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Abstract. In this work, we introduce bivariate Fibonacci quaternion polynomials and
bivariate Lucas quaternion polynomials. We present generating function, Binet formula,
matrix representation, binomial formulas and some basic identities for the bivariate
Fibonacci and Lucas quaternion polynomial sequences. Moreover we give various kinds
of sums for these quaternion polynomials.
Keywords: Bivariate Fibonacci quaternion polynomials, Bivariate Lucas quaternion
polynomials, Generating function, Binet formula.

1. Introduction

In mathematics, Fibonacci and Lucas or other special numbers are investiga-
tion topic of great interest. Classical Fibonacci sequence {Fn}n∈N is defined by a
recurrence identity;

Fn =

 0 if n = 0
1 if n = 1

Fn−1 + Fn−2 if n ≥ 2.

The Lucas sequence {Ln}n∈N is defined by some recurrence identity with dif-
ferent starting values;

Ln =

 2 if n = 0
1 if n = 1

Ln−1 + Ln−2 if n ≥ 2.
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Let p(x) and q(x) be polynomials with real coefficients of the (p, q)−Fibonacci
polynomials are defined by the recurrence relation

Fp,q,n+1 = p(x)Fp,q,n + q(x)Fp,q,n−1

with the initial conditions Fp,q,0 = 0, Fp,q,1 = 1. Also for the p(x) and q(x)
polynomials with real coefficients the (p, q)−Lucas polynomials are defined by the
recurrence relation

Lp,q,n+1 = p(x)Lp,q,n + q(x)Lp,q,n−1

with initial conditions Lp,q,0 = 2, Lp,q,1 = p(x) .

Definition 1.1. [1] For n ≥ 2, bivariate Fibonacci polynomials are defined as
recurrence relation

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y).(1.1)

We can compute the first few bivariate Fibonacci polynomials as follow F0(x, y) =
0, F1(x, y) = 1, F2(x, y) = x, F3(x, y) = x2 + y, F4(x, y) = x3 + 2xy. Charac-
teristic equation of relation (1.1) is

h2 − xh− y = 0(1.2)

and so the roots of (1.2) are α = α(x, y) =
x+
√
x2+4y

2 and β = β(x, y) =
x−
√
x2+4y

2 . Also it has Binet’s formula Fn(x, y) = αn−βn

α−β for n ≥ 0.

Definition 1.2. [1] For n ≥ 2, bivariate Lucas polynomials are defined as recur-
rence relation

Ln(x, y) = xLn−1(x, y) + yLn−2(x, y)

with initial conditionals L0(x, y) = 2 and L1(x, y) = 1.

Likely, let compute the first few terms of Lucas polynomials L0(x, y) = 2,
L1(x, y) = 1, L2(x, y) = x + 2y, L3(x, y) = x2 + 2xy + y, L4(x, y) = x3 + 2x2y +
2xy + 2y2. Also it has Binet’s formula Ln(x, y) = αn + βn for n ≥ 0.

Some authors considered special sequence polynomials for example generalized
Fibonacci and Lucas polynomials in [7] and also bivariate Fibonacci and Lucas like
polynomials in [6].

Normed division algebra, nowadays which is so important topic consists of the
real numbers R, complex numbers C, quaternions H and octonions O. Prime facie,
directly we can not extend sundry results on real and complex numbers to quater-
nions due to quaternions are noncommutative normed division algebra over the real
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numbers, even it looks like things are going to be done with quaternions H [3]. For
a0, a1,a2,a3 ∈ R , a quaternion is defined by

e = a0e0 + a1e1 + a2e2 + a3e3

where e0 = 1, e1,e2, and e3 are unit vectors which verifies the following rules

(e1)
2

= (e2)
2

= (e3)
2

= e1e2e3 = −1.(1.3)

From equation (1.3), we get

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e1e3 = −e3e1 = e2.

Some new quaternion and octonion polynomials are studied in [2, 4, 5, 8, 9].

2. Bivariate Fibonacci and Lucas quaternion polynomials

Now, we define new quaternion polynomials which are called bivariate Fibonacci
quaternion polynomials (QBF ) and bivariate Lucas quaternion polynomials (QBL).

Definition 2.1. Bivariate Fibonacci quaternion polynomials (QBF ) are defined
as the recurrence relation

QBFn(x, y) =

3∑
k=0

Fn+k(x, y)ek

= Fn(x, y)e0 + Fn+1(x, y)e1 + Fn+2(x, y)e2 + Fn+3(x, y)e3(2.1)

where Fn+k(x, y) is the n− th bivariate Fibonacci polynomial with the initial con-
ditions QBF0(x, y) = e1 + xe2 + (x2 + y)e3 and QBF1(x, y) = e0 + xe1 + (x2 +
y)e2 + (x3 + 2xy)e3.

Furthermore,

QBFn+1(x, y) =

3∑
k=0

Fn+1+k(x, y)ek

= x

3∑
k=0

Fn+k(x, y)ek + y

3∑
k=0

Fn+k−1(x, y)ek.

So we get recurrence relation as follow

QBFn+1(x, y) = xQBFn(x, y) + yQBFn−1(x, y).(2.2)
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Similarly, bivariate Lucas quaternion polynomials QBL are defined as the re-
currence relation

QBLn(x, y) =

3∑
k=0

Ln+k(x, y)ek

= Ln(x, y)e0 + Ln+1(x, y)e1 + Ln+2(x, y)e2 + Ln+3(x, y)e3(2.3)

where Ln+k(x, y) is the n − th bivariate Lucas polynomial and with the initial
conditions QBL0(x, y) = 2e0 +e1 +(x+2y)e2 +(x2 +2xy+y)e3 and QBL1(x, y) =
e0 +(x+y)e1 +(x2 +2xy+y)e2 +(x3 +2x2y+2xy+2y2)e3. Moreover, recurrence
relation is

QBLn+1(x, y) = xQBLn(x, y) + yQBLn−1(x, y).(2.4)

Let α(x, y) =
x+
√
x2+4y

2 and β(x, y) =
x−
√
x2+4y

2 denote the roots of the char-

acteristic equation such that
√
x2 + 4y = ∆,

t2 − xt− yt = 0

on the recurrence relation of (2.2) and (2.4).

From now on, for convenience of representation, we adopt the following notation

α(x, y) = α, β(x, y) = β, ∆ =
√
x2 + 4y.

Equations that can be obtained with these roots are as follow

α+ β = x

α− β = ∆

αβ = −y(2.5)

α

β
= −α

2

y

β

α
= −β

2

y
.

We continue with the generating function results.

Theorem 2.1. The generating functions for QBF and QBL polynomials are re-
spectively

∞∑
n=0

QBFn(x, y)tn =
QBF0(x, y) + [QBF1(x, y)− xQBF0(x, y)] t

1− xt− yt2
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and

∞∑
n=0

QBLn(x, y)tn =
QBL0(x, y) + [QBL1(x, y)− xQBL0(x, y)] t

1− xt− yt2
.

Proof. To compute the generating function of QBF polynomials

∞∑
n=0

QBFn(x, y)tn

= QBF0(x, y) +QBF1(x, y)t+QBF2(x, y)t2 + · · ·+QBFn(x, y)tn + · · ·

then using the equations of−xt (
∑∞
n=0QBFn(x, y)tn) and−yt2 (

∑∞
n=0QBFn(x, y)tn)

∞∑
n=0

QBFn(x, y)tn + (−xt)
∞∑
n=0

QBFn(x, y)tn + (−yt2)

∞∑
n=0

QBFn(x, y)tn

= QBF0(x, y) + [QBF1(x, y)− xQBF0(x, y)] t

+ [QBF2(x, y)− xQBF1(x, y)− yQBF0(x, y)] t2

+ · · ·+ [QBFn(x, y)− xQBFn−1(x, y)− yQBFn−2(x, y)] tn + · · ·

Consequently,

∞∑
n=0

QBFn(x, y)tn(1− xt− yt2) = QBF0(x, y) + (QBF1(x, y)− xQBF0(x, y))t

is valid. Similar proof can be done for QBL polynomials.

Now we can give the following theorems.

Lemma 2.1. If we rearrange the Theorem 2.1, we have the generating functions
as follows

∞∑
n=0

QBFn(x, y)tn =

QBF1(x,y)−βQBF0(x,y)
1−αt − QBF1(x,y)−α(x,y)QBF0(x,y)

1−βt

α− β

and

∞∑
n=0

QBLn(x, y)tn =

QBL1(x,y)−βQBL0(x,y)
1−αt − QBL1(x,y)−α(x,y)QBL0(x,y)

1−βt

α− β
.
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Proof. If we use Theorem 2.1 and recurrence relation (2.2), then we have

∞∑
n=0

QBFn(x, y)tn

=

(
QBF0(x, y) + (QBF1(x, y)− (α+ β)QBF0(x, y))t

(1− αt)(1− βt)

)
×
(
α− β
α− β

)

=

{
QBF1(x, y)(1− βt) + βQBF0(x, y)(−1 + βt)

+QBF1(x, y)(−1 + αt) + αQBF0(x, y)(1− αt)

}
(1− αt)(1− βt)(α− β)

=

QBF1(x,y)−βQBF0(x,y)
1−αt − QBF1(x,y)−α(x,y)QBF0(x,y)

1−βt

α− β
.

Hence the proof is completed. The other QBL polynomials can be proved simi-
larly.

Lemma 2.2. For k ≥ 0, let bivariate Fibonacci and Lucas polynomials are Fn(x, y)
and Ln(x, y). We have

(i) Fk+1(x, y)− αFk(x, y) = βk

(ii) Fk+1(x, y)− βFk(x, y) = αk

(iii)
αLk(x, y)− Lk+1(x, y)

α− β
= βk

(iv)
Lk+1(x, y)− βLk(x, y)

α− β
= αk.

Proof. (i) We can prove it by induction method. Let k = 1, then F2(x, y) −
αF1(x, y) = β.

Now let us assume that the equation is Fn(x, y) − αFn−1(x, y) = βn−1, for
k = n− 1. For k = n it becomes,

βn = βn−1β

= ((Fn(x, y)− αFn−1(x, y))β

= βFn(x, y)− αβFn−1(x, y)

= (α+ β − α)Fn(x, y)− αFn(x, y)− αβFn(x, y)

= xFn(x, y) + yFn(x, y)− αFn(x, y)

= Fn−1(x, y)− αFn(x, y).

so this completes the proof. (ii), (iii) and (iv) can be done similarly.
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Now we want to derive the Binet formulas for QBF and QBL polynomials. To
get this we can give the following theorem.

Theorem 2.2. The Binet formulas of QBF and QBL polynomials are given as

QBFn(x, y) =
α∗αn − β∗βn

α− β
QBLn(x, y) = α∗αn + β∗βn

for n ≥ 0, where α∗ =
3∑
k=0

αkek and β∗ =
3∑
k=0

βkek.

Proof. Recall that generating function is

∞∑
n=0

QBFn(x, y)tn =
QBF0(x, y) + (QBF1(x, y)− xQBF0(x, y))t

1− xt− yt2
.

So using the Lemma 2.1 and Lemma 2.2, we have

∞∑
n=0

QBFn(x, y)tn

=

∞∑
k=0

(Fk+1 − βFk+1)ek

∞∑
n=0

αntn −
∞∑
k=0

(Fk+1 − αFk+1)ek

∞∑
n=0

βntn.

So we get,

∞∑
n=0

(
α∗αn − β∗βn

α− β

)
tn

this is valid. Binet formula for the other QBL polynomial can be done similarly.

We derive generating functions for the (mk + s) − th order of QBF and QBL
polynomials.

Theorem 2.3. For all n ∈ N and m, s ∈ Z, we have

∞∑
k=0

QBFmk+s(x, y)xk =
QBFs(x, y)− (−y)mQBFs−m(x, y)x

(−y)m − Lm(x, y) + 1

and

∞∑
k=0

QBLmk+s(x, y)xk =
QBLs(x, y)− (−y)mQBLs−m(x, y)x

(−y)m − Lm(x, y) + 1
.
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Proof. Using Binet formula and equation (2.5), we have

∞∑
k=0

QBFmk+s(x, y)xk

=

∞∑
k=0

α∗αmk+s − β∗βmk+s

α− β
xk

=
α∗αs

α− β

∞∑
k=0

αmkxk − β∗βs

α− β

∞∑
k=0

βmkxk

=
α∗αs

α− β

(
1

1− αmx

)
− β∗βs

α− β

(
1

1− βmx

)

=

α∗αs−β∗βs

α−β − (αβ)m
(
α∗αs−m−β∗βs−m

α−β

)
x

1− (αm + βm)x+ (αβ)mx2

this is valid. The other result can be done similarly.

We formulate the sum of the first n terms of these sequences of QBF and QBL
polynomials.

Theorem 2.4. The sum of the first n−terms of the quaternion sequences QBFn(x, y)
and QBLn(x, y) is given by

n∑
k=0

QBFk(x, y) =

{ −yQBFn(x, y)−QBFn+1(x, y)

+QBF0(x, y)− α∗β−β∗α
α−β

}
(α− 1)(β − 1)

and

n∑
k=0

QBLk(x, y) =

{
−yQBLn(x, y)−QBLn+1(x, y)

+QBL0(x, y) + α∗β + β∗α

}
(α− 1)(β − 1)

.

Proof. Using Binet formula and equation (2.5), we get

n∑
k=0

QBFk(x, y)

=

n∑
k=0

α∗αk − β∗βk

α− β

=
1

α− β

{
α∗

n∑
k=0

αk − β∗
n∑
k=0

βk

}
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=
1

α− β

{
α∗(

αn+1 − 1

α− 1
)− β∗(β

n+1 − 1

β − 1
)

}
=

1

(α− 1)(β − 1)

{
αβ(α∗αn−β∗βn)

α−β − α∗αn+1−β∗βn+1

α−β
+α∗−β∗

α−β −
α∗β−αβ∗

α−β

}
.

The other case can be done similarly.

We derive summation formulas for the (mk + s) − th order of QBF and QBL
polynomials.

Theorem 2.5. For all n ∈ N and m, s ∈ Z,we have

n∑
k=0

QBFmk+s(x, y) =

{
(−y)m(QBFmn+s(x, y)−QBFs−m(x, y))
−QBFmn+m+s(x, y) +QBFs(x, y)

}
(−y)m − Fm(x, y) + 1

and

n∑
k=0

QBLmk+s(x, y) =

{
(−y)m(QBLmn+s(x, y)−QBLs−m(x, y))
−QBLmn+m+s(x, y) +QBLs(x, y)

}
(−y)m − Lm(x, y) + 1

.

Proof. Using Binet formula, equation (2.5), we have

n∑
k=0

QBFmk+s(x, y)

=

n∑
k=0

α∗αmk+s − β∗βmk+s

α− β

=
α∗αs

α− β

(
αmn+m − 1

αm − 1

)
− α∗αs

α− β

(
αmn+m − 1

αm − 1

)

=

{
α∗(αmn+sαmβm − αmn+m+s − αsβm + αs)
−β∗(βmn+sαmβm − βmn+m+s − αmβs + βs)

}
(α− β)(αmβm − αm − βm + 1)

=
(αβ)m(α∗αmn+s − β∗αmn+s)− (α∗αmn+m+s − β∗βmn+m+s)

(α− β)(αmβm − αm − βm + 1)

+
−(αβ)m(α∗αs−m − β∗αs−m)− (α∗αmn+m+s − β∗βmn+m+s)

(α− β)(αmβm − αm − βm + 1)
.

Other case can be done similarly.
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Now, some new results for binomial summation of these sequences are derived
by using their Binet forms.

Theorem 2.6. Let n be a non-negative integer. Then we have the following bino-
mial sum formulas for odd and even terms,

(i)
n∑
k=0

(
n

k

)
yn−kxkQBFk(x, y) = QBF2n(x, y)

(ii)
n∑
k=0

(
n

k

)
yn−kxkQBFk(x, y) = QBF2n+1(x, y)

(iii)
n∑
k=0

(
n

k

)
yn−kxkQBLk(x, y) = QBL2n(x, y)

(iv)
n∑
k=0

(
n

k

)
yn−kxkQBLk(x, y) = QBL2n+1(x, y).

Proof. (i) Let P =
∑n
k=0

(
n
k

)
yn−kxkQBFk(x, y). From Binet formula, we change

the right-hand side of P into:

P =

n∑
k=0

(
n

k

)
yn−kxk

(
α∗αk − β∗βk

α− β

)
.

Elementary calculations implies that

P =
α∗(y + xα)n − β∗(y + xβ)n

α− β
.

From equation (2.5), we get

α∗α2n − β∗β2n

α− β
= QBF2n(x, y).

The other cases (ii),(iii) and (iv) can be done similarly.

Now we can also formulate the Catalan’s identity, Cassini’s identity and d’Ocagne’s
identity by using Binet formulas.

Theorem 2.7. (Catalan’s Identity) For n and k non-negative integer such that
k ≤ n, we have

QBFn+k(x, y)QBFn−k(x, y)−QBF 2
n(x, y)

= (−y)n−kFn−k(x, y)

(
α∗β∗βk − β∗α∗αk

(α− β)

)
and

QBLn+k(x, y)QBLn−k(x, y)−QBL2
n(x, y)

= (−y)n−kFn−k(x, y)
√
M(α∗β∗βk − β∗α∗αk).
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Proof. Using Binet formula, we obtain

QBFn+k(x, y)QBFn−k(x, y)−QBF 2
n(x, y)

=

(
α∗αn+k − β∗βn+k

α− β

)(
α∗αn−k − β∗βn−k

α− β

)
−
(
α∗αn − β∗βn

α− β

)
=

(αβ)n

(α− β)2

(
α∗β∗

(
αk − βk

α− β

)
+ β∗α∗

(
βk − αk

α− β

))
= (αβ)n−k

(
αk − βk

α− β

)(
α∗β∗βk − β∗α∗αk

α− β

)
.

Theorem 2.8. For any natural number n, Cassini’s identities for QBF and QBL
polynomials are

QBFn+1(x, y)QBFn−1(x, y)−QBF 2
n(x, y) = (−y)n−1

(
α∗β∗β − β∗α∗α

α− β

)
and

QBLn+1(x, y)QBLn−1(x, y)−QBL2
n(x, y) = (−y)n−1

√
M(α∗β∗β − β∗α∗α).

Proof. Let k = 1 in Catalan’s identity so the proof is completed for both of QBF
and QBL polynomials.

Theorem 2.9. (d’Ocagne’s Identity) Let QBFn and QBLn be n-th QBF and

QBL polynomials. The d’Ocagne’s identities are

QBFk(x, y)QBFn+1(x, y)−QBFk+1(x, y)QBFn(x, y)

=
(−1)nyn

α− β
(α∗β∗αk−n − β∗α∗βk−n)

and

QBLk(x, y)QBLn+1(x, y)−QBLk+1(x, y)QBLn(x, y)

= (α− β)(β∗α∗βkαn − α∗β∗αkβn).

Proof. From Binet formula to left -hand side, we get

QBFk(x, y)QBFn+1(x, y)−QBFk+1(x, y)QBFn(x, y)

=

(
α∗αk − β∗βk

α− β

)(
α∗αn+1 − β∗βn+1

α− β

)
−
(
α∗αk+1 − β∗βk+1

α− β

)(
α∗αn − β∗βn

α− β

)
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=
1

(α− β)2

{
(α∗)2αn+k+1 − β∗α∗βkαn+1 − α∗β∗αkβn+1 + (β∗)2βn+k+1

−(α∗)2αn+k+1 + β∗α∗βk+1αn + α∗β∗αk+1βn − (β∗)2βn+k+1

}
=

β∗α∗βkαn(β − α) + α∗β∗αkβn(α− β)

(α− β)2

=
(αβ)n

(α− β)
(α∗β∗αk−n − β∗α∗βk−n).

The other case can be done similarly.

The corresponding identities for QBF and QBL polynomials are contained in
the next theorem.

Theorem 2.10. For n ≥ 0, the following statements hold:

yQBF 2
n(x, y) +QBF 2

n+1(x, y) =
(α∗)2α2n+1 − (β∗)2β2n+1

α− β

and

yQBL2
n(x, y) +QBL2

n+1(x, y) = (α− β)((α∗)2α2n+1 − (β∗)2β2n+1).

Proof. Using Binet formula and equation (2.5), we obtain

yQBF 2
n(x, y) +QBF 2

n+1(x, y)

= y

(
α∗αn − β∗βn

α− β

)2

+

(
α∗αn+1 − β∗βn+1

α− β

)2

=
1

(α− β)2

{
y(α∗)2α2n − yβ∗α∗ − yα∗β∗(αβ)n + y(β∗)2β2n + (α∗)2α2n+2

−β∗α∗(αβ)n+1 − α∗β∗(αβ)n+1 + (β∗)2β2n+2

}
=

1

(α− β)2
{
y(α∗)2α2n + (α∗)2α2n+2 + y(β∗)2β2n + (β∗)2β2n+2

}
=

(α∗)2α2n+1 − (β∗)2β2n+1

(α− β)
.

Other case can be done similarly.

Matrix method can use to get results for not only different identities but also
algebraic representations in the study of recurrence relations.

In[10], the Pell quaternion matrix is defined by

R(n) =

(
Rn Rn−1
Rn−1 Rn−2

)
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and also was obtain equality as follow(
Rn Rn−1
Rn−1 Rn−2

)
=

(
R2 R1

R1 R0

)(
2 1
0 1

)n−2

where n ≥ 2 is an integer.

Now, we define the matrix forQBFn(x, y) andQBLn(x, y). The matrixQBFn(x, y)(n)
and QBLn(x, y)(n) that play role of R(n). These are

QBFn(x, y)(n) =

(
QBFn+1(x, y) yQBFn(x, y)
QBFn(x, y) yQBFn(x, y)

)

and

QBLn(x, y)(n) =

(
QBLn+1(x, y) yQBLn(x, y)
QBLn(x, y) yQBLn(x, y)

)
for n ≥ 1.

Theorem 2.11. For an integer n ≥ 1, we have

QBFn(x, y)(n) =

(
QBF2(x, y) yQBF1(x, y)
QBF1(x, y) yQBF0(x, y)

)(
x y
1 0

)n−1
and

QBLn(x, y)(n) =

(
QBL2(x, y) yQBL1(x, y)
QBL1(x, y) yQBL0(x, y)

)(
x y
1 0

)n−1
.

Proof. Induction method can be used to prove it. Let n = 1, then basis step is
clear. Now let us assume that the equation is valid for n = k − 1. For n = k, it
becomes (

QBF2(x, y) yQBF1(x, y)
QBF1(x, y) yQBF0(x, y)

)(
x y
1 0

)k−1
=

(
QBF2(x, y) yQBF1(x, y)
QBF1(x, y) yQBF0(x, y)

)(
x y
1 0

)k−2(
x y
1 0

)
=

(
QBFk(x, y) yQBFk−1(x, y)
QBFk−1(x, y) yQBFk−2(x, y)

)(
x y
1 0

)
=

(
QBFk+1(x, y) yQBFk(x, y)
QBFk(x, y) yQBFk−1(x, y)

)
.

which completes the proof. The other case can be done similarly.
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3. Conclusion

This work studied bivariate Fibonacci and Lucas quaternion polynomials. Since bi-
variate Fibonacci and Lucas quaternion polynomials were not intensive studied until
now, we expect to find in the future more and surprising new properties. For this
purpose, Fibonacci and Lucas quaternion polynomials was used and investigated in
detail particularly in the first part. Also in the other part, Binet formulas, generat-
ing functions, matrix representation and some identities of bivariate Fibonacci and
Lucas quaternion polynomials were computed. Quaternions have great importance
as they are used in quantum physics, applied mathematics, graph theory and differ-
ential equations. Thus, in our future studies we plan to examine bivariate Fibonacci
and Lucas octonion polynomials and their key features.
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