) (x)
∫

∞

x
ψ(2) (t)h (t) dt, x ∈ I2,

i.e., (2.4) and (2.6) hold.

Thus we have a

Theorem 2.2. The unique solution to the equation (2.1) under the conditions
(1.8)-(1.9) is given by the formula

y (x) = w (x) + 〈G (x, .) , h(.)〉,

where

w (x) =
d1

ω
ϕ (x)−

d2

ω
ψ (x) .
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Proof. By the conditions (2.)-(2.), the function w (x) is a unique solution of the
equation (1.3) satisfying the conditions (1.8)-(1.9). By Theorem 1 the function
〈G (x, .) , h(.)〉 a unique solution to the equation (2.1) satisfying the conditions (2.2).
This finishes the proof.

From Theorem 2, the boundary-value problem (1.1), (1.8), (1.9) in H is equiv-
alent to the non-linear integral equation

(2.9) y (x) = w (x) + 〈G (x, .) , f (., y (.))〉, x ∈ I,

where the functions w (x) and G (x, t) are defined above. Hence, we shall study the
equation (2.9).

By (1.4) and (2.5), we can define the operator T : H → H by the formula

(2.10) (Ty) (x) = w (x) + 〈G (x, .) , f (., y (.))〉, x ∈ I,

where y, w ∈ H. Then the equation (2.9) can be written as y = Ty.

Now, we search the fixed points of the operator T because it is equivalent to
solving the equation (2.9).

3. The fixed points of the operator T

In this section, we investigate the fixed points of the operator T by using the
following Banach fixed point theorem:

Definition 3.1. [[16]]Let A be a mapping of a metric space R into itself. Then x
is called a fixed point of A if Ax = x. Suppose there exists a number α < 1 such
that

ρ (Ax,Ay) ≤ αρ (x, y)

for every pair of points x, y ∈ R. Then A is said to be a contraction mapping.

Theorem 3.1. [16] Every contraction mapping A defined on a complete metric
space R has a unique fixed point.

Theorem 3.2. Suppose that the conditions (A1), (A2) and (A3) are satisfied.
Further, let the function f (x, y) satisfy the following Lipschitz condition: there
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exists a constant K > 0 such that

∫ c

a

∣

∣

∣f (1)
(

x, y(1) (x)
)

− f (1)
(

x, z(1) (x)
)∣

∣

∣

2

dx

+ γ

∫

∞

c

∣

∣

∣f
(2)

(

x, y(2) (x)
)

− f (2)
(

x, z(2) (x)
)∣

∣

∣

2

dx

≤ K2

(∫ c

a

∣

∣

∣y
(1) (x) − z(1) (x)

∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣y
(2) (x)− z(2) (x)

∣

∣

∣

2

dx

)

= K2 ‖y − z‖
2

for all y, z ∈ H. If

(3.1) K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)

< 1,

then the boundary-value problem (1.1), (1.8), (1.9) has a unique solution in H.

Proof. It suffices to prove that the operator T is a contraction operator. For y, z ∈
H, we have

|Ty (x)− Tz (x)|
2
= |〈G (x, .) , [f (., y (.))− f (., z (.))]〉|

2

≤ ‖G (x, .)‖
2
‖f (., y (.))− f (., z (.))‖

2

≤ K2 ‖G (x, .)‖2 ‖y − z‖2 , x ∈ I.

Thus, we get

‖Ty − Tz‖ ≤ α ‖y − z‖ ,

where

α = K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)
1
2

< 1,

i.e., T is a contraction mapping.

Now, our next claim is that the function f (x, y) satisfies a Lipschitz condition
on a subset of H but not of the whole space.

Theorem 3.3. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, let the function f (x, y) satisfy the following Lipschitz condition: there
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exist constants M , K > 0 such that

∫ c

a

∣

∣

∣f (1)
(

x, y(1) (x)
)

− f (1)
(

x, z(1) (x)
)∣

∣

∣

2

dx

+ γ

∫

∞

c

∣

∣

∣f (2)
(

x, y(2) (x)
)

− f (2)
(

x, z(2) (x)
)∣

∣

∣

2

dx

≤ K2

(∫ c

a

∣

∣

∣y(1) (x) − z(1) (x)
∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣y(2) (x)− z(2) (x)
∣

∣

∣

2

dx

)

= K2 ‖y − z‖2

for all y and z in SM = {t ∈ H : ‖t‖ ≤M} , where K may depend on M. If

{∫ c

a

∣

∣

∣
w(1) (x)

∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣
w(2) (x)

∣

∣

∣

2

dx

}1/2

+

(∫ c

a

∫ c

a

|G (x, t)|2 dxdt+ γ

∫

∞

c

∫

∞

c

|G (x, t)|2 dxdt

)
1
2

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫

∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M

and

(3.2) K

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)
1
2

< 1,

then the boundary-value problem (1.1), (1.8), (1.9) has a unique solution with

∫ c

a

∣

∣

∣y(1) (x)
∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣y(2) (x)
∣

∣

∣

2

dx ≤M2.

Proof. It is clear that SM is a closed set of H. We first prove that the operator T
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maps SM into itself. For y ∈ SM we have

‖Ty‖ = ‖w (x) + 〈G (x, .) , f (., y (.))〉‖ ≤ ‖w‖ + ‖〈G (x, .) , f (., y (.))〉‖

≤ ‖w‖ +

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)
1
2

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫

∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M.

Consequently, T : SM → SM .

We can now proceed analogously to the proof of Theorem 5. So, we can get

‖Ty − Tz‖ ≤ α ‖y − z‖ , y, z ∈ SM .

If we apply the Banach fixed point theorem, then we obtain a unique solution of
the boundary-value problem (1.1), (1.8), (1.9) in SM .

4. An existence theorem without uniqueness

In this section, we get an existence theorem without uniqueness of solution. There-
fore, we will use the following Schauder fixed point theorem:

Definition 4.1. [[11]]An operator acting in a Banach space is said to be com-
pletely continuous if it is continuous and maps bounded sets into relatively compact
sets.

Theorem 4.1. [11] Let B be a Banach space and S a nonemty bounded, convex,
and closed subset of B. Assume A : B → B is a completely continuous operator. If
the operator A leaves the set S invariant, i.e., if A (S) ⊂ S, then A has at least one
fixed point in S.

A set S ⊂ H is relatively compact iff S is bounded and for every ε > 0 (i) there
exists δ > 0 such that ‖y(x+ h)− y(x)‖ < ε for all y ∈ S and all h ≥ 0 with h < δ,

(ii) there exists a number N > 0 such that
∫

∞

N |y(x)|2dx < ε for all y ∈ S ([11]).

Now, we give

Theorem 4.2. The operator T defined by (2.10) is completely continuous operator
under the conditions (A1), (A2) and (A3).
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Proof. Let y0 ∈ H. Then, we have

|(Ty) (x)− (Ty0) (x)|
2

= |〈G (x, .) , [f (., y (.))− f (., y0 (.))]〉|
2

≤ ‖G (x, .)‖
2















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, y
(1)
0 (t)

)∣

∣

∣

2

dt

+γ
∫

∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, y
(2)
0 (t)

)∣

∣

∣

2

dt















2

.

Thus

‖Ty − Ty0‖
2

≤ K















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, y
(1)
0 (t)

)∣

∣

∣

2

dt

+γ
∫

∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, y
(2)
0 (t)

)∣

∣

∣

2

dt















2

,

where

K =

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt + γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)

.

We know that an operator F defined by Fy (x) = f (x, y (x)) is continuous in H
under the condition (A2) ( see [17]). Hence, for a given ǫ > 0, we can find a δ > 0
such that ‖y − y0‖ < δ implies















∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)(t, y
(1)
0 (t))

∣

∣

∣

2

dt

+γ
∫

∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)(t, y
(2)
0 (t))

∣

∣

∣

2

dt















<
ǫ2

K2
.

From (4.), we get

‖Ty − Ty0‖ < ǫ,

i.e., T is continuous.

Set Y = {y ∈ H : ‖y‖ ≤ m} . By (3.3), we have

‖Ty‖ ≤ ‖w‖+











K
∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)∣

∣

2
dt

+γK
∫

∞

c

∣

∣f (2)
(

t, y(2) (t)
)∣

∣

2
dt











1/2

, for all y ∈ Y.
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Furthermore, using (1.4), we get

∫ c

a

∣

∣

∣f (1)
(

t, y(1) (t)
)∣

∣

∣

2

dt+ γ

∫

∞

c

∣

∣

∣f (2)
(

t, y(2) (t)
)∣

∣

∣

2

dt

≤

∫ c

a

[

g(1) (t) + ϑ
∣

∣

∣y(1) (t)
∣

∣

∣

]2

dt+ γ

∫

∞

c

[

g(2) (t) + ϑ
∣

∣

∣y(2) (t)
∣

∣

∣

]2

dt

≤ 2

∫ c

a

[
(

g(1)
)2

(t) + ϑ2
∣

∣

∣
y(1) (t)

∣

∣

∣

2

]dt

+ 2γ

∫

∞

c

[
(

g(2)
)2

(t) + ϑ2
∣

∣

∣y
(2) (t)

∣

∣

∣

2

]dt

= 2(‖g‖2 + ϑ2 ‖y‖2) ≤ 2(‖g‖2 + ϑ2m2).

Thus, for all y ∈ Y, we obtain

‖Ty‖ ≤ ‖w‖ +
[

2K
(

‖g‖
2
+ ϑ2m

)]1/2

,

i.e., T (Y ) is a bounded set in H.

Moreover, for all y ∈ Y, we have

∫ c

a

∣

∣

∣(Ty(1)) (x+ h)− (Ty(1)) (x)
∣

∣

∣

2

dx

+ γ

∫

∞

c

∣

∣

∣(Ty(2)) (x+ h)− (Ty(2)) (x)
∣

∣

∣

2

dx

= ‖〈[G (x+ h, .)−G (x, .)], f (., y (.))〉‖2

≤





∫ c

a

∫ c

a |G (x+ h, t)−G (x, t)|
2
dxdt

+γ
∫

∞

c

∫

∞

c
|G (x+ h, t)−G (x, t)|2 dxdt





×











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)∣

∣

2
dt

+γ
∫

∞

c

∣

∣f (2)
(

t, y(2) (t)
)∣

∣

2
dt











2

≤ 2
(

‖g‖
2
+ ϑ2m

)





∫ c

a

∫ c

a
|G (x+ h, t)−G (x, t)|2 dxdt

+γ
∫

∞

c

∫

∞

c
|G (x+ h, t)−G (x, t)|

2
dxdt
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From (2.5), there exists a δ > 0 such that
∫ c

a

∣

∣

∣Ty
(1) (x+ h)− Ty(1) (x)

∣

∣

∣

2

dx

+ γ

∫

∞

c

∣

∣

∣Ty(2) (x+ h)− Ty(2) (x)
∣

∣

∣

2

dx < ǫ2,

for given ǫ > 0, all y ∈ Y and all h < δ.

Further, for all y ∈ Y, we have (N > c)
∫

∞

N

∣

∣

∣(Ty(2)) (x)
∣

∣

∣

2

dx

≤

∫

∞

N

∣

∣

∣w(2) (x)
∣

∣

∣

2

dx+ 2
(

‖g‖
2
+ ϑ2m

)

∫

∞

N

‖G (x, .)‖
2
dx.

So, from (2.5), we see that for a given ǫ > 0 there exists a positive number N ,
depending only on ǫ such that

∫

∞

N

∣

∣

∣(Ty(2)) (x)
∣

∣

∣

2

dx < ǫ2,

for all y ∈ Y.

Thus T (Y ) is a relatively compact in H , i.e., the operator T is completely
continuous.

Theorem 4.3. Suppose that the conditions (A1), (A2) and (A3) are satisfied. In
addition, let there exist constants M > 0 such that

{∫ c

a

∣

∣

∣w(1) (x)
∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣w(2) (x)
∣

∣

∣

2

dx

}1/2

+

(∫ c

a

∫ c

a

|G (x, t)|
2
dxdt+ γ

∫

∞

c

∫

∞

c

|G (x, t)|
2
dxdt

)

× sup
y∈SM











∫ c

a

∣

∣f (1)
(

t, y(1) (t)
)

− f (1)
(

t, z(1) (t)
)∣

∣

2
dt

+γ
∫

∞

c

∣

∣f (2)
(

t, y(2) (t)
)

− f (2)
(

t, z(2) (t)
)∣

∣

2
dt











1/2

≤M,

where SM = {y ∈ H : ‖y‖ ≤M} . Then the boundary-value problem (1.1), (1.8),
(1.9) has at least one solution with

∫ c

a

∣

∣

∣
y(1) (x)

∣

∣

∣

2

dx+ γ

∫

∞

c

∣

∣

∣
y(2) (x)

∣

∣

∣

2

dx ≤M2.
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Proof. Let us define an operator T : H → H by (2.10). From theorems 6, 9 and
(4.3), we conclude that T maps the set SM into itself. It is clear that the set SM is
bounded, convex and closed. Using Theorem 8, the theorem follows.
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