
FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 29 No 3 (2014), 209–232

APPLICATION OF BLOCK CAYLEY-HAMILTON THEOREM
TO GENERALIZED INVERSION

Aleksandar S. Rand̄elović, Predrag S. Stanimirović

Abstract. In this paper we propose two algorithms for computation of the outer inverse
with prescribed range and null space and the Drazin inverse of block matrix. The
proposed algorithms are based on the extension of the Leverrier-Faddeev algorithm and
the block Cayley-Hamilton theorem. These algorithms are implemented using symbolic
and functional possibilities of the packages Mathematica and using numerical possibilities
of Matlab.

Keywords: Generalized inverse; Leverrier-Faddeev algorithm; block Cayley-Hamilton
theorem; Block matrix.

1. Introduction

Let C be the set of complex numbers and Cm×n be the set of m × n complex
matrices. The m × n matrices with elements in C are denoted by Cm×n. By Ir×r we
denote the identity matrix of the order r, and by Om×n is denoted an m × n zero
matrix. Also, ⊗ denotes the Kronecker product of matrices. Similarly, C(x) denotes
rational functions with complex coefficients in the indeterminate x. The set of m×n
matrices with elements in C(x) is denoted by C(x)m×n. The trace of a given square
matrix is denoted by Tr(A).

For any matrix A ∈ Cm×n the Moore-Penrose inverse A† of A is the unique matrix
X satisfying the following Penrose equations [21]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

For any matrix A ∈ Cn×n the Drazin inverse of A, denoted by AD, is the unique
matrix X satisfying the following three equations [6]:

(1k) AkXA = Ak, (2) XAX = X, (5) AX = XA.

Received July 08, 2014.; Accepted September 05, 2014.
2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F05

209

210 A.S. Randjelović, P.S. Stanimirović

The generalized inverse X := A(2)
T,S of a matrix A is the matrix satisfying XAX = X

and possesses the prescribed range R(X) = T and null space N(X) = S. The {2}-
inverses have applications in finding the solution of systems of nonlinear equations
with singular Jacobians [2] as well as in Statistics [10]. In particular, outer inverses
play an important role in stable approximations of ill-posed problems and in linear
and nonlinear problems involving rank-deficient generalized inverses [32].

Generally speaking, it is well known that the Moore-Penrose inverse A†, the
weighted Moore-Penrose inverse A†M,N, the Drazin inverse AD, the group inverse

A�, as well as the Bott-Duffin inverse A(−1)
(L) and the generalized Bott-Duffin inverse

A(†)
(L) (see e.g. [3]) can be presented by a unified approach, as generalized inverses

A(2)
T,S for appropriate choice of matrices T and S. For example, the next formulas

(see [2]) are valid for a rectangular matrix A:

(1.1) A† = A(2)
R(A∗),N(A∗), A†M,N = A(2)

R(A�),N(A�)
,

where M,N are Hermitian positive definite matrices of appropriate orders and
A� = N−1A∗M. The next identities (see [28]) are also satisfied for a given square
matrix A:

(1.2) AD = A(2)
R(Ak),N(Ak)

, A# = A(2)
R(A),N(A),

where k = ind(A) stands for the index of A.
In addition, if A is the L-positive semi–definite matrix and L is a subspace of

Cn which satisfies AL ⊕ L⊥ = Cn, S = R(PLA), then the next identities are satisfied
[28, 29]:

(1.3) A(−1)
(L) = A(2)

L,L⊥ , A(†)
(L) = A(2)

S,S⊥ .

The Leverrier-Faddeev algorithm (also called Souriau-Frame algorithm) with
its numerous applications, modifications and generalizations has been often used
to calculate various classes of generalized inverses. An application of the Cayley-
Hamiiton theorem to matrix polynomials in several variables was presented in
[22]. Extension of the classical Cayley-Hamilton theorem to continuous-time linear
systems with delays was introduced in [17] and the extension to nonlinear time-
varying systems with square and rectangular system matrices was proposed in [18].
Algorithms for computing the inverse of a constant nonsingular matrix A ∈ Cm×n

by means of the Leverrier-Faddeev algorithm were presented in [1, 7]. A more
general finite algorithm for computing the Moore-Penrose generalized inverses of
a given rectangular or singular constant matrix A ∈ Cm×n is originated in [5]. Finite
algorithm for computing the weighted Moore-Penrose inverse was developed in
[27]. Later, a finite algorithm for computing the Drazin inverse was introduced
in [8] by Grevile. Hartwig in [9] continued investigation of this algorithm. An
alternative finite algorithm for computation of the Drazin inverse was introduced
in [11]. Finite algorithms for the nontrivial A(2)

T,S inverse were established in [4].

Application of Block Cayley-Hamilton Theorem... 211

After the application of the Leverrier-Faddeev algorithm to complex matrices,
two different streams of generalizations of finite algorithms can be observed. One
stream is applicable to rational and polynomial matrices and the second stream is
applicable to block matrices.

We firstly restate main extensions to rational matrices. Karampetakis in [19]
introduced a representation of the Moore-Penrose inverse A(x)† of a rational matrix.

Lemma 1.1. [19] (Karampetakis 1997) Let A = A(x) ∈ R(x)m×n be an arbitrary rational
matrix and

f (x) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an, a0 = 1

be the characteristic polynomial of H = AAT. Let k be a maximal index such that ak � 0.
If k > 0 then the Moore-Penrose inverse of A(x) is given by

A† =−a−1
k AT

[
Hk−1 + a1Hk−2 + · · · + ak−1In

]
.

Otherwise, if k = 0, A† = On×m.

The following Lemma 1.2 gives the representation of the Drazin inverse and
it is valid for both rational and polynomial square matrices [11, 20, 23]. This
representation is derived as a natural extension of the corresponding representation
from [8], applicable to constant square matrices.

Lemma 1.2. Consider a nonregular one-variable n×n rational matrix A = A(x). Assume
that

f (x)=a0λ
n + a1λ

n−1 + · · · an−1λ + an, a0 ≡ 1, ai ∈ R(x)

is the characteristic polynomial of A(x). Also, consider the following sequence of n × n
polynomial matrices

Bi = a0Ai + a1Ai−1 + · · · ai−1A + aiIn, i = 0, . . . , n.

Let

an ≡ 0, . . . , at+1 ≡ 0, at � 0,
Bn ≡ Bn−1 ≡ · · · ≡ Br ≡ On×n, Br−1 � On×n

and let k = r − t. Then the Drazin inverse of A(x) is given by

(1.4) AD = (−1)k+1a−k−1
t AkBk+1

t−1 .

Lemma 1.3. [31] (Yu, Wang 2009) Let R be an integral domain, T rightR-submodule of
Rn and S right R-submodule of Rm. Let A ∈ Rm×n, G ∈ Rn×m with R(G) = T,N(G) = S,
and

f (x) = a0λ
m + a1λ

m−1 + · · · + am−1λ + am, a0 = 1

212 A.S. Randjelović, P.S. Stanimirović

be the characteristic polynomial of AG. Suppose ρ(G) = s and k is the largest integer such
that ak � 0. Then the generalized inverse A(2)

R(G),N(G) of A exists if and only if k = s and ak

is a unit in R.

In the case k > 0,

A(2)
T,S = −a−1

k G
[
(AG)k−1 + a1(AG)k−2 + · · · + ak−1

]
.

If k = 0 is the largest integer such that ak � 0, then A(2)
T,S = On×m.

Let us mention that the representation of the Moore-Penrose inverse presented
in Lemma 1.1 could be derived from the particular choice G = AT in Lemma 1.3.

On the other hand, the Cayley-Hamilton theorem is extended to rectangular
matrices [13, 14]. An extension of Cayley-Hamilton theorem to square block ma-
trices is defined in [25]. Also, Kaczorek in [12, 15, 16] defined extensions of the
Cayley-Hamilton theorem to block matrices.

Vitoria in [25] used the block Cayley-Hamilton theorem to compute the usual
inverse of a block matrix. Wang in [26] also introduced representations of various
generalized inverses (the Drazin and group inverse, the weighted Moore-Penrose
inverse and the usual inverse), using the block Cayley-Hamilton theorem.

Our idea in the present paper is to unify both approaches. In the present paper
we give the block Cayley-Hamilton theorem to compute the outer inverse A(2)

T,S with
prescribed range and null space of a given block matrix A = A(x) whose elements
are fromC(x)n×n). Also, conditions for the application of the block Cayley-Hamilton
theorem are not considered in [26]. These conditions are defined in this paper.

Our main result in this paper is application of the block Cayley–Hamilton
theorem in finding the outer inverse with prescribed range and null space as
well as in finding the Drazin inverse of block matrices. Conditions required for
the application of the block Cayley-Hamilton theorem in the generalized matrix
inversion are investigated. In cases when may be applied, our algorithms run much
faster than the usual Leverrier-Faddeev algorithms for computing the Moore–
Penrose and the Drazin inverse.

The paper is organized as follows. In the second section we investigate nec-
essary conditions for the application of the Cayley-Hamilton theorem for block
matrices in computation of various outer inverses. A necessary and sufficient con-
dition for the existence of the generalized inverse A(x)(2)

T,S and a finite algorithm for
its computation are presented in the third section. An extension of the Grevile’s
modification of the Leverrier-Faddeev algorithm, introduced in [8], to the set of
block matrices is presented in the fourth section. In the fifth section we compare
computational complexities of introduced and standard algorithms. Finally, in
the sixth section we compare times of evaluation of these algorithms on some test
matrices from [33]. A comparison on some numerical examples is also presented.

Application of Block Cayley-Hamilton Theorem... 213

In the seventh section we describe implementation details of the introduced al-
gorithms in the symbolic package Mathematica and in the programming language
Matlab.

2. Conditions for application of the block Cayley–Hamilton theorem

As it is well known, an application of the block Cayley-Hamilton theorem to a
block matrix A requires that the blocks contained in A are pairwisely commuting. In
this section we investigate necessary conditions for application of the block Cayley-
Hamilton theorem on some matrix products required in computation of the Moore–
Penrose inverse, the Drazin inverse and outer inverses. Denote by Mm,n(C(x)u×u)
the set containing block m×n matrices with u×u blocks. In the case m = n we simply
denote Mm,n(C(x)u×u) by Mn(C(x)u×u). Any matrix A ∈ Mm,n(C(x)u×u) possesses the
block-partitioned form

(2.1) A = [Aij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 . . . A1n
...

. . .
...

Am1 . . . Amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ C(x)m u×n u,

where each block Aij = Aij(x) ∈ C(x)u×u is a rational matrix of the order u × u.

From the finite algorithm for computing A(2)
T,S inverses presented in [31], we

conclude that a generalization of these results to the block Cayley-Hamilton theo-
rem requires usage of blocks included in the matrix product AG or GA. Therefore,
blocks of these matrices must be pairwisely commuting.

Lemma 2.1. Let A = [Aij] ∈Mm,n(C(x)u×u) and G = [Gij] ∈Mn,m(C(x)u×u) be two block
matrices, both with pairwisely commuting blocks. Assume that the blocks Aij,Gij ∈ C(x)u×u

are pairwisely commuting between themselves. Then both AG and GA is the block matrix
with pairwisely commuting blocks.

Proof. According to assumptions, the following equalities are satisfied between the
blocks of A and G:

AijAkl = AklAij, i, l = 1, . . . ,m; j, k = 1, . . . , n(2.2)
GijGkl = GklGij, i, k = 1, . . . , n; j, l = 1, . . . ,m
AijGkl = GklAij, i, l = 1, . . . ,m; j, k = 1, . . . , n.

Since arbitrary block Γi j of the matrix AG is defined by Γi j =
∑n

p=1 AipGpj, it is clear
that

Γi jΓkl =
∑n

p=1
∑n

q=1 AipGpjAkqGql =
∑n

p=1
∑n

q=1 AkqGqlAipGpj = ΓklΓi j.

It means that the matrix AG contains pairwisely commuting blocks. The dual
statement, related with the block matrix GA can be verified in a similar way.

214 A.S. Randjelović, P.S. Stanimirović

Decell in [5] applied the Cayley-Hamilton theorem on the matrix AA∗ and derive
corresponding representation of the Moore-Penrose inverse of arbitrary complex
matrix A,. In order to apply the block Cayley–Hamilton theorem to compute the
Moore-Penrose inverse of a block matrix, the blocks in AA∗ must be pairwisely
commutative. First we give a supporting statement which ensures this condition.

Corollary 2.1. Let A = [Aij] ∈ Mm,n(C(x)u×u) be given block matrix with pairwisely
commuting blocks. Assume that the blocks Aij ∈ C(x)u×u, i = 1, . . . ,m, j = 1, . . . , n and
A∗kl ∈ C(x)u×u, k = 1, . . . , n, j = 1, . . . ,m are pairwisely commuting between themselves.
Then both AA∗ and A∗A is the block matrix with pairwisely commuting blocks.

Proof. According to assumptions, the following equalities are satisfied between the
blocks of A and A∗:

AijAkl = AklAij, i, k = 1, . . . ,m; j, l = 1, . . . , n(2.3)
AijA∗kl = A∗klAij, i, l = 1, . . . ,m; j, k = 1, . . . , n.

Since the blocks of A are pairwisely commuting, it is not difficult to verify that the
block of the matrix A∗ are also pairwisely commuting. Then the proof follows from
Lemma 2.1.

In Lemma 2.3 we find a class of matrices which satisfy conditions required in
Corrolary 2.1. More precisely, we show that the normal and pairwisely commuting
blocks in A enable an application of the block Cayley–Hamilton theorem on the
matrix AA∗. For this purpose we exploit the results of auxiliary Lemma 2.2.

Lemma 2.2. LetW be the set of normal and pairwisely commuting matrices. Then for
A,B ∈W we have that AB∗ = B∗A.

Proof. We know that a matrix is normal if and only if it is unitarily similar to a
diagonal matrix, i.e. if it is diagonalisable by a unitary matrix. In other words,
there exists a unitary matrix U such that U∗AU is diagonal for every A from the
setW. Let A and B are two arbitrary matrices from the setW. Then we have that
A = UD1U∗ and B∗ = UD∗2U

∗, where D1 and D2 are diagonal matrices. Now, using

AB∗ = UD1U∗UD∗2U
∗ = UD1D∗2U∗ = UD∗2D1U∗ = UD∗2U

∗UD1U∗ = B∗A

we complete the proof.

Lemma 2.3. Let A has the form (2.1), where the blocks Aij ∈ C(x)u×u are normal and
pairwisely commuting. Then AA∗ is the block matrix with pairwisely commuting blocks.

Proof. Let B = AA∗. We have that arbitrary blocks Bij and Bkl from B are equal to

Bij =

n∑
p=1

AipA∗pj, Bkl =

n∑
q=1

AkqA∗ql.

Application of Block Cayley-Hamilton Theorem... 215

According to Lemma 2.2 we have

BijBkl =
∑n

p=1
∑n

q=1 AipA∗pjAkqA∗ql =
∑n

p=1
∑n

q=1 AkqA∗qlAipA∗pj = BklBij,

so the matrix B = AA∗ possesses commutative blocks.

Remark 2.1. In Corollary 2.1 we suppose the set of conditions (2.3) which is much stronger
condition compared to the conditions arising from the assumptions of Lemma 2.3.

3. Outer inverses of block matrix

In this section, we present a finite algorithm for computing the generalized
inverse A(2)

T,S of a block matrix A. Also, we deduce a necessary and sufficient
condition for its existence arising from the finite algorithm.

Definition 3.1. Let A has the form (2.1). The matrix Ai∗=
[
Ai1 · · · Ain

]
∈M1,n(C(x)u×u),

where Ai1, . . . ,Ain are blocks of A, is called the ith block row of the block matrix A.

Similarly the matrix A∗ j=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A1 j
...

Amj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈Mm,1(C(x)u×u), where A1 j, . . . ,Amj are blocks of A,

is called the jth block column of the block matrix A.

Definition 3.2. Block rank of the block matrix A in the form (2.1), denoted by
Brank(A), is a maximal number of linearly independent block rows (block columns)
in A, where all rows (columns) in linearly independent block rows (block columns)
must be linearly independent in A.

We said that the block matrix A satisfies the block rank condition if independent
block rows (block columns) consist of linearly independent rows (columns) of A.
If A satisfies the block rank condition we may note that ρ(A) = u · Brank(A) and so
ρ(A) ∈ {u · i | i = 0, . . . ,min{m, n}}.

Theorem 3.1. Let A = [Aij] ∈ Mm,n(C(x)u×u) and G = [Gij] ∈ Mn,m(C(x)u×u) be block
matrices satisfying (2.2) and the block rank condition. Further, let

f (S) = det[Im×m ⊗ S − AG] = Sm +Q1Sm−1 + · · · +Qm−1S +Qm

be the characteristic polynomial of AG, where S ∈ C(x)u×u is the matrix (block) eigenvalue
of AG and Qi ∈ Cu×u, i = 1, . . . ,m. Suppose ρ(G) = s and K is the largest integer such
that QK � Ou×u, 1 ≤ K ≤ min{m, n}. Then the generalized inverse A(2)

R(G),N(G) of A exists
if and only if u · K = u · Brank(G) = s.

216 A.S. Randjelović, P.S. Stanimirović

In the case K > 0, corresponding outer inverse of A is defined by

A(2)
R(G),N(G) = −G

[
(AG)K−1 + (Im×m ⊗Q1)(AG)K−2 + · · · + (Im×m ⊗QK−1)

]
·(Im×m ⊗QK)−1

= −
[
(GA)K−1 + (In×n ⊗Q1)(GA)K−2 + · · · + (In×n ⊗QK−1)

]
·(In×n ⊗QK)−1G.

If K = 0 is the largest integer such that QK � Ou×u, then A(2)
T,S = On u×m u.

Proof. Since ρ(AG) ≤ ρ(G) = u ·Brank(G) = s, it follows that Qj = Ou×u for u · j > s by
the argument above, and then u · K ≤ s. Following known result from [30, 31], we
conclude that A(2)

T,S exists if and only if u ·K = u ·Brank(G) = s. Since QK is invertible,
immediately follows that Im×m ⊗ QK is invertible m u × m u block diagonal matrix,
whose diagonal elements are matrices QK.

According to the block Cayley-Hamilton theorem (see [12, 15]) AG must satisfy
the condition assumed in Lemma 2.1. In this case, by applying the block Cayley-
Hamilton theorem, we get

(AG)u + (Im×m ⊗Q1)(AG)m−1 + · · · + (Im×m ⊗Qm−1)(AG) + (Im×m ⊗Qm) = Om u×m u.

When K � 0 we may write

(AG)m−K ·(3.1) [
(AG)K + (Im×m ⊗Q1)(AG)K−1 + · · · + (Im×m ⊗QK−1)(AG) + (Im×m ⊗QK)

]
= Om u×m u.

By [30], (AG)� exists and A(2)
R(G),N(G) = G(AG)�. Pre-multiplying

(3.1) by (AG)m−K+1
� yields

(AG)� ·[
(AG)K + (Im×m ⊗Q1)(AG)K−1 + · · · + (Im×m ⊗QK−1)(AG) + (Im×m ⊗QK)

]
= Om u×m u,

and so

(AG)�=(3.2)

−(AG)�(AG)
[
(AG)K−1 + (Im×m ⊗Q1)(AG)K−2 + · · · + (Im×m ⊗QK−1)

]
·(Im×m ⊗QK)−1.

It follows from [31] that

(3.3) G(AG)�(AG) = G.

Application of Block Cayley-Hamilton Theorem... 217

By (3.1) and (3.2) we have that

A(2)
R(G),N(G) =

−G(AG)�(AG)
[
(AG)K−1 + (Im×m ⊗Q1)(AG)K−2 + · · · + (Im×m ⊗QK−1)

]
·(Im×m ⊗QK)−1

= −G
[
(AG)K−1 + (Im×m ⊗Q1)(AG)K−2 + · · · + (Im×m ⊗QK−1)

]
·(Im×m ⊗QK)−1

= −
[
(GA)K−1 + (In×n ⊗Q1)(GA)K−2 + · · · + (In×n ⊗QK−1)

]
·(In×n ⊗QK)−1G.

If K = 0, then AG = Ou n×u n. Obviously, (AG)� = Ou n×u n and, therefore,
A(2)
R(G),N(G) = On u×m u.

An algorithm for computing A(2)
T,S inverse based on the Cayley-Hamilton theo-

rem, is proposed in [31]. We are giving its generalization on both block and rational
matrices.

Remark 3.1. The weighted Moore-Penrose inverse A†MN, the Moore-Penrose inverse A†, the
Drazin inverse AD, the group inverse A# and the inverse A−1 are the special cases of the
generalized inverse A(2)

R(G),N(G) , as it is defined in (1.1), (1.2) and (1.3):

A(2)
R(G),N(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A†, G = A∗
A†MN, G = N−1A∗M
AD, G = Ak, k ≥ ind(A)
A#, G = A
A−1, G = I

In accordance with Theorem 3.1 we give the following Algorithm 3.1 for com-
puting outer inverses of a given block matrix. Let us mention that the matrix
product AG is calculated only once, at the initial step.

Algorithm 3.1. Require: A = [Aij] ∈Mm,n(C(x)u×u) and G = [Aij] ∈Mn,m(C(x)u×u).
1: Construct the sequence of u × u matrices {Q0,Q1, . . . ,Qu} and the sequence of m u × m u

matrices {B0,B1, . . . ,Bu} by the following rules:

(3.4)

A0 = Om u×m u, Q0 = −Iu×u, B0 = Im u×m u

A1 = AG, Q1 =

∑m
j=1 (A1) j j

1 , B1 = A1 − Im×m ⊗Q1

.

Am = AGBm−1, Qm = −
∑m

j=1 (Am)j j

m , Bm = Am + Im×m ⊗Qm.

2: Let K = max{l : Ql � Ou×u}.
3: if K = 0 then
4: return A(2)

R(G),N(G) := On u×m u

218 A.S. Randjelović, P.S. Stanimirović

5: else
6: return A(2)

T,S = G BK−1(Im×m ⊗QK)−1.
7: end if

Dual algorithm can be formulated analogously.

4. Drazin inverse of block matrix

Wang and Lin in [26] obtained a representation of the Drazin inverse using
the block Cayley–Hamilton theorem of matrix Ak+1. Also, the Drazin inverse can
be obtained from the particular case G = Al, l ≥ ind(A) of Theorem 3.1. But,
computation of matrix powers and, therefore, computation of the index is not
appropriate for large scale matrices. Here we give an alternative representation
obtained by the block Cayley–Hamilton theorem of the matrix A. Note that blocks
must be pairisely commuting in order to meet condition of the block Cayley-
Hamilton theorem, but not normal matrices. Proof of this theorem is an extension
of the result from [8].

Theorem 4.1. Let A ∈ Mn(C(x)u×u) has the form (2.1) where Aij ∈ Cu×u are pairwisely
commuting, and let

f (x) = det[In×n ⊗ S − A] = Sn +Q1Sn−1 + · · · +Qn−1S +Qn

be the characteristic polynomial of A where S ∈ C(x)u×u is the matrix (block) eigenvalue
of A. Also, consider the following sequence of n u × n u constant matrices defined by
coefficients Qi and powers of A:

(4.1) Bj = Aj + (In×n ⊗Q1)Aj−1 + · · · + (In×n ⊗Qj−1)A + In×n ⊗Qj, j = 0, . . . , n.

Let r denotes the smallest integer such that Br = On u×n u, let t denotes the largest integer
satisfying Qt � Ou×u, and let k = r − t. Then the Drazin inverse of A is defined as

(4.2) AD = (−1)k+1(In×n ⊗Qt)−k−1AkBk+1
t−1 .

Proof. According from (4.1) we have

(4.3) Bj = ABj−1 + In×n ⊗Qj.

Since t denote the largest integer such that Qt � Ou×u and ρ(Qt) = u, we have from
(4.3) that

(4.4) Bt+h = AhBt (h = 0, 1, . . .).

Let k = r − t. Then, from (4.3) and (4.4) it follows

Ak(ABt−1 + In×n ⊗Qt) = AkBt = Bt+k = Bt+r−t = Br = On u×n u

=⇒ Ak+1Bt−1 = −(In×n ⊗Qt)Ak.

Application of Block Cayley-Hamilton Theorem... 219

It is obvious from (4.1) that Bt−1 is polynomial in A. Now, let define q(A) in the
following way

(4.5) q(A) = (In×n ⊗Qt)−1Bt−1.

Let us show that

(4.6) X = (−1)k+1Ak[q(A)]k+1

satisfies (1k), (2), (5).
Since A commutes with Bj, (1k) is satisfied. Also, we have that

(4.7) Ak+1q(A) = Ak+1(In×n ⊗Qt)−1Bt−1 = −Ak.

By successive substitution of (4.7), it is easily verified that

AX2 = A2k+1[q(A)]2k+2 = Ak[Ak+1q(A)][q(A)]2k+1

= −A2k[q(A)]2k+1 = · · · = (−1)k+1Ak[q(A)]k+1 = X,

XAk+1 = (−1)k+1A2k+1[q(A)]k+1 = (−1)k+1Ak[Ak+1q(A)]q(A)k

= (−1)kA2k[q(A)]k = · · · = Ak.

Therefore (4.6) gives the Drazin pseudoinverse and substitution of (4.5) in (4.6)
gives (4.2).

Also, in [8] is proposed algorithm for computation of the Drazin inverse of A, which
avoids explicit matrix powering. Here we give an extension of this algorithm to
the set of block matrices.

Algorithm 4.1. Require: A(x) = [Aij] ∈Mn(C(x)u×u).
1: Construct the sequence of n × n matrices {Q0,Q1, . . . ,Qn} and the sequence of n u × n u

matrices {B0,B1, . . . ,Bn} in the following way:

(4.8)

A0 = On u×n u, Q0 = Iu×u, B0 = In u×n u

A1 = AB0, Q1 = −
∑n

j=1 (A1)j j

1 , B1 = A1 + In×n ⊗Q1

.

An = ABn−1, Qn = −
∑n

j=1 (An)j j

n , Bn = An + In×n ⊗Qn.

2: Let t = max{l : Ql � Ou×u}, r = min{l : Bl = On u×n u}, k = r − t.
3: if k = 0 then
4: return AD := On u×n u

5: else
6: return AD defined by (4.2).
7: end if

Remark 4.1. Computation of the Drazin inverse requires determination of ind(A), which
is a time consuming job and numerically instable process because of the usage of matrix
powers Ak. To avoid this difficulty, we present a simplified method to obtain integer l
satisfying l ≥ ind(A). More precisely, we compute successive matrix powers A 2k by the
squaring method: A2 = A · A,A4 = A2 · A2 etc. The squaring is stopped when the condition
rank(A2k) = rank(A2k+1) is satisfied and l is chosen by l = 2k.

220 A.S. Randjelović, P.S. Stanimirović

5. Complexity of algorithms

In this section we compare computational complexities of Algorithm 3.1 and
the usual Leverier-Faddeev algorithm as well as complexities of Algorithm 4.1
and Grevile’s algorithm from [8]. Let us denote by A(n) the complexity of the
addition/subtraction of n × n matrices. These operations can be computed in time
A(n) = O(n2). By Tr(n) we denote the complexity of the algorithm for computing
the trace of n × n matrix. It is clear that its computational complexity is Tr(n) =
O(n). Also, let us denote by M(m, n, k) the complexity of multiplying m × n matrix
by n × k matrix. Without using any rapid method for matrix multiplication its
computational complexity is M(m, n, k) = O(mnk). The simpler notation M(n) is
used instead of M(n, n, n). Also by Kp(m, n, p, q) we denote the complexity of the
Kronecker product of matrices of the order m× n and p× q. It can be easily verified
that Kp(m, n, p, q) = O(mnpq).

We denote EBLF and ELF computational complexities of of Algorithm. 3.1 and
usual Leverier-Faddeev algorithm. Computational complexity of each step in
Algorithm. 3.1 has order M(m u) + A(u) + Kp(m,m, u, u) + A(m u). Since algorithm
has m steps, for its effectiveness it can be terminated after K steps, when we find
K = max{l : Ql � Ou×u}.

Complexity of Algorithm 3.1 is of the order

EBLF = K
(
M(m u) + A(u) + Kp(m,m, u, u)+ A(m u)

)
= K

(
O(m3 u3) + O(u2) + O(m2 u2) + O(m2 u2)

)
≈ O(K m3 u3).

On the other hand, computational complexity of the usual Leverier-Faddeev
algorithm is of the order

ELF = k (M(m u, n u,m u)+ Tr(m u) + A(m u))

= u K
(
O(m2 n u3) + O(m u) + O(m2 u2)

)
≈ O(K m2 n u4).

Let us denote EBGreville and EGreville computational complexities of of Algorithm
4.1 and Grevile’s algorithm from [8]. Scanning these Algorithms in a similar way,
it is not difficult to verify that their computational complexities are same as of
Algorithm 3.1 and the usual Leverier-Faddeev algorithm. The only difference is
that we use the square matrix as input and in that case m = n. We derive the
following computational complexities:

EBLF ≈ O(K m3 u3) , ELF ≈ O(K m2 n u4)
EBGreville ≈ O(K n3 u3) , EGreville ≈ O(K n3 u4).

We conclude that Algorithm 3.1 has approximately u times smaller compu-
tational complexity than the usual Leverier-Faddeev algorithm, where u is the

Application of Block Cayley-Hamilton Theorem... 221

dimension of block in block matrix. Also Algorithm 4.1 has u times smaller com-
putational complexity than the usual Greville algorithm.

Remark 5.1. Therefore, block Leverrier-Faddeev algorithm is u times faster than the usual
Leverrier-Faddeev algorithm. Therefore, it is desirable to provide that u be as greater as
possible. Therefore, the best improvement can be expected in the case m = n = 2, i.e. when
A is 2 × 2 block matrix.

6. Examples

In this section we compare CPU times for evaluation of the Moore-Penrose and
the Drazin inverse on some test matrices by means of the usual Leverier-Faddeev
algorithm (LF shortly) and Grevile’s [8] algorithm and introduced algorithms (Alg.
3.1) and (Alg. 4.1). Values are derived using built-in function Timin�[] in Math-
ematica and tic and toc command in Matlab. Experiments are done on an Intel(R)
Core(TM)2DUO CPU T6600 @ 2.20 GHz 64/32-bit system with 4 GB RAM memory.

6.1. Hadamard matrices

Hadamard matrices Hn of order n = 2k, k = 1, 2, . . . are defined as

(6.1) Hn =

(
1 1
1 −1

)
⊗

(
1 1
1 −1

)
⊗ . . . ⊗

(
1 1
1 −1

)
.

CPU times of the evaluation are given in the following Table 6.1. Notation
H†n (Alg. 3.1) denotes application of Algorithm 3.1 in the case G = AT. Similarly,
H†n (LF) denotes the Moore-Penrose inverse obtained by Lemma 1.1. Values for
the column HD

n (Alg. 3.1) are derived applying Algorithm 3.1 in the case G = Ak,
k ≥ ind(A) and HD

n (LF) denotes the Drazin inverse obtained by Lemma 1.3 in the
case G = Ak, k ≥ ind(A), applying Leverier-Faddeev algorithm for its computation.
Values for the column HD

n (Alg. 4.1) are obtained by Algorithm 4.1 and HD
n (Grevile

[8]) denotes the Drazin inverse obtained by Lemma 1.2.

222 A.S. Randjelović, P.S. Stanimirović

Table 6.1: Comparing CPU times on Hadamard matrices

(2 × 2 × n) H†n (Alg. 3.1) H†n (LF) HD
n (Alg. 3.1) HD

n (LF)
2 × 2 × 2 0 0 0 0
2 × 2 × 4 0 0 0 0
2 × 2 × 8 0 0.015 0 0.013
2 × 2 × 16 0.032 0.124 0.028 0.117
2 × 2 × 32 0.125 1.279 0.109 1.128
2 × 2 × 64 0.593 16.255 0.577 15.957
2 × 2 × 128 4.431 235.249 4.327 228.471
2 × 2 × 256 36.021 3308.591 33.628 3257.478
2 × 2 × 512 428.129 − 421.387 −
2 × 2 × 1024 3576.011 − 3432.416 −

Table 6.2: Comparing CPU times on Hadamard matrices

(2 × 2 × n) HD
n (Alg. 4.1) HD

n (Grevile [8])
2 × 2 × 2 0 0
2 × 2 × 4 0 0
2 × 2 × 8 0 0.016
2 × 2 × 16 0.015 0.078
2 × 2 × 32 0.063 1.575
2 × 2 × 64 0.671 24.523
2 × 2 × 128 4.103 416.961
2 × 2 × 256 31.863 −
2 × 2 × 512 397.129 −
2 × 2 × 1024 3237.771 −

6.2. Test block matrix

Zielke [33] has generated block test matrices in the following way:

(6.2) V2n =

(
Vn Vn

Vn −Vn

)
, n = 2k, k = 0, 1, 2, . . .

with

V2 =

(
a b
b −a

)
.

In the following table we compare CPU times for evaluation of the Moore-
Penrose and the Drazin inverse by means of the usual Leverier-Faddeev and Grevile

Application of Block Cayley-Hamilton Theorem... 223

algorithm [8], respectively, as well as the introduced algorithms for block matrices.
Since test matrices are given in the symbolic form, the implementation written in
Mathematica is used to generate these results.

In the following Table 6.2 we use the same notation as in Table 6.1.

Table 6.3: CPU times on the test block matrix Vn

(2 × 2 × n) H†n (Alg. 3.1) H†n (LF) HD
n (Alg. 3.1) HD

n (LF)
2 × 2 × 2 0.015 0.015 0.013 0.013
2 × 2 × 4 0.031 0.047 0.030 0.042
2 × 2 × 8 0.094 0.187 0.092 0.169
2 × 2 × 16 0.328 1.171 0.323 1.165
2 × 2 × 32 1.981 7.722 1.898 7.697
2 × 2 × 64 18.486 85.348 18.378 83.135
2 × 2 × 128 150.261 973.368 137.162 966.152

Table 6.4: CPU times on the test block matrix Vn

(2 × 2 × n) HD
n (Alg. 3.1) HD

n (LF) HD
n (Alg. 4.1) HD

n (Grevile [8])
2 × 2 × 2 0.013 0.013 0 0.016
2 × 2 × 4 0.030 0.042 0.016 0.031
2 × 2 × 8 0.092 0.169 0.062 0.421
2 × 2 × 16 0.323 1.165 0.312 4.634
2 × 2 × 32 1.898 7.697 1.685 50.326
2 × 2 × 64 18.378 83.135 11.466 765.356
2 × 2 × 128 137.162 966.152 107.868 −

6.3. Randomly generated test matrices

In this section we construct random numerical matrices that satisfy initial con-
ditions of Theorems 3.1, where G = A∗ and G = Ak and compare times of evaluation
using algorithms implemented in programming language Matlab First we compare
times of evaluation of Moore-Penrose inverse between Leverier-Faddeevalgorithm
and our modification of that algorithm (Alg. 3.1) and then times of evaluation of
Drazin inverse between these algorithms. Test matrix A must have blocks that
normal and commutative, therefore blocks must be simultaneously diagonalisable
by a unitary matrix. We construct blocks of A in the following way:

Aij = UDU−1, i = 1, . . . ,m, j = 1, . . . , n,

where the matrix U ∈ Cu×u is random unitary matrix which is the same for all
blocks, and the matrix D ∈ Cu×u is a random diagonal matrix.

224 A.S. Randjelović, P.S. Stanimirović

Notation H†n (Alg. 3.1) denotes application of Algorithm 3.1 in the case G = A∗
and H†n (LF) denotes the Moore-Penrose inverse obtained by Lemma 1.3 in the case
G = A∗ applying Leverier-Faddeev algorithm for its computation. Other notations
are the same as in previous subsections.

CPU times obtained by various algorithms are arranged in the following tables.

Table 6.5: CPU times on arbitrary matrices

(m × n × u) A† (Alg. 3.1) A† (LF)
2 × 3 × 2 0.000 0.000
4 × 7 × 3 0.001 0.003
5 × 9 × 4 0.003 0.007
8 × 11 × 5 0.011 0.081
13 × 17 × 6 0.154 1.616
16 × 21 × 7 0.271 39.586
23 × 29 × 8 2.009 614.253
28 × 36 × 9 4.126 2728.189
32 × 45 × 10 9.563 8498.012
41 × 52 × 11 31.543 −
45 × 55 × 12 60.435 −
50 × 60 × 13 109.747 −
56 × 67 × 14 212.441 −
60 × 70 × 15 335.853 −

Application of Block Cayley-Hamilton Theorem... 225

Table 6.6: CPU times on arbitrary matrices

(n × n × u) AD (Alg. 3.1) AD (LF)
2 × 2 × 2 0.000 0.000
4 × 4 × 3 0.000 0.000
5 × 5 × 4 0.000 0.000
8 × 8 × 5 0.015 0.077

13 × 13 × 6 0.122 1.423
16 × 16 × 7 0.405 39.129
23 × 23 × 8 1.775 607.315
28 × 28 × 9 4.160 2698.371
32 × 32 × 10 11.446 8371.418
41 × 41 × 11 32.649 −
45 × 45 × 12 64.491 −
50 × 50 × 13 136.638 −
56 × 56 × 14 228.354 −
60 × 60 × 15 326.692 −

Test matrix A must have blocks that are pairwisely commuting during the evalu-
ation of the Drazin inverse by means of the Grevile algorithm and our modification
of that algorithm (Alg. 4.1). Therefore, we construct blocks of A in the following
way:

Aij = SDS−1, i = 1, . . . , n, j = 1, . . . , n.

where the matrix S ∈ Cu×u is random invertible matrix which is same for all blocks
and the matrix D ∈ Cu×u is randomly generated diagonal matrix.

Comparative CPU times are arranged in the following table.

226 A.S. Randjelović, P.S. Stanimirović

Table 6.7: CPU times on arbitrary matrices

(n × n × u) AD (Alg. 4.1) AD (Grevile [8])
2 × 2 × 2 0.000 0.000
4 × 4 × 3 0.000 0.000
5 × 5 × 4 0.000 0.000
8 × 8 × 5 0.006 0.031

13 × 13 × 6 0.037 0.624
16 × 16 × 7 0.124 2.386
23 × 23 × 8 0.591 16.863
28 × 28 × 9 2.000 247.184
32 × 32 × 10 4.323 998.555
41 × 41 × 11 11.336 2969.567
45 × 45 × 12 21.778 7548.900
50 × 50 × 13 40.656 −
56 × 56 × 14 77.311 −
60 × 60 × 15 116.914 −

7. Conclusion

We present an algorithm for computing A(2)
T,S inverse as well as an algorithm

for computing the Drazin inverse of a given block matrix. These algorithms are
based on the Leverrier-Faddeev algorithm and the block Cayley-Hamilton theorem.
We prove theorems which provides these algorithms. We also present and com-
pare computational complexities of these and standard algorithms. Algorithms
are implemented in both programming languages Mathematica and Matlab, and
tested on several classes of test examples. Numerical examples which compare
our algorithms with corresponding algorithms on element-wise given matrices are
presented.

8. Implementation

In this section we present programs in Mathematica that compute the Moore-
Penrose inverse of m× n block matrix and the Drazin inverse of n× n block matrix,
where all blocks are of dimensions u×u. We also give programs that construct test
matrix for computing these pseudoinverses. We use implementation in Mathematica
for symbolic computations of outer inverses.

MoorePenroseBlockLF[A_, m_, n_, u_] :=

Module[{A1, B, Z, Ap, Q, Bp, i, j, K, Inv},

A1 = ConjugateTranspose[A]; B = Simplify[A.A1];

Z = 0*IdentityMatrix[m*u];

Application of Block Cayley-Hamilton Theorem... 227

Ap[0] = Z; Q[0] = -IdentityMatrix[u]; Bp[0] = IdentityMatrix[m*u];

For[i = 1, i <= m, i++,

Ap[i] = Simplify[B.Bp[i - 1]];

Q[i] =

Simplify[

Sum[Ap[i][[(j - 1)*u + 1 ;; j*u , (j - 1)*u + 1 ;;

j*u]], {j, 1, m}]/i];

Bp[i] =

Simplify[Ap[i] - KroneckerProduct[IdentityMatrix[m], Q[i]]];

];

K = m; While[ToString[Det[Q[K]]] == ToString[0], K--];

Inv =

Simplify[

A1.Bp[K - 1].Inverse[KroneckerProduct[IdentityMatrix[m], Q[K]]]];

Print[MatrixForm[Inv]];

If[((Simplify[A.Inv.A] == A) && (Simplify[Inv.A.Inv] ==

Inv) && (Simplify[ConjugateTranspose[A.Inv]] ==

Simplify[A.Inv]) && (Simplify[ConjugateTranspose[Inv.A]] ==

Simplify[Inv.A])),

Print["Inverse satisfies Moore-Penrose’s equations"]];

];

DrazinBlockLF[A_, m_, n_, u_] :=

Module[{A1, B, Z, Ap, Q, Bp, i, j, K, Inv},

r = 1;

While[

MatrixRank[MatrixPower[A, r]] != MatrixRank[MatrixPower[A, 2*r]],

r := 2*r];

A1 = MatrixPower[A, r]; B = Simplify[A.A1];

Z = 0*IdentityMatrix[m*u];

Ap[0] = Z; Q[0] = -IdentityMatrix[u]; Bp[0] = IdentityMatrix[m*u];

For[i = 1, i <= m, i++,

Ap[i] = Simplify[B.Bp[i - 1]];

Q[i] =

Simplify[

Sum[Ap[i][[(j - 1)*u + 1 ;; j*u , (j - 1)*u + 1 ;;

j*u]], {j, 1, m}]/i];

Bp[i] =

Simplify[Ap[i] - KroneckerProduct[IdentityMatrix[m], Q[i]]];

];

K = m; While[ToString[Det[Q[K]]] == ToString[0], K--];

Inv =

Simplify[

A1.Bp[K - 1].Inverse[KroneckerProduct[IdentityMatrix[m], Q[K]]]];

Print[MatrixForm[Inv]];

If[((Simplify[Inv.A.Inv] == Inv) && (Simplify[Inv.A] ==

Simplify[A.Inv]) && (Simplify[MatrixPower[A, K].Inv.A] ==

Simplify[MatrixPower[A, K]])),

Print["Inverse satisfies Drazin’s equations"]];

];

DrazinBlockGrevile[A_, n_, u_] :=

Module[{Z, AD, Q, B, i, j, t, r, k, Inv},

Z = 0*IdentityMatrix[n*u];

AD[0] = Z; Q[0] = IdentityMatrix[u]; B[0] = IdentityMatrix[n*u];

For[i = 1, i <= n, i++,

228 A.S. Randjelović, P.S. Stanimirović

AD[i] = Simplify[A.B[i - 1]];

Q[i] =

Simplify[-Sum[

AD[i][[(j - 1)*u + 1 ;; j*u , (j - 1)*u + 1 ;; j*u]], {j,

1, n}]/i];

B[i] = Simplify[AD[i] + KroneckerProduct[IdentityMatrix[n], Q[i]]];

];

t = n; While[ToString[Det[Q[t]]] == ToString[0], t--];

r = 0; While[ToString[B[r]] != ToString[Z], r++];

k = r - t;

Inv =

Simplify[(-1)ˆ(k - 1)*

MatrixPower[

KroneckerProduct[IdentityMatrix[n],

Q[t]], (-k - 1)].MatrixPower[A, k].MatrixPower[

B[t - 1], (k + 1)]];

Print[MatrixForm[Inv]];

If[((Simplify[Inv.A.Inv] == Inv) && (Simplify[Inv.A] ==

Simplify[A.Inv]) && (Simplify[MatrixPower[A, k].Inv.A] ==

Simplify[MatrixPower[A, k]])),

Print["Inverse satisfies Drazin’s equations"]];

];

TestMatLF[m_, n_, u_] :=

Module[{U, i, j, k, D},

U = Orthogonalize[

Table[RandomInteger[{-10, 10}] +

I*RandomInteger[{-10, 10}], {u}, {u}]];

A = Table[1, {i, m}, {j, n}];

For[i = 1, i <= m, i++,

For[j = 1, j <= n, j++,

D = IdentityMatrix[u];

For[k = 1, k <= u, k++, D[[k, k]] = RandomInteger[{-10, 10}]];

A[[i, j]] = U.D.Inverse[U];

];

];

A = ArrayFlatten[A];

];

TestMatGrevile[n_, u_] :=

Module[{S, i, j, k, D},

S = Table[RandomInteger[{-10, 10}], {u}, {u}];

A = IdentityMatrix[n];

For[i = 1, i <= n, i++,

For[j = 1, j <= n, j++,

D = IdentityMatrix[u];

For[k = 1, k <= u, k++, D[[k, k]] = RandomInteger[{-10, 10}]];

A[[i, j]] = S.D.Inverse[S];

];

];

A = ArrayFlatten[A];

];

Corresponding implementation in Matlab is also presented in the following
code. We use this code for numerical computations.

Application of Block Cayley-Hamilton Theorem... 229

function [time] = MoorePenroseBlockLF(A,m,n,u)

A1=A’; B=A*A1; Z = zeros(m*u);

Ap=Z; Q=-eye(u); Bp=eye(m*u);

for i=2:(m+1)

Ap(:,:,i)=B*Bp(:,:,i-1);

Q(:,:,i)=zeros(u);

for j=1:m

Q(:,:,i)=Q(:,:,i)+Ap((j-1)*u+1:j*u,(j-1)*u+1:j*u,i);

end

Q(:,:,i)=Q(:,:,i)/(i-1);

Bp(:,:,i)=Ap(:,:,i)-kron(eye(m),Q(:,:,i));

end

k=m+1;

while (det(Q(:,:,k))==0) & (k>1)

k=k-1;

end

fprintf(’MoorePenroseBlockLF(k) = %f \n’,k-1);

Inv = A1*Bp(:,:,k-1)*inv(kron(eye(m),Q(:,:,k)));

function [time] = DrazinBlockLF(A,n,u)

r=1;

while (rank(Aˆr)˜=rank(Aˆ(2*r))) do r=2*r;

end

A1=Aˆr; B=A*A1; Z = zeros(n*u);

Ap=Z; Q=-eye(u); Bp=eye(n*u);

for i=2:(n+1)

Ap(:,:,i)=B*Bp(:,:,i-1);

Q(:,:,i)=zeros(u);

for j=1:n

Q(:,:,i)=Q(:,:,i)+Ap((j-1)*u+1:j*u,(j-1)*u+1:j*u,i);

end

Q(:,:,i)=Q(:,:,i)/(i-1);

Bp(:,:,i)=Ap(:,:,i)-kron(eye(n),Q(:,:,i));

end

k=n+1;

while (det(Q(:,:,k))==0) & (k>1) k=k-1;

end

Inv = A1*Bp(:,:,k-1)*inv(kron(eye(n),Q(:,:,k)));

function [time] = DrazinBlockGrevile(A,n,u)

Z = zeros(n*u); AD=Z; Q=eye(u); B=eye(n*u);

for i=2:(n+1)

AD(:,:,i)=A*B(:,:,i-1);

Q(:,:,i)=zeros(u);

for j=1:n

Q(:,:,i)=Q(:,:,i)+AD((j-1)*u+1:j*u,(j-1)*u+1:j*u,i);

end

Q(:,:,i)=-Q(:,:,i)/(i-1);

B(:,:,i)=AD(:,:,i)+kron(eye(n),Q(:,:,i));

end

t=n+1;

while (det(Q(:,:,t))==0) & (t>1) t=t-1;

end

r=1;

while (any(any(B(:,:,r)˜=Z))) & (r<=n) r=r+1;

end

230 A.S. Randjelović, P.S. Stanimirović

k=r-t;

Inv = (-1)ˆ(k+1)*(kron(eye(n),Q(:,:,t)))ˆ(-k-1)*(Aˆk)*(B(:,:,t-1)ˆ(k+1));

function [A] = TestMatLF(m,n,u)

U=orth(randint(u,u,[-10,10])+i*randint(u,u,[-10,10]));

A=[];

for x=1:m

B=[];

for y=1:n

D= eye(u);

for k=1:u

D(k,k)=randint(1,1,[-10,10]);

end

B=horzcat(B,U*D*inv(U));

end

A=vertcat(A,B);

end

function [A] = TestMatGrevile(n,u)

S=randint(u,u,[-10,10]);

A=[];

for i=1:n

B=[];

for j=1:n

D= eye(u);

for k=1:u

D(k,k)=randint(1,1,[-10,10]);

end

B=horzcat(B,S*D*inv(S));

end

A=vertcat(A,B);

end

R E F E R E N C E S

1. S. Barnett: Leverrier’s algorithm: a new proof and extensions, SIAM J. Matrix Anal.
Appl. 10 (1989), 551–556.

2. A. Ben-Israel and T.N.E. Greville: Generalized inverses: theory and applications,
Springer, New York, NY, USA, 2nd edition, 2003.

3. Y. Chen: The generalized Bott–Duffin inverse and its application, Linear Algebra Appl.
134 (1990), 71–91.

4. Y. Chen: Finite Algorithms for the (2)-Generalized Inverse A(2)
T,S, Linear and Multilinear

Algebra 40 (1995), 61–68.
5. H.P. Decell: An application of the Cayley-Hamilton theorem to generalized matrix inver-

sion, SIAM Review 7 No 4 (1965), 526–528.
6. M.P. Drazin: Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly

65 (1958), 506–514.
7. D.K. Faddeev andV.N. Faddeeva; Computational Methods of Linear Algebra, Freeman,

San Francisko, 1963.
8. T.N.E. Grevile: The Souriau-Frame algorithm and the Drazin pseudoinverse, Linear

Algebra Appl. 6 (1973), 205–208.

Application of Block Cayley-Hamilton Theorem... 231

9. R.E. Hartwig: More on the Souriau-Frame algorithm and the Drazin inverse, SIAM J.
Appl. Math. 31 No 1 (1976), 42–46.

10. A.J. Getson and F.C. Hsuan: {2}-inverses and their Statistical applications, Lecture
Notes in Statistics 47, Springer, New York, NY, USA, 1988.

11. J. Ji: An alternative limit expression of Drazin inverse and its applications, Appl. Math.
Comput. 61 (1994), 151–156.

12. T. Kaczorek: New extensions of the Cayley–Hamilton theorem with applicattions, Pro-
ceeding of the 19th European Conference on Modelling and Simulation, 2005.

13. T. Kaczorek: An Existence of the Cayley-Hamilton Theorem for Singular 2-D Linear Sys-
tems with Non-Square Matrices, Bulletin of the Polish Academy of Sciences. Technical
Sciences 43(1) (1995), 39–48.

14. T. Kaczorek: Generalization of the Cayley-Hamilton Theorem for Non-Square Matrices,
International Conference of Fundamentals of Electronics and Circuit Theory XVIII-
SPETO, Gliwice, 1995, pp. 77–83.

15. T. Kaczorek: An Existence of the Caley-Hamilton Theorem for Non-Square Block Ma-
trices, Bulletin of the Polish Academy of Sciences. Technical Sciences 43(1) (1995),
49–56.

16. T. Kaczorek: An Extension of the Cayley-Hamilton Theorem for a Standard Pair of Block
Matrices, Applied Mathematics and Computation Sciences 8(3) (1998), 511–516.

17. T. Kaczorek: Extension of the Cayley-Hamilton theorem to continuoustime linear systems
with delays, Int. J. Appl. Math. Comput. Sci. 15(2) (2005), 231–234.

18. T. Kaczorek: An extension of the CayleyHamilton theorem for nonlinear timevarying
systems, Int. J. Appl. Math. Comput. Sci. 16(1) (2006), 141–145.

19. N.P. Karampetakis: Computation of the generalized inverse of a polynomial matrix and
applications, Linear Algebra Appl. 252 (1997), 35–60.

20. N.P. Karampetakis, P.S. Stanimirović and M.B. Tasić: On the computation of the
Drazin inverse of a polynomial matrix, Far East J. Math. Sci. (FJMS) 26(1) (2007), 1–24.

21. R. Penrose: A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 52 (1956),
17–19.

22. A. Paz: An application of the Cayley-Hamilton theorem to matrix polynomials in several
variables, Linear and Multilinear Algebra 15 (1984), 161–170.

23. P.S. Stanimirović andM.B. Tasić: Drazin inverse of one-variable polynomial matrices,
Filomat, Niš 15 (2001), 71–78.

24. P.S. Stanimirović: A finite algorithm for generalized inverses of polynomial and rational
matrices, Appl. Math. Comput. 144 (2003) 199–214.

25. J. Vitoria: A block–Cayley–Hamilton theorem, Bulletin Mathematique 26(71) (1982),
93–97.

26. G. Wang and L. Qiu: Some New Applications of the Block–Cayley–Hamilton Theorem,
J. of Shangai Teachers Univ. (Natural Sciences) 27 (1998), 8–15, In Chinesse.

27. G. Wang: A finite algorithm for computing the weighted Moore-Penrose inverse A†M,N ,
Appl. Math. Comput. 23 (1987), 277–289.

28. G. Wang, Y. Wei and S. Qiao: Generalized Inverses: Theory and Computations, Science
Press, Beijing/New York, 2004.

29. Y. Wei andH. Wu: The representation and approximation for the generalized inverse A(2)
T,S,

Appl. Math. Comput. 135 (2003), 263–276.

232 A.S. Randjelović, P.S. Stanimirović

30. Y. Yu and G. Wang: On the generalized inverse A(2)
T,S over integral domains, Aust. J.

Math. Appl. 4 (2007), 1. Article 16, 1–20.

31. Y. Yu and G. Wang: DFT calculation for the {2}-inverse of a polynomial matrix with
prescribed image and kernel, Applied Math. Comput. 215 (2009), 2741–2749.

32. B. Zheng and R. B. Bapat: Generalized inverse A(2)
T,S and a rank equation, Appl. Math.

Comput. 155 (2004), 407-415.

33. G. Zielke: Report on Test Matrices for Generalized Inverses, Computing 36 (1986),
105–162.

Predrag S. Stanimirović
Faculty of Science and Mathematics
Department of Mathematics and Informatics
Višegradska 33
18000 Niš, Serbia
pecko@pmf.ni.ac.rs

Aleksandar S. Rand̄elović
Faculty of Science and Mathematics
Department of Mathematics and Informatics
Višegradska 33
18000 Niš, Serbia
randjelovicaca@gmail.com

	Introduction
	Conditions for application of the block Cayley–Hamilton theorem
	Outer inverses of block matrix
	Drazin inverse of block matrix
	Complexity of algorithms
	Examples
	Hadamard matrices
	Test block matrix
	Randomly generated test matrices

	Conclusion
	Implementation

