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Abstract. In this study, we describe the classical Bernoulli-Euler elastic curve in a

manifold by the property that the velocity vector field of the curve is harmonic. Then,

a condition is obtained for the elastic curve in a manifold. Finally, we give an example

which provides the condition mentioned in this paper and illustrate it with a figure.
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1. Introduction

The history of the elastica or the elastic curve is very old and many researchers
have worked on this issue, for example [6, 11]. One can study a bent thin rod
and consider the energy it stores. The classical Euler-Bernoulli model assigns a
numerical value to this energy, which is proportional to

∫ s

0
k2(u)du. The elastica is

the critical point for this total squared curvature functional on regular curves with
given boundary conditions [8].

In [1] the author calculated the energy of the Frenet vector fields in Rn, showing
that the energy of the velocity vector field was E(V1(s)) =

1
2

∫ s

a
k21(u)du. By means

of this result, we have seen that the speed vector field of the Bernoulli-Euler elastic
curve is harmonic.

In this paper, using the above result, we give a condition for elastica on a manifold.

Definition 1.1. Let (M, g) be a Riemann manifold and α : I → M, be a unit speed
curve.

If {Ei}ri=1 is an orthonormal frame along α and

E1 =
dα

ds
,
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▽α
∂

∂s

E1 = k1E2,

▽α
∂

∂s

Ei = −ki−1Ei−1 + kiEi+1, ∀i = 2, ..., r − 1

▽α
∂

∂s

Er = −kr−1Er−1,

where k1, ..., kr−1 are positive functions with a real value on I, then α is said to be
an r-th order Frenet curve. These functions are called the curvature functions of
the curve α.

Proposition 1.1. The connection map K : T (T 1M) → T 1M verifies the following
conditions.

1) π◦K = π◦dπ and π◦K = π◦π̃ , where π̃ : T (T 1M) → T 1M is the tangent
bundle projection.

2) For ω∈TxM and a section ξ : M → T 1M, we have

K(dξ(ω)) = ∇ωξ

where T 1M is the unit tangent bundle and ∇ is the Levi-Civita covariant derivative
[3].

Definition 1.2. For η1, η2∈Tξ(T
1M), we define

gS(η1, η2) =< dπ(η1), dπ(η2) > + < K(η1),K(η2) > .(1.1)

This gives a Riemannian metric on tangent bundle TM . As mentioned, gS is called
the Sasaki metric. The metric gs makes the projection π : T 1M → M a Riemannian
submersion [3, 10].

Definition 1.3. Let f : (M,<,>) → (N, h) be a differentiable map between
Riemannian manifolds. The energy of f is given by

E(f) = 1

2

∫

M

(

n∑

a=1

h(df(ea), df(ea))υ(1.2)

where υ is the canonical volume form in M and {ea} is a local basis of the tangent
space (see [12, 4], for example).

By a (smooth) variation of f we mean a smooth map f : M×(−ǫ, ǫ) → N, (x, t) →
ft(x) (ǫ > 0) such that f0 = f . We can think of {ft} as a family of smooth mappings
which depend ’smoothly’ on a parameter t ∈ (−ǫ, ǫ).

Definition 1.4. A smooth map f : (M, g) → (N, h) is said to be harmonic if

d

dt
E(ft;D)|t=0 = o

where E(f ;D) = 1
2

∫
D
(
∑n

a=1 h(df(ea), df(ea))υg, for all compact domains D and all
smooth variations ft of f supported in D, [2].
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Definition 1.5. Let α : [a, b] → Rn be a regular curve. Elastica is defined for the
curve α over the each point on a fixed interval [a, b] as a minimizer of the bending
energy:

EB =
1

2

∫ b

a

k21(s)ds,(1.3)

with some boundary conditions [5, 7].

The right side of Equation (1.3) is the energy of the velocity vector field according
to [1]. By combining this resultant with the definition 1.4 we can give the following
definition

2. Elastica in a Manifold

Definition 2.1. A curve on a manifold is called a classical Bernoulli-Euler elastic

curve if the velocity vector field of the curve is harmonic.

Theorem 2.1. Let M be a Riemann manifold, α be r-th order Frenet curve in M

and α(a) = p, α(b) = q. If α is classical elastic curve, then the following equation
is satisfied,

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0(2.1)

where k1 is the 1th curvature function and λ is the real-valued function on [a, b].

Proof . Let α : I → M be the r-th order Frenet curve C on ϕ(U) ⊂ M and
α = ϕ ◦ γ, γ = (γ1, ..., γm), γ : I → U ⊂ Rm;ϕ : U → M. Let ({Ei}ri=1) be the
Frenet frame field on α.

We define the λ and vi functions to create a curve family between two fixed points
on the manifold. The functions are: λ : [a, b] ⊂ I → R, λ(s) = (s − a)(b − s),
λ(a) = 0, λ(b) = 0 and λ(s) 6= 0 for all s ∈ (a, b), of class C2 and

λ(s) E1(s) = (v1(s), v2(s), ..., vn(s)). vi : [a, b] → R.

Since {ϕ1(γ(s)), ..., ϕm(γ(s))} is a local basis of the tangent space, where ϕ1, ..., ϕm

are first-order partial derivatives, we have

λ(s)E1(s) = Σm
i=1vi(s)ϕi(γ(s)); where vi : [a, b] → R.(2.2)

Let the collection of the curve be

αt(s) = ϕ(γ1(s) + tv1(s), ..., γm(s) + tvm(s)),(2.3)
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for t = 0, α0(s) = α(s) and

(ϕ−1 ◦ αt)(s) = γt(s) = (γ1(s) + tv1(s), ..., γm(s) + tvm(s)).

From (2.2) we get λ(a)E1(a) = Σm
i=1vi(a)ϕi(γ(a)). Since λ(a) = 0 we have vi(a) = 0

and

γt(a) = (γ1(a) + tv1(a), ..., γm(a) + tvm(a) = (γ1(a), ..., γm(a)) = γ(a).

Similarly, we get γt(b) = γ(b). Using these results in (2.3) we obtain

αt(a) = (ϕ ◦ γt)(a) = α(a) = p and αt(b) = (ϕ ◦ γt)(b) = α(b) = q.

These results show that αt is a curve segment from p to q on M . Take this collection
αt(s) = α(s, t) for all curves. The expression for the energy of the velocity vector
field E1t of α

t from p to q on M becomes E(E1t).

Let TCt be the tangent bundle. So we have E1t : Ct → TCt, where TCt =
∪j∈ITαt(j)Ct, Ct = αt(I) and Tαt(j)Ct is the straight line through the point αt(j)
in the E1t direction. Let π : TCt → Ct be the bundle projection. By using Equation
(1.2) we calculate the energy of E1t as

E(E1t) =
1

2

∫ b

a

gS(dE1t(E1t(α(s, t)), dE1t (E1t(α(s, t)))ds(2.4)

where ds is the element arc length. From (1.1) we have

gS(dE1t(E1t), dE1t(E1t)) =< dπ(dE1t(E1t)), dπ(dE1t (E1t)) >

+ < K(dE1t(E1t)),K(dE1t(E1t)) > .

Since E1t is a section, we have d(π)◦d(E1t) = d(π◦E1t) = d(idCt
) = idTCt

. By
Proposition 1.1, we also have that

K(dE1t(E1t)) = ∇α
E1t

E1t = E
′

1t =
∂E1t

∂s
,

giving
gS(dE1t(E1t), dE1t(E1t)) =< E1t , E1t > + < E

′

1t , E
′

1t > .

Using these results in (2.4) we get

E(E1t) =
1

2

∫ b

a

(< E1t , E1t > + < E
′

1t , E
′

1t >)ds(2.5)

By Definition 1.4, if E1t is a harmonic, then t = 0 should be the critical point of

E(E1t). Supposing that
∂E(E1t

)

∂t |t=0
= 0, from (2.5) we obtain:

∂E(E1t)

∂t
=

∂

∂t
[
1

2

∫ b

a

(< E1t , E1t > + < E
′

1t , E
′

1t >)ds]

=
1

2
[

∫ b

a

∂

∂t
[(< E1t , E1t > + <

∂E1t

∂s
,
∂E1t

∂s
>]ds.
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Since < E1t , E1t >= 1 we have ∂
∂t

< E1t , E1t >= 0 and we get

∂E(E1t)

∂t
=

1

2

∫ b

a

∂

∂t
<

∂E1t

∂s
,
∂E1t

∂s
> ds =

∫ b

a

<
∂2E1t

∂s∂t
,
∂E1t

∂s
> ds.(2.6)

We can write

∂

∂s
<

∂E1t

∂t
,
∂E1t

∂s
>=<

∂2E1t

∂s∂t
,
∂E1t

∂s
> + <

∂E1t

∂t
,
∂2E1t

∂s2
> .

Thus, we can deduce,

<
∂2E1t

∂s∂t
,
∂E1t

∂s
>=

∂

∂s
<

∂E1t

∂t
,
∂E1t

∂s
> − <

∂E1t

∂t
,
∂2E1t

∂s2
>(2.7)

Substituting (2.7) in (2.6), for, t = 0, we have

∂E(E1t)

∂t |t=0
=

∫ b

a

[
∂

∂s
<

∂E1t

∂t
(s, 0),

∂E1k

∂s
(s, 0) > − <

∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) >]ds

and

∂E(E1t)

∂t |t=0
= <

∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >|ba(2.8)

−
∫ b

a

<
∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) > ds.

From (2.2) and (2.3), we obtain,

∂α

∂t
(s, t) = λ(s)E1t(s).(2.9)

and

∂α

∂s
(s, t)|t=0

= α
′

(s) = E1(s).(2.10)

Now we calculate the partial derivatives of (2.10) with respect to s and t; using
Frenet formulas, we get

∂E1t

∂s
(s) =

∂2α

∂s2
(s, t)|t=0

= α
′′

(s) = E
′

1(s) = k1(s)E2(s)(2.11)

and

∂E1t

∂t
(s, t) =

∂2α

∂s∂t
(s, t) =

∂2α

∂t∂s
(s, t).

From (2.9), we have

∂E1t

∂t
(s, t)|t=0

=
∂E1t

∂t
(s, 0) = λ

′

(s)E1(s) + λ(s)k1(s)E2(s).(2.12)
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It follows from (2.11) and (2.12) that

<
∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >= λ(s)k21(s).

Considering the candidate function λ(a) = λ(b) = 0, we get:

<
∂E1t

∂t
(s, 0),

∂E1t

∂s
(s, 0) >|ba= λ(b)k21(b)− λ(a)k21(a) = 0.(2.13)

From (2.11), we get

∂2E1t

∂s2
(s, 0) = −k21(s)E1(s) + k

′

1(s)E2(s) + k1(s)k2(s)E3(s)(2.14)

Therefore, (2.12) and (2.14) gives

<
∂E1t

∂t
(s, 0),

∂2E1t

∂s2
(s, 0) >= [−λ(s)k21(s)]

′

+ 3λ(s)k1(s)k
′

1(s)(2.15)

Substituting (2.13) and (2.15) in (2.8) yields

∂E(E1t)

∂t |t=0
= −

∫ b

a

([−λ(s)k21(s)]
′

+ 3λ(s)k1(s)k
′

1(s))ds = 0

and

∂E(E1t)

∂t |t=0
= [λ(s)k21(s)] |ba −3

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0

We are looking the candidate function λ(a) = λ(b) = 0,

which given [λ(s)k21(s)] |ba= 0 and

∂E(E1t)

∂t |t=0
= −3

∫ b

a

λ(s)k1(s)k
′

1(s)ds = 0

This completes the proof of the theorem. �

Example 1. Let ϕ : R2 → R3, ϕ = (x, y, 1
3xy), ϕ(R

2) = M and α(s) = (3s, s2, s3).
If we can choose λ : [−10, 10] → R, λ(s) = 102 − s2 then λ(−10) = 0λ(10) = 0 and
λ(s) 6= 0 for all s ∈ (−10, 10). We calculate

k1(s) =
6
√
s4 + 9s2 + 1

(
√
9s4 + 4s2 + 9)3

,

k
′

1(s) = 6

2s3+9s√
s4+9s2+1

(
√
9s4 + 4s2 + 9)3 − 3

√
s4 + 9s2 + 1(

√
9s4 + 4s2 + 9)2(35s3 + 8s)

(9s4 + 4s2 + 9)3
,
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Fig. 2.1:

and

∂E(Tk)

∂k |k=0
= −

∫ 10

−10

(102 − s2)k1(s)k
′

1(s)ds = 0.

Thus α is an elastica on M , Figure 2.1.

Conclusion. In this paper, we have determined the classical Bernoulli-Euler elastic
curve that is the harmonic of the velocity vector field of the curve on a manifold.
We have obtained the collection of curves passing through p and q points using λ

and vi functions on the manifold. We have also proposed a novel condition to be
the classical Bernoulli-Euler elastic curve in the collection of curves. In the end, we
have given an example of the elastic curve satisfying the novel condition on a two-
dimensional manifold and shown the graphs of both the manifold and the elastic
curve.
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