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Abstract. In this paper, we introduce the concept of common limit range ((CLR)−property)
in the framework of quasi-partial metric spaces. By using this concept, some fixed point
theorems involving two pairs of contraction mappings are proved without using the com-
pleteness condition of the whole space. Our results extend some results in literature,
such as Nazir and Abbas [8] and Vetro et al. [11].
Keywords: quasi-partial metric spaces; (CLR)−property; contraction mappings.

1. Introduction

The connotation of partial metric spaces (PMS for short) was defined by
Matthews in [9]. He amended metric spaces via setting self-distances to be not
always identical to zero. Additionally, he relocated the Banach contraction principle
in the setting of (PMS). Since then, there has been extensive research into fixed point
results related to partial metric spaces (see [2, 3, 4, 7]). By dropping the symmetry
condition, in 2013 Karapinar et al. [6] defined the notation of quasi-partial metric
spaces (QPMS for short) and established some fixed point results in these spaces.

Let us first present some definitions and consequences which we need in the
sequel.

Definition 1.1. [6] The function σ : X ×X → [0,∞) is a quasi-partial metric if
the following conditions are satisfied for all γ, ω, δ ∈ X:
(1) If 0 ≤ σ(γ, γ) = σ(γ, ω) = σ(ω, ω) ⇒ γ = ω;
(2) σ(γ, ω) ≥ σ(γ, γ);
(3) σ(ω, γ) ≥ σ(γ, γ);
(4) σ(γ, δ) ≤ σ(γ, ω) + σ(ω, δ)− σ(ω, ω).
The couple (X, σ) is known as a (QPMS).

Received October 18, 2018; Accepted February 15, 2019
2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10,47H20

415



416 M.A. Barakat and H.M. Aydi

For each partial metric p on X , the function dp : X ×X → [0,∞) defined by

dp(γ, ω) = 2p(γ, ω)− p(γ, γ)− p(ω, ω),(1.1)

is a metric on X . Similarly, if (X, σ) is a (QPMS), then the function dσ : X ×X →
[0,∞) defined by

dσ(γ, ω) = σ(γ, ω) + σ(ω, γ)− σ(γ, γ)− σ(ω, ω),(1.2)

is also a metric on X.

Definition 1.2. [6] Let (X, σ) be a quasi-partial metric space.
1. A sequence {xn} is called convergent to x ∈ X, written as lim

n→∞
xn = x, if

lim
n→∞

σ(xn, x) = lim
n→∞

σ(x, xn) = lim
n→∞

σ(xn, xn) = σ(x, x);

2. A sequence {xn} is called Cauchy if lim
n,m→∞

σ(xn, xm) and lim
n,m→∞

σ(xm, xn) exist

and are finite;
3. (X, σ) is called complete if every Cauchy sequence {xn} in X is convergent to
some x ∈ X. Further, lim

n,m→∞
σ(xn, xm) = lim

n,m→∞
σ(xm, xn) = σ(x, x).

In 1996, Jungck [5] introduced the concept of weakly compatible mappings (w-
compatible for short).

Definition 1.3. [5] Let X be a nonempty set. Given S,H : X → X. The mappings
H and S are w-compatible if and only if SHµ = HSµ for µ ∈ C(S,H), where
C(S,H) = {u, fu = gu}.

Definition 1.4. [1] Let S and H be two self-mappings on a metric space (X, d).
The mappings S and H fulfill the (E.A)-property if there exists a sequence {an} in
X such that

lim
n→∞

Han = lim
n→∞

San = µ

for µ ∈ X.

Note that the (E.A)-property exchanges the completeness condition of the space
with closedness of the range. The connotation of (CLR)-property was defined by
Sintunavarat and Kumam in [10]. Its significance is that one does no longer refer
to the closeness condition of the range of subspaces.

Definition 1.5. [10] Let (X, d) be a metric space and S,H be two self-mappings
on X. These maps satisfy the (CLRS)-property, if there exists a sequence {an} in
X so that

lim
n→∞

Han = lim
n→∞

San = µ,

where µ ∈ S(X).
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Currently, Nazir and Abbas [8] established some fixed point results via the (E.A)-
property in the class of (PMS). However, we see that the circumstance p(t, t) = 0
in [4, Definition 1.7] is superfluous. In our current work, we shall give the definition
of (CLR)-property (for two pairs of self-mappings) on (QPMS). Additionally, by
using this concept, we employ a different method compared with that in the proof
of [4, Theorem 2.1] in order to prove our main results in the class of (QPMS). Some
illustrated examples are also given.

2. Main results

First, let ψ : [0,∞) → [0,∞) be a function such that
(a) ψ is nondecreasing and continuous;
(b) ψ(µ) = 0 ⇔ µ = 0.
Denote F (resp. G) the set of functions verifying the conditions (a) and (b) (resp.
(b) and (c): ψ is lower-semicontinuous).

Now, we introduce the concept of (CLR)-property first for a single pair and
after for a double pair of self-mappings on a (QPMS).

Definition 2.1. Let (X, σ) be a (QPMS). The pair of self-mappings (f, S) on X

satisfies the (CLRS)-property, if there exists {xn} ⊂ X such that

lim
n→∞

σ(fxn, w)= lim
n→∞

σ(w, fxn)= lim
n→∞

σ(Sxn, w)= lim
n→∞

σ(w, Sxn)=σ(w,w), w∈SX.

Example 2.1. Let X = (0,∞) and σ(x, y) = |x− y|+ x for all x, y ∈ X. Clearly,
(X, σ) is a (QPMS). Let (f, S) be a pair of self-mappings on X such that fx = 3x+2

2
and Sx = 2x. Choose {xn} = { 2n+1

n
}. We have

lim
n→∞

σ(fxn, 4) = lim
n→∞

σ(4, fxn) = lim
n→∞

σ(Sxn, 4) = lim
n→∞

σ(4, Sxn)=σ(4, 4) = S2 = 4.

Hence the pair (f, S) satisfies the (CLRS)-property.

Definition 2.2. Let (X, σ) be a (QPMS). The pairs of self-mappings (f, S) and
(g,H) on X satisfy the (CLRSH)-property, if there exist sequences {xn} and {yn}
in X such that

lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn)

= lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w)

= lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w), w ∈ SX ∩HX.

We illustrate Definition 2.2 by the following example.
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Example 2.2. Let X = (0, 2) be equipped with the quasi-partial metric σ(x, y) =
|x − y|+ x for all x, y ∈ X. Let (f, S) and (g,H) be two pairs of self-mappings on
X defined as

fx =
{ 1 ; x ∈ (0, 1]

4
3 ; x ∈ (1, 2)

gx =
{ 1 ; x ∈ (0, 1]

3
2 ; x ∈ (1, 2)

Sx =
{

x2 ; x ∈ (0, 1]
x− 1 ; x ∈ (1, 2)

Hx =
{

x ; x ∈ (0, 1]
2− x ; x ∈ (1, 2).

Consider {xn} = {1− 1
n
} and {yn} = { 5n2−4

5n2+2}. We have

lim
n→∞

σ(fxn, 1) = lim
n→∞

σ(1, fxn) = lim
n→∞

σ(Sxn, 1) = lim
n→∞

σ(1, Sxn) = σ(1, 1) = S1 = 1.

Moreover,

lim
n→∞

σ(gyn, 1) = lim
n→∞

σ(1, gyn) = lim
n→∞

σ(Hyn, 1) = lim
n→∞

σ(1, Hyn) = σ(1, 1) = H1 = 1.

Hence the two pairs (f, S) and (g,H) satisfy the (CLRSH)-property.

The following lemma is crucial in order to prove our main result (Theorem 2.1).

Lemma 2.1. Let (X, σ) be a (QPMS). Suppose that the self-mappings f, g, S,H :
X → X are such that
(i) fX ⊆ HX (or gX ⊆ SX);
(ii) the pair (f, S) satisfies the (CLRS)-property (or (g,H) satisfies the (CLRH)-
property);
(iii) HX (or SX) is closed;
(iv) {gyn} ( or {fyn}) is bounded for every sequence {yn} in X;
(v) there exist β ∈ F and α ∈ G such that

(2.1) β(σ(fa, gb)) ≤ β(Λ(a, b))− α(Λ(a, b)),

where Λ(a, b) = max{σ(Sa,Hb), σ(fa, Sa), σ(Hb, gb), σ(fa,Hb), σ(Sa, gb)}. Then
the pairs (f, S) and (g,H) satisfy the (CLRSH)-property.

Proof. From Condition (ii), if (f, S) satisfies the (CLRS)-property, then there exists
{xn} ⊂ X , so that
(2.2)
lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn) = σ(w,w); w ∈ SX.

Since fX ⊆ HX, there exists {yn} such that

(2.3) fxn = Hyn.

Due to (2.2) and (2.3), we write lim
n→∞

σ(Hyn, w) = σ(w,w), so from the closedness

condition of HX, we have
w ∈ SX ∩HX.
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Now, we want to prove that gyn → w as n→ ∞. We have

σ(fxn, gyn) ≤ σ(fxn, Sxn) + σ(Sxn, gyn)− σ(Sxn, Sxn)

≤ σ(fxn, w) + σ(w, Sxn)− σ(w,w) + σ(Sxn, gyn)− σ(Sxn, Sxn).

By (2.2), lim
n→∞

σ(Sxn, Sxn) = σ(w,w). We also get

(2.4) lim sup
n→∞

σ(fxn, gyn)− lim sup
n→∞

σ(Sxn, gyn) ≤ 0.

Again, by (2.2), lim
n→∞

σ(fxn, fxn) = σ(w,w), so similarly,

(2.5) lim sup
n→∞

σ(Sxn, gyn)− lim sup
n→∞

σ(fxn, gyn) ≤ 0.

As {gyn} is bounded, lim sup
n→∞

σ(fxn, gyn) and lim sup
n→∞

σ(Sxn, gyn) are finite num-

bers. Using (2.4) and (2.5), there exists δ ≥ 0 such that one writes

(2.6) lim sup
n→∞

σ(Sxn, gyn) = lim sup
n→∞

σ(fxn, gyn) = δ.

So there are subsequences {xnk
} and {ynk

} such that

(2.7) lim
k→∞

σ(Sxnk
, gynk

) = lim
k→∞

σ(fxnk
, gynk

) = δ.

Clearly, by (2.2),

(2.8) σ(w,w) = lim
k→∞

σ(fxnk
, Sxnk

) = lim
k→∞

σ(Sxnk
, fxnk

).

Since σ(fxnk
, fxnk

) ≤ σ(fxnk
, Sxnk

), passing to the limit as k → ∞, we obtain

(2.9) σ(w,w) ≤ δ.

We have

Λ(fxnk
, ynk

)

= max{σ(Sxnk
, Hynk

), σ(fxnk
, Sxnk

), σ(Hynk
, gynk

), σ(fxnk
, Hynk

), σ(Sxnk
, gynk

)}

= max{σ(Sxnk
, fxnk

), σ(fxnk
, Sxnk

), σ(fxnk
, gynk

), σ(fxnk
, fxnk

), σ(Sxnk
, gynk

)}.

Passing to the limit as k → ∞, we get due to (2.9)

(2.10) lim
k→∞

Λ(fxnk
, ynk

) = max{σ(w,w), σ(w,w), δ, σ(w,w), δ} = δ.

By using (2.1),

β(σ(fxnk
, gynk

)) ≤ β(Λ(xnk
, ynk

))− α(Λ(xnk
, ynk

)).

Taking the upper limit as k → ∞ and using (2.8) and (2.10),

β(δ) ≤ β(δ)− α(δ),
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i.e., α(δ) = 0, which yields that δ = 0. Thus σ(w,w) = δ = 0. So, by (2.6), we have

lim
n→∞

σ(fxn, gyn) = 0.

Consequently,
lim
k→∞

σ(gynk
, gynk

) = 0 = σ(w,w).

We obtained

lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w) = lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w).

So the pairs (f, S) and (g,H) satisfy the (CLRSH)−property.

Now, we introduce and prove our main result by using the concept of (CLR)-
property on the class of quasi-partial metric spaces.

Theorem 2.1. Let f, g,H and S be self-mappings on a (QPMS) (X, σ) satisfying
the condition (v) of Lemma 2.1. If the pairs (f, S) and (g,H) satisfy the (CLRSH)-
property, then there exists x ∈ X such that fx = gx = Sx = Hx. Furthermore, if
(f, S) and (g,H) are w-compatible, then such x is the unique common fixed point
of f , g, H and S.

Proof. As (f, S) and (g,H) verify the (CLRSH)-property, there exist two sequences
{xn} and {yn} in X such that

lim
n→∞

σ(fxn, w) = lim
n→∞

σ(w, fxn) = lim
n→∞

σ(Sxn, w) = lim
n→∞

σ(w, Sxn)

= lim
n→∞

σ(w, gyn) = lim
n→∞

σ(gyn, w)

= lim
n→∞

σ(Hyn, w) = lim
n→∞

σ(w,Hyn) = σ(w,w); w ∈ SX ∩HX.

Since w ∈ SX , there exists k ∈ X such that Sk = w. Now, we want to prove that
fk = Sk. Suppose that fk 6= Sk. Obviously,

(2.11) lim
n→∞

σ(Hyn, gyn) = σ(w,w),

and

(2.12) lim
n→∞

σ(fk,Hyn) = lim
n→∞

σ(fk, gyn) = σ(fk, w).

From (2.1),

(2.13) β(σ(fk, gyn)) ≤ β(Λ(k, yn))− α(Λ((k, yn)),

where

Λ(k, yn) = max{σ(Sk,Hyn), σ(fk, Sk), σ(Hyn, gyn), σ(fk,Hyn), σ(Sk, gyn)}.
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Taking the limit as n→ ∞ and using the equations (2.11) and (2.12), we get

lim
n→∞

Λ(k, yn) = max{σ(w,w), σ(fk, w), σ(w,w), σ(fk, w), σ(w,w)}(2.14)

= σ(fk, w).

Letting n→ ∞ in (2.13), by (2.12) and (2.14), we get

β(σ(fk, w)) ≤ β(σ(fk, w)) − α(σ(fk, w)).

So α(σ(fk, w)) = 0, that is, σ(fk, w) = 0, i.e.,

(2.15) fk = Sk = w.

Since w ∈ HX , there exists ν ∈ X such that Hν = w. As (2.11) and (2.12), we
may write

(2.16) lim
n→∞

σ(fxn, Sxn) = σ(w,w),

and

(2.17) lim
n→∞

σ(Syn, gν) = lim
n→∞

σ(fxn, gν) = σ(w, gν).

By (2.1),

β(σ(fxn, gν)) ≤ β(Λ(xn, ν))− α(Λ(xn, ν)),

where

Λ(xn, ν) = max{σ(Sxn, Hν), σ(fxn, Sxn), σ(Hν, gν), σ(fxn, Hν), σ(Sxn, gν)}.

Due to (2.16) and (2.17),

lim
n→∞

Λ(xn, ν) = max{σ(w,w), σ(w,w), σ(w, gν), σ(w,w), σ(w, gν)}(2.18)

= σ(w, gν).

By (2.17) and (2.18),

β(σ(w, gν)) ≤ β(σ(w, gν)) − α(σ(w, gν)).

This gives that α(σ(w, gν)) = 0, hence σ(w, gν)) = 0. So Hν = gν = w. The
w-compatibility of (f, S) together with fk = Sk implies that

fw = fSk = Sfk = Sw.

We shall prove that fw = Sw = w. We have

β(σ(fw,w)) = β(σ(fw, gν)) ≤ β(Λ(w, ν)) − α(Λ(w, ν)),



422 M.A. Barakat and H.M. Aydi

where

Λ(w, ν) = max{σ(Sw,Hν), σ(fw, Sw), σ(Hν, gν), σ(fw,Hν), σ(Sw, gν)}

= max{σ(fw,w), σ(fw, fw), σ(w,w), σ(fw,w), σ(fw,w)}

= σ(fw,w).

Then
β(σ(fw, gν)) ≤ β(σ(fw, gν)) − α(σ(fw, gν)).

This implies that α(σ(fw,w)) = 0, that is, σ(fw,w) = 0, so fw = w = Sw.
Again the w-compatibility condition of (g,H) and the fact that gν = Hν imply
that gw = gHν = Hgν = Hw. Again, using (2.1),

β(σ(w, gw)) = β(σ(fk, gw)) ≤ β(Λ(k, w)) − α(Λ(k, w)),

where

Λ(k, w) = max{σ(Sk,Hw), σ(fk, Sk), σ(Hw, gw), σ(fk,Hk), σ(Sk, gk)}

= max{σ(w, gw), σ(w,w), σ(gw, gw), σ(w, gw), σ(w, gw)}

= σ(w, gw).

Then
β(σ(w, gw)) = β(σ(fk, gw)) ≤ β(σ(w, gw)) − α(σ(w, gw)),

hence, α(σ(w, gw)) = 0. Thus σ(w, gw) = 0, so w = gw = Hw.

Finally, we shall show that w is unique. Consider that λ = fλ = gλ = Sλ = Hλ.

From (2.1),

β(σ(w, λ)) = β(σ(fw, gλ)) ≤ β(Λ(w, λ)) − α(Λ(w,w)).

Since

Λ(w, λ) = max{σ(Sw,Hλ), σ(fw, Sw), σ(Hλ, gλ), σ(fw,Hλ), σ(Sw, gλ)}

= max{σ(w, λ), σ(w,w), σ(λ, λ), σ(w, λ), σ(w, λ)}

= σ(w, λ),

we get
β(σ(w, λ)) = β(σ(fw, gλ)) ≤ β(σ(w, λ)) − α(σ(w, λ)).

Therefore, α(σ(w, λ)) = 0, that is, σ(w, λ) = 0, hence w = λ. The proof is com-
pleted.

Example 2.3. Take A = [0, 1]. Consider the quasi-partial metric on A defined by

σ(c, d) = |c− d|+ c.

Given f, g,H, S : A→ A as

f(d) = 0, g(d) =
1

8
d, S(d) =

1

2
d, H(d) =

1

3
d.
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It is clear that fA ⊂ HA, gA ⊂ SA and the pairs (f, S) and (g,H) satisfy the
(CLRSH)-property. Take β(t) = 8t and α(t) = t. We will prove that (2.1) holds.
First,

β(σ(fc, gd)) = β(|fc− gd|+ fc) = β(
1

8
d) = d.(2.19)

Moreover,

Λ(c, d) = max{σ(Sc,Hd), σ(fc, Sc), σ(Hd, gd), σ(fc,Hd), σ(Sc, gd)}

= max {σ(
1

2
c,
1

3
d), σ(0,

1

2
c), σ(

1

3
d,

1

8
d), σ(0,

1

3
d)σ(

1

2
c,
1

8
d)}

= max{|
1

2
c−

1

3
d|+

1

2
c,
1

2
c,
13

24
d,

1

3
d, |

1

2
c−

1

8
d|+

1

2
c}.

Case 1. Let Λ(c, d) = 13
24d. We obtain

β(Λ(c, d)) − α(Λ(c, d)) =
13

3
d−

13

24
d =

91

24
d > d = β(σ(fc, gd)).(2.20)

Case 2. Let Λ(c, d) = | 12c−
1
3d|+

1
2c. We have

β(Λ(c, d))− α(Λ(c, d)) = 8(|
1

2
c−

1

3
d|+

1

2
c)− (|

1

2
c−

1

3
d|+

1

2
c)

= 7(|
1

2
c−

1

3
d|+

1

2
c) > 7(

13

24
d) > d = β(σ(fc, gd)).(2.21)

Case 3. Let Λ(c, d) = | 12c−
1
8d|+

1
2c. We have

β(Λ(c, d))− α(Λ(c, d)) = 8(|
1

2
c−

1

8
d|+

1

2
c)− (|

1

2
c−

1

8
d|+

1

2
c)

= 7(|
1

2
c−

1

8
d|+

1

2
c) > 7(

13

24
d) > d = β(σ(fc, gd)).(2.22)

From (2.20) to (2.21), the condition (2.1) holds. Here, 0 is the unique common
fixed point, that is, f0 = g0 = S0 = H0 = 0.

Example 2.4. Let X = [0, 7) and σ(x, y) = |x− y|+ x for all x, y ∈ X. (X, σ) is
a (QPMS). Define (f, S) and (g,H) as two pairs of self-mappings on X, where

f(x) =
{

0 ; x ∈ {0} ∪ [5, 7)
2 ; x ∈ (0, 5),

g(x) =
{

0 ; x ∈ {0} ∪ [5, 7)
4 ; x ∈ (0, 5)

S(x) =
{

0 ; x ∈ {0}
5 ; x ∈ (0, 5)

x+5
2 ; x ∈ [5, 7),

H(x) =
{

0 ; x ∈ {0}
6 ; x ∈ (0, 5)

x− 5 ; x ∈ [5, 7).

Also, define β(t) = 8t and α(t) = t
10 . Choose {xn} = {0} and {yn} = {5 + 1

n
}.

Then

lim
n→∞

σ(f(xn), 0) = lim
n→∞

σ(0, f(xn)) = lim
n→∞

σ(S(xn), 0) = lim
n→∞

σ(0, S(xn)) = σ(0, 0) = S(0) = 0.
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Also
lim
n→∞

σ(g(yn), 0) = lim
n→∞

σ(0, g(yn)) = lim
n→∞

σ(H(yn), 0)

= lim
n→∞

σ(0, H(yn)) = σ(0, 0) = H(0) = 0.

Hence the two pairs (f, S) and (g,H) satisfy the (CLRSH)-property. Now, we
will show that the contraction condition (2.1) holds. For this, we distinguish the
following cases.
Case 1. x, y ∈ {0} ∪ [5, 7). Here, we have

β(σ(fx, gy)) = β(σ(0, 0)) = 0 ≤ β(Λ(x, y)) − α(Λ(x, y)).

Case 2. x ∈ {0} and y ∈ (0, 5). We have

β(σ(fx, gy)) = β(σ(0, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(0, 6), σ(0, 0), σ(6, 4), σ(0, 6), σ(0, 4)}

= max{6, 0, 8, 6, 4} = 8.

Hence,

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
> 32 = β(σ(fx, gy)).

Case 3. x ∈ (0, 5) and y ∈ [5, 7). We have

β(σ(fx, gy)) = β(σ(2, 0)) = 32.

Moreover,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, y − 5), σ(2, 5), σ(y − 5, 0), σ(2, y − 5), σ(5, 0)}

= max{|10− y|+ 5, 5, 2y − 10, |7− y|+ 2, 10} = 10.

Then

β(Λ(x, y))− α(Λ(x, y)) = 79 > 32 = β(σ(fx, gy)).

Case 4. x ∈ (0, 5) and y = 0. In this case,

β(σ(fx, gy)) = β(σ(2, 0)) = 32.

Then

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, 0), σ(2, 5), σ(0, 0), σ(2, 0), σ(5, 0)}

= max{10, 5, 0, 4, 10}= 10,
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that is,

β(Λ(x, y))− α(Λ(x, y)) = 79 > 32 = β(σ(fx, gy)).

Case 5. x, y ∈ (0, 5). Here,

β(σ(fx, gy)) = β(σ(2, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(5, 6), σ(2, 5), σ(6, 4), σ(2, 6), σ(5, 4)}

= max{6, 5, 8, 6, 6} = 8.

Then

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
> 32 = β(σ(fx, gy)).

Case 6. x ∈ [5, 7) and y ∈ (0, 5). We have

β(σ(fx, gy)) = β(σ(0, 4)) = 32.

Also,

Λ(x, y) = max{σ(Sx,Hy), σ(fx, Sx), σ(Hy, gy), σ(fx,Hy), σ(Sx, gy)}

= max{σ(
x+ 5

2
, 6), σ(0,

x+ 5

2
), σ(6, 4), σ(0, 6), σ(

x+ 5

2
, 4)}

= max{6,
x+ 5

2
, 8, 6, |

x+ 5

2
− 4|+

x+ 5

2
} = 8.

Hence,

β(Λ(x, y)) − α(Λ(x, y)) = 64−
4

5
= β(σ(fx, gy)).

Therefore, all conditions of Theorem 2.1 are satisfied. So, the mappings f, g,H and
S have a common fixed point, which is 0.

On the other hand, fX = {0, 2} * SX = {0} ∪ [5, 6) and gX = {0, 4} * HX =
{6}∪ [0, 2). Note that the result of Nazir and Abbas [8] is not applicable because the
hypothesis of containment among ranges of the mappings f, g, S,H in [[8], Theorem
2.1] does not hold here.

Corollary 2.1. Let (X, σ) be a (QPMS). Assume that f, S, g,H : X → X verify
all conditions in Lemma 2.1. Suppose, in addition, that the pairs (f, S) and (g, T )
are w-compatible. Then there exists a unique common fixed point of f , g, H and S.

Proof. From Lemma 2.1, (f, S) and (g,H) share the (CLRSH)-property. All con-
ditions of Theorem 2.1 are fulfilled. Then exists a unique x ∈ X such that fx =
Sx = gx = Hx = x.
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By taking β(t) =
∫ t

0 η(s)ds in Lemma 2.1 and Theorem 2.1, where η : [0,∞) →

[0,∞) is a Lebesgue-integrable summable mapping such that
∫ ǫ

0 η(t)dt > 0 for ǫ > 0,
we state the following.

Corollary 2.2. Let f, S, g and H be self-mappings on a (QPMS) (X, σ) such that

(2.23)

∫ σ(fx,gy))

0

η(s)ds ≤ Λ(x, y)− α(Λ(x, y)),

where Λ(x, y) =
∫max{σ(Sx,Hy),σ(fx,Sx),σ(Hy,gy),σ(fx,Hy),σ(Sx,gy)}

0
η(s)ds. Assume that

(f, S) and (g,H) fulfill the (CLRSH)-property. Then fx = Sx = gx = Hx. Fur-
thermore, if (f, S) and (g, T ) are w-compatible, there exists only one point x ∈ X

so that fx = Sx = gx = Hx = x.

Remark 2.1. Corollary 2.2 extends the paper by Vetro et al. [11] from metric
spaces to (QPMS).
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