QUASI-CONFORMAL CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS

Braj B. Chaturvedi and Brijesh K. Gupta

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Abstract

The present paper deals with the study of generalized Sasakian-space-forms with the conditions $C^{q}(\xi, X) \cdot S=0, C^{q}(\xi, X) \cdot R=0$ and $C^{q}(\xi, X) \cdot C^{q}=0$, where R, S and C^{q} denote Riemannian curvature tensor, Ricci tensor and quasi-conformal curvature tensor of the space-form, respectively. In the end of the paper, we have given some examples to support our results. Keywords: Quasi-conformal curvature tensor; generalized Sasakian-space-forms; Einstein manifold; Pseudosymmetric manifold.

1. Introduction

An almost contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is said to be a generalized Sasakian-space-form if the curvature tensor of the manifold has the following form

$$
\begin{align*}
R(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{(g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z)\} \\
& +f_{3}((\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi)) \tag{1.1}
\end{align*}
$$

for any vector fields X, Y, Z on $M^{2 n+1}$. By taking $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$, where c denotes constant ϕ-sectional curvature tensor, we get different kind of generalized Sasakian-space-forms. This idea was introduced by P. Alegre, D. Blair and A. Carriazo [13] in 2004. P. Alegre and Carriazo [15], A. Sarkar, S. K. Hui, etc. [19, 21, 22] studied generalized Sasakian-space-forms by considering the cosymplectic space of Kenmotsu space form as particular types of generalized Sasakian-spaceforms. In 2006, U. Kim [22] studied conformally flat generalized Sasakian-spaceform and locally symmetric generalized Sasakian-space-form. He proved some geometric properties of generalized Sasakian-space-forms which depends on the nature

[^0]of the functions f_{1}, f_{2} and f_{3}. Also, he proved that if a generalized Sasakian-spaceform $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is locally symmetric then $\left(f_{1}-f_{3}\right)$ is constant. In [21] De and Sarkar studied the projective curvature tensor of generalized Sasakian-spaceforms and proved that generalized Sasakian-space-forms is projectively flat if and only if $f_{3}=\frac{3 f_{2}}{1-2 n}$. D.G. Prakasha and H. G. Nagaraja [8] studied quasiconformally semi-symmetric generalized Sasakian-space-forms. They proved that a generalized Sasakian-space-forms is quasiconformally semi-symmetric if and only if either space form is quasiconformally flat or $f_{1}=f_{2}$. Recently, Hui and Prakasha [17] have studied C-Bochner curvature tensor of generalized Sasakian-space-forms. S. K. Hui and D. G. Prakasha [17] studied the C-Bochner pseudosymmetric generalized Sasakian-space-forms. The generalized Sasakian-space-forms have also been studied in ([9], [18], [10], [11], [23]) and many others. Throughout their study, C-Bochner curvature tensor B satisfied the conditions $B(\xi, X) \cdot S=0, B(\xi, X) \cdot R=0$ and $B(\xi, X) \cdot B=0$, where R and S denoted the Riemannian curvature tensor and Ricci curvature tensor of the space form respectively. After investigations of the above mentioned developments, we plan to study the quasi-conformal curvature tensor of generalized Sasakian-space-forms.

2. Preliminaries

A Riemannian manifold $\left(M^{2 n+1}, g\right)$ of dimension $(2 n+1)$ is said to be an almost contact metric manifold [7] if there exists a tensior field ϕ of type (1, 1), a vector field ξ (called the structure vector field) and a 1 -form η on M such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\eta(\xi)=1 \tag{2.3}
\end{equation*}
$$

for any vector fields X, Y on M. In an almost contact metric manifold, we have $\phi \xi=0$ and $\eta \circ \phi=0$. Then such type of manifold is called a contact metric manifold if $d \eta=\Phi$, where $\Phi(X, Y)=g(X, \phi Y)$ is called the fundamental 2-form of $M^{(2 n+1)}$. A contact metric manifold is said to be K-contact manifold if and only if the covarient derivative of ξ satisfies

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X \tag{2.4}
\end{equation*}
$$

for any vector field X on M .
The almost contact metric structure of M is said to be normal if

$$
\begin{equation*}
[\phi, \phi](X, Y)=-2 d \eta(X, Y) \phi \tag{2.5}
\end{equation*}
$$

for any vector fields X and Y , where $[\phi, \phi]$ denotes the Nijenhuis torsion of ϕ.
A normal contact metric manifold is called Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{2.6}
\end{equation*}
$$

for any vector fields X , Y .
The generalized Sasakian-space-forms $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies the following relations [13]

$$
\begin{align*}
R(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) X-\eta(X) Y\} \tag{2.7}\\
R(\xi, X) Y & =\left(f_{1}-f_{3}\right)\{g(X, Y) \xi-\eta(Y) X\} \tag{2.8}
\end{align*}
$$

$(2.9) S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \eta(Y)$.
Replacing Y by ξ in the equation (2.9), we get

$$
\begin{equation*}
S(X, \xi)=2 n\left(f_{1}-f_{3}\right) \eta(X) \tag{2.10}
\end{equation*}
$$

Replacing X and Y by ξ in the equation (2.9), we get

$$
\begin{equation*}
S(\xi, \xi)=2 n\left(f_{1}-f_{3}\right), \tag{2.11}
\end{equation*}
$$

from the equation (2.9), we have

$$
\begin{equation*}
r=2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} . \tag{2.12}
\end{equation*}
$$

Again from (2.9), we have

$$
\begin{equation*}
Q X=\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi \tag{2.13}
\end{equation*}
$$

Replacing X by ξ in the above equation, we get

$$
\begin{equation*}
Q \xi=2 n\left(f_{1}-f_{3}\right) \xi . \tag{2.14}
\end{equation*}
$$

In a Riemannian manifold of dimension $(2 n+1)$ the quasi-conformal curvature tensor is defined by [12]

$$
\begin{align*}
C^{q}(X, Y) Z & =a R(X, Y) Z+b(S(Y, Z) X-S(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y) \\
& -\frac{r}{2 n+1}\left[\frac{a}{2 n}+2 b\right]\{g(Y, Z) X-g(X, Z) Y\} \tag{2.15}
\end{align*}
$$

where a and b are constants such that $a, b \neq 0, \mathrm{Q}$ is the Ricci operator, i.e., $g(Q X, Y)=S(X, Y)$, for all X and Y and r is scalar curvature of the manifold. Using the equations (2.7)-(2.15), we have

$$
\begin{align*}
& C^{q}(X, Y) \xi=\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right]\{\eta(X) Y-\eta(Y) X\} \tag{2.16}\\
& C^{q}(\xi, Y) Z=\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right]\{\eta(Z) Y-g(Y, Z) \xi\}, \tag{2.17}
\end{align*}
$$

and

$$
\begin{align*}
\eta\left(C^{q}(X, Y) Z\right) & =\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](g(Z, X) \eta(Y) \\
& -g(Y, Z) \eta(X)) \tag{2.18}
\end{align*}
$$

This is required quasi-conformal curvature tensor in generalized Sasakian-spaceforms.

3. Quasi-conformal Pseudosymmetric generalized Sasakian-Space-Forms

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection of (M, g). A Riemannian manifold is called locally symmetric if $\nabla R=0$, where R is the Riemannian curvature tensor of (M, g). The locally symmetric manifolds have been studied by different differential geometry through various aproaches and they extended semisymmetric manifolds by $[2,3,4,5,6,24]$, recurrent manifolds by Walker [1], conformally recurrent manifold by Adati and Miyazawa [20].
According to Z. I. $S z a b^{\prime} o$ [24], if the manifold M satisfies the condition

$$
\begin{equation*}
(R(X, Y) \cdot R)(U, V) W=0, \quad X, Y, U, V, W \in \chi(M) \tag{3.1}
\end{equation*}
$$

for all vector fields X and Y , then the manifold is called semi-symmetric manifold. For a ($0, \mathrm{k}$)- tensor field T on $\mathrm{M}, k \geq 1$ and a symmetric (0,2)-tensor field A on M the $(0, \mathrm{k}+2)$-tensor fields R.T and $\mathrm{Q}(\mathrm{A}, \mathrm{T})$ are defined by

$$
\begin{align*}
(R . T)\left(X_{1}, \ldots . X_{k} ; X, Y\right) & =-T\left(R(X, Y) X_{1}, X_{2}, \ldots \ldots X_{k}\right) \\
& -\ldots . .-T\left(X_{1}, \ldots \ldots . X_{k-1}, R(X, Y) X_{k}\right) \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
Q(A, T)\left(X_{1}, \ldots . X_{k} ; X, Y\right) & =-T\left(\left(X \wedge_{A} Y\right) X_{1}, X_{2}, \ldots \ldots X_{k}\right) \\
& -\ldots . . T\left(X_{1}, \ldots . . X_{k-1},\left(X \wedge_{A} Y\right) X_{k}\right) \tag{3.3}
\end{align*}
$$

where $X \wedge_{A} Y$ is the endomorphism given by

$$
\begin{equation*}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y \tag{3.4}
\end{equation*}
$$

According to R. Deszcz [16], a Riemannian manifold is said to be pseudosymmetric if

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R) \tag{3.5}
\end{equation*}
$$

holds on $U_{r}=\left\{x \in M \left\lvert\, R-\frac{r}{n(n-1)} G \neq 0\right.\right.$ at $\left.x\right\}$, where G is (0,4)-tensor defined by $G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge X_{2}\right) X_{3}, X_{4}\right)$ and L_{R} is some smooth function on U_{R}. A Riemannian manifold M is said to be quasi-conformal pseudosymmetric if

$$
\begin{equation*}
R . C^{q}=L_{C^{q}} Q\left(g, C^{q}\right), \tag{3.6}
\end{equation*}
$$

holds on the set $U_{C^{q}}=\left\{x \in M: C^{q} \neq 0\right.$ at $\left.x\right\}$, where $L_{C^{q}}$ is some function on $U_{C^{q}}$ and C^{q} is the quasi-conformal curvature tensor.
Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be quasi-conformal pseudosymmetric generalized Sasakian-space-form then from the equation(3.6), we have

$$
\begin{equation*}
\left(R(X, \xi) \cdot C^{q}\right)(U, V) W=L_{C^{q}}\left[\left(\left(X \wedge_{g} \xi\right) \cdot C^{q}\right)(U, V) W\right] . \tag{3.7}
\end{equation*}
$$

Using the equations (3.2) and (3.3) in the equation (3.7), we get

$$
\begin{align*}
R(X, \xi) C^{q}(U, V) W & -C^{q}(R(X, \xi) U, V) W-C^{q}(U, R(X, \xi) V) W \\
& -C^{q}(U, V) R(X, \xi) W \\
& =L_{C^{q}}\left(\left(X \wedge_{g} \xi\right) C^{q}(U, V) W\right. \\
& -C^{q}\left(\left(X \wedge_{g} \xi\right) U, V\right) W \\
& \left.-C^{q}\left(U,\left(X \wedge_{g} \xi\right) V\right) W-C^{q}(U, V)\left(X \wedge_{g} \xi\right) W\right) . \tag{3.8}
\end{align*}
$$

Again, using the equations (2.7) and (3.4) in (3.8), we conclude the following

$$
\begin{align*}
\left(f_{1}-f_{3}\right)\left(g\left(\xi, C^{q}(U, V) W\right) X\right. & -g\left(X, C^{q}(U, V) W\right) \xi \\
& -\eta(U) C^{q}(X, V) W \\
& +g(X, U) C^{q}(\xi, V) W-\eta(V) C^{q}(U, X) W \\
& +g(X, V) C^{q}(U, \xi) W-\eta(W) C^{q}(U, V) X \\
& \left.+g(X, W) C^{q}(U, V) \xi\right) \\
& =L_{C^{q}}\left(g\left(\xi, C^{q}(U, V) W\right) X-g\left(X, C^{q}(U, V) W\right) \xi\right. \\
& -\eta(U) C^{q}(X, V) W \\
& +g(X, U) C^{q}(\xi, V) W-\eta(V) C^{q}(U, X) W \\
& +g(X, V) C^{q}(U, \xi) W-\eta(W) C^{q}(U, V) X \\
& \left.+g(X, W) C^{q}(U, V) \xi\right) . \tag{3.9}
\end{align*}
$$

The above expression can be written as

$$
\begin{aligned}
\left(f_{1}-f_{3}-L_{C^{q}}\right)\left(g\left(\xi, C^{q}(U, V) W\right) X\right. & -g\left(X, C^{q}(U, V) W\right) \xi \\
& -\eta(U) C^{q}(X, V) W+g(X, U) C^{q}(\xi, V) W \\
& -\eta(V) C^{q}(U, X) W+g(X, V) C^{q}(U, \xi) W \\
(3.10) & \left.-\eta(W) C^{q}(U, V) X+g(X, W) C^{q}(U, V) \xi\right)=0
\end{aligned}
$$

which implies either $L_{C^{q}}=f_{1}-f_{3}$ or

$$
\begin{align*}
\left(g\left(\xi, C^{q}(U, V) W\right) X\right. & -g\left(X, C^{q}(U, V) W\right) \xi-\eta(U) C^{q}(X, V) W \\
& +g(X, U) C^{q}(\xi, V) W-\eta(V) C^{q}(U, X) W \\
& +g(X, V) C^{q}(U, \xi) W-\eta(W) C^{q}(U, V) X \\
& \left.+g(X, W) C^{q}(U, V) \xi\right)=0 . \tag{3.11}
\end{align*}
$$

Putting $W=\xi$ in the equation (3.11) and using the equations (2.17) and (2.18), we have

$$
\begin{align*}
C^{q}(U, V) X & =\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](g(X, U) V \\
& -g(X, V) U) \tag{3.12}
\end{align*}
$$

contracting V in the above equation, we have

$$
\begin{equation*}
\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right] 2 n g(U, X)=0, \tag{3.13}
\end{equation*}
$$

this implies that

$$
\begin{equation*}
\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}=0 \tag{3.14}
\end{equation*}
$$

from the above equation two conditions arise, either

$$
\begin{equation*}
a=-(2 n-1) b \tag{3.15}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{3}=\frac{3 f_{2}}{(1-2 n)} \tag{3.16}
\end{equation*}
$$

Using the equations (3.15) or (3.16) in (2.16) and (2.17), we get

$$
\begin{equation*}
C^{q}(\xi, Y) Z=0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{q}(X, Y) \xi=0 \tag{3.18}
\end{equation*}
$$

this means $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is quasi-conformally flat.
Thus, we conclude:
Theorem 3.1. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a (2n+1)-dimensional generalized Sasakian-space-form. If $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is quasi-conformal pseudosymmetric then $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is quasiconformally flat if at least one of the following conditions holds:

$$
(i) f_{3}=\frac{3 f_{2}}{(1-2 n)} \quad \text { (ii) } a=-(2 n-1) b, \quad(i i i) L_{C^{q}}=f_{1}-f_{3}
$$

Now we propose:
Theorem 3.2. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a ($\left.2 n+1\right)$-dimensional generalized Sasakian-space-form. Then $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies $C^{q}(\xi, X) . S=0$ if and only if at least one of the following conditions holds:
(i) $f_{3}=\frac{3 f_{2}}{(1-2 n)}$,
(ii) $a=-(2 n-1) b$,
(iii) $S(X, U)=2 n\left(f_{1}-f_{3}\right) g(X, U)$.

Proof. If generalized Sasakian-space-form satisfies $C^{q}(\xi, X) . S=0$.
Then from the equation (3.2), we have

$$
\begin{equation*}
S\left(C^{q}(\xi, X) U, \xi\right)+S\left(U, C^{q}(\xi, X) \xi\right)=0 \tag{3.19}
\end{equation*}
$$

From the equation (2.10), we have

$$
\begin{equation*}
S\left(C^{q}(\xi, X) U, \xi\right)=2 n\left(f_{1}-f_{3}\right) \eta\left(C^{q}(\xi, X) U\right) \tag{3.20}
\end{equation*}
$$

Now with the help of equations (2.17) and (3.20), we can write

$$
\begin{align*}
S\left(C^{q}(\xi, X) U, \xi\right) & =2 n\left(f_{1}-f_{3}\right)\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](\eta(X) \eta(U) \\
(3.21) & -g(X, U)) . \tag{3.21}
\end{align*}
$$

Again in view of the equation (2.17), we have

$$
\begin{align*}
S\left(C^{q}(\xi, X) \xi, U\right) & =\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](S(X, U) \\
& \left.-2 n\left(f_{1}-f_{3}\right) \eta(X) \eta(U)\right) . \tag{3.22}
\end{align*}
$$

By using the expressions (3.21) and (3.22) in (3.19), we infer

$$
\begin{gather*}
{\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](S(X, U)} \\
\left.-2 n\left(f_{1}-f_{3}\right) g(X, U)\right)=0, \tag{3.23}
\end{gather*}
$$

which implies that if $C^{q}(\xi, X) . S=0$ then either $a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$ or $S(X, U)=2 n\left(f_{1}-f_{3}\right) g(X, U)$.
Conversely, it is clear that if $a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$ or $S(X, U)=2 n\left(f_{1}-\right.$ $\left.f_{3}\right) g(X, U)$ then from (2.17), we have

$$
\begin{equation*}
C^{q}(\xi, X) \cdot S=0 . \tag{3.24}
\end{equation*}
$$

Now we take $C^{q}(\xi, U) \cdot R=0$.
Then from the equation (3.2), we have

$$
\begin{gather*}
C^{q}(\xi, U) R(X, Y) Z-R\left(C^{q}(\xi, U) X, Y\right) Z \\
-R\left(X, C^{q}(\xi, U) Y\right) Z-R(X, Y) C^{q}(\xi, U) Z=0, \tag{3.25}
\end{gather*}
$$

which in view of the equation (2.17), we have

$$
\begin{gather*}
{\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](\eta(R(X, Y) Z) U} \\
-g(U, R(X, Y) Z) \xi-\eta(X) R(U, Y) Z \\
+g(U, X) R(\xi, Y) Z-\eta(Y) R(X, U) Z+g(U, Y) R(X, \xi) Z \\
-\eta(Z) R(X, Y) U+g(U, Z) R(X, Y) \xi)=0, \tag{3.26}
\end{gather*}
$$

using $Z=\xi$ and (2.2) in the above equation, we infer

$$
\begin{gather*}
{\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right]} \\
\left(\left(f_{1}-f_{3}\right)(g(U, Y) X-g(U, X) Y)-R(X, Y) U\right)=0 \tag{3.27}
\end{gather*}
$$

which implies that if $C^{q}(\xi, X) \cdot R=0$ then either $\quad a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$ or $R(X, Y) U=\left(f_{1}-f_{3}\right)(g(U, Y) X-g(U, X) Y)$.
Thus, we conclude:
Theorem 3.3. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a (2n+1)-dimensional generalized Sasakian-space-form. If $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfying $C^{q}(\xi, U) \cdot R=0$ then at least one of the following necessarily holds:

$$
\begin{gathered}
\text { (i) } f_{3}=\frac{3 f_{2}}{(1-2 n)},(i i) \quad a=-(2 n-1) b, \\
\text { (iii) } R(X, Y) U=\left(f_{1}-f_{3}\right)(g(U, X) Y-g(U, Y) X) .
\end{gathered}
$$

Now we propose:
Theorem 3.4. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be a ($2 n+1$)-dimensional generalized Sasakian-space-form. Then $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies $C^{q}(\xi, X) \cdot C^{q}=0$ if and only if either $f_{3}=\frac{3 f_{2}}{(1-2 n)}$ or $a=-(2 n-1) b$.

Proof. If generalized Sasakian-space-form satisfies $C^{q}(\xi, X) . C^{q}=0$. Then, from the equation (3.2) we have

$$
\begin{gather*}
C^{q}(\xi, X) C^{q}(U, V) W-C^{q}\left(C^{q}(\xi, X) U, V\right) W \\
-C^{q}\left(U, C^{q}(\xi, X) V\right) W-C^{q}(U, V) C^{q}(\xi, X) W=0, \tag{3.28}
\end{gather*}
$$

by which in view of the equation (2.16) we get

$$
\begin{gather*}
{\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right]\left(\eta\left(C^{q}(U, V) W\right) X\right.} \\
-g\left(X, C^{q}(U, V) W\right) \xi-\eta(U) C^{q}(X, V) W \\
+g(X, U) C^{q}(V, \xi) W-\eta(V) C^{q}(U, X) W+g(X, V) C^{q}(U, \xi) W \\
\left.+g(W, X) C^{q}(U, V) \xi-\eta(W) C^{q}(U, V) X\right)=0 \tag{3.29}
\end{gather*}
$$

By using $V=\xi$ in the above equation, we infer

$$
\begin{align*}
& {\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right]\left(\left(C^{q}(U, X) W\right.\right.} \\
& +\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right](g(X, W) U) \\
& -g(U, W) X))=0 \tag{3.30}
\end{align*}
$$

which implies that either $a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$ or

$$
\begin{equation*}
C^{q}(U, X) W=\left(\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right)(g(U, W) X-g(X, W) U) \tag{3.31}
\end{equation*}
$$

contracting U in the above equation, we have

$$
\begin{equation*}
\left[\frac{(a+(2 n-1) b)\left((2 n-1) f_{3}+3 f_{2}\right)}{2 n+1}\right] 2 n g(X, V)=0 \tag{3.32}
\end{equation*}
$$

this implies that either $\quad a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$. Conversely, if $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies $a=-(2 n-1) b$ or $f_{3}=\frac{3 f_{2}}{(1-2 n)}$, then in view of (2.17)
we have $C^{q}(\xi, X) \cdot C^{q}=0$.

4. Examples

Example 4.1. [13] Let $N\left(\lambda_{1}, \lambda_{2}\right)$ be generalized Sasakian-space-forms of dimension 4, then by the warped product $M \times N$ endowed with the almost contact metric structure $\left(\phi, \xi, \eta, g_{f}\right)$, Sasakian space form $M\left(f_{1}, f_{2}, f_{3}\right)$ is generalized with

$$
\begin{equation*}
f_{1}=\frac{\lambda_{1}-\left(f^{\prime}\right)^{2}}{f^{2}}, \quad f_{2}=\frac{\lambda_{2}}{f^{2}}, \quad f_{3}=\frac{\lambda_{1}-\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{f^{\prime \prime}}{f} \tag{4.1}
\end{equation*}
$$

where λ_{1} and λ_{2} are constants, $f=f(t), t \in R$ and f^{\prime} denotes the derivative of f with respect to t.
If we take $\lambda_{1}=-\frac{3 \lambda_{2}}{7}$ and $f(t)=e^{K t}, \mathrm{~K}$ is constant,
then $f_{1}=-\frac{1}{e^{2 K t}}\left[\frac{3 \lambda_{2}}{7}+K^{2} e^{2 K t}\right], f_{2}=\frac{\lambda_{2}}{e^{2 K t}}$ and $f_{3}=-\frac{1}{e^{2 K t}}\left[\frac{3 \lambda_{2}}{7}\right]$. Hence $f_{3}=\frac{3 f_{2}}{(1-2 n)}$, if $n=4$.

Example 4.2. [14] Let $N(c)$ be a complex space form, and by the warped product $M=$ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times_{f} N$ endowed with the almost contact metric structure $\left(\phi, \xi, \eta, g_{f}\right)$, Sasakian space form $M\left(f_{1}, f_{2}, f_{3}\right)$ is generalized with functions

$$
\begin{equation*}
f_{1}=\frac{c-4\left(f^{\prime}\right)^{2}}{4 f^{2}}, \quad f_{2}=\frac{c}{4 f^{2}}, \quad f_{3}=\frac{c-4\left(f^{\prime}\right)^{2}}{4 f^{2}}+\frac{f^{\prime \prime}}{f} \tag{4.2}
\end{equation*}
$$

where $f=f(t), t \in R$ and f^{\prime} denotes the derivative of f with respect to t . If we take $c=0$ and $f(t)=e^{K t}, \mathrm{~K}$ is constant,
then $f_{1}=-K^{2}, f_{2}=f_{3}=0$. Hence $f_{3}=\frac{3 f_{2}}{(1-2 n)}$.
Acknowledgement. The last named author gratefully acknowledges CSIR, New Delhi, India for finacial support to Junior Research Fellowship (JRF).

REFERENCES

1. A. G. Walker, On Ruse's, spaces of recurrent curvature, Proc. London Math. Soc., 52(1950), 36-64.
2. B. B. Chaturvedi and B. K. Gupta, Study on seni-symmetric metric space, Novi Sad J. Math. 44(2) (2014), 183-194.
3. B. B. Chaturvedi and B. K. Gupta, On Bochner Ricci semi-symmetric Hermitian manifold, Acta. Math. Univ. Comenianae, 87(1) (2018), 25-34.
4. B. B. Chaturvedi and B. K. Gupta, Study of a semi-symmetric space with a non-recurrent Torsion tensor, Journal of International Academy of Physical Sciences, 20(3) (2016), 155-163.
5. B. B. Chaturvedi and B. K. Gupta, Study of conharmonic recurrent symmetric Kaehler manifold with semi-symmetric metric connection, Journal of International Academy of Physical Sciences, 18(1)(2014), 11-18.
6. B. K. Gupta, B. B. Chaturvedi and M. A. Lone, On Ricci semi-symmetric mixed super quasi-Einstein Hermitian manifold, Differential Geometry-Dynamical Systems, 20 (2018), 72-82.
7. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer, Berlin, 509(1976), 148.
8. D. G. Prakasha and H. G. Nagaraja, On quasiconformally flat and quasiconformally semi-symmetric generalized Sasakian-space-forms, Cubo A Mathematical Journal, 15 (2013), 59-70.
9. D. G. Prakasha, On generalized Sasakian-space-forms with Weyl-conformal curvature tensor, Lobachevskii Journal of Mathematics, 33 (3) (2012), 223-228.
10. D. G. Prakasha and V. Chavan, E-Bochner curvature tensor on generalized Sasakian space forms, Comptes Rendus Mathematique, 354 (8) (2016), 835-841.
11. D. G. Prakasha and V. Chavan, On weak symmetries of generalized Sasakian-space-forms, Communications in Mathematics and Applications, 5 (3) (2014), 8389.
12. K. Yano. and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differ. Geom., 2(1968), 161-184.
13. P. Alegre, D. E. Blair and A. Carriazo, generalized Sasakian-space-forms, Isr J. Math., 14 (2004), 157-183.
14. P. Alegre and A. Carriazo, generalized Sasakian-space-forms and conformal change of metric, Results. Math., 59 (2011), 485-493.
15. P. Alegre, and A. Carriazo, Submanifolds of generalized Sasakian-space-forms, Taiwan J. Math., 13 (2009), 923-941.
16. R. Deszcz, On pseudosymmetric space, Bull. Soc. Math. Belg. Se'r. A, 44(1), 1992, 1-34.
17. S. K. Hui and D. G. Prakasha, On the C-Bochner Curvature tensor of generalized Sasakian-space-forms, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 85(3), (2015), 401-405.
18. S. K. Hui, D. G. Prakasha and V. Chavan, On generalized ϕ-recurrent generalized Sasakian-space-forms, Thai Journal of Mathematics, 15 (2) (2017), 323-332.
19. S. K. Hui and A. Sarkar, On the W_{2}-curvature tensor of generalized Sasakian-space-form, Mathematica Pannonica, 23(1)(2012), 113-124.
20. T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor N. S., 18(1967), 348-354.
21. U. C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian-space-forms, Quaestiones Mathematicae, 33 (2010), 245-252.
22. U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat., 26(2006), 55-67.
23. U. C. De and A. Sarkar, Some results on generalized Sasakian-space-forms, Thai Journal of Mathematics, 8 (1) (2010), 1-10.
24. Z. I. Szab o, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, J. Diff. Geom., 17(1982), 531-582.

Braj B.Chaturvedi
Department of Pure and Applied Mathematics
Guru Ghasidas Vishwavidyalaya
Bilaspur (Chhattisgarh)
Pin-495009, India
brajbhushan25@gmail.com

Brijesh K. Gupta
Department of Pure and Applied Mathematics Guru Ghasidas Vishwavidyalaya
Bilaspur (Chhattisgarh)
Pin-495009, India
brijeshggv75@gmail.com

[^0]: Received October 9, 2018; accepted August 22, 2019
 2010 Mathematics Subject Classification. Primary 53C25; Secondary 53D15

