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EFFICIENT ENCODINGS TO HYPERELLIPTIC CURVES OVER

FINITE FIELDS ∗

Amirmehdi Yazdani Kashani and Hassan Daghigh

Abstract. Many cryptosystems are based on the difficulty of the discrete logarithm
problem in finite groups. In this case elliptic and hyperelliptic cryptosystems are more
noticed because they provide good security with smaller size keys. Since these systems
were used for cryptography, it has been an important issue to transform a random value
in finite field into a random point on an elliptic or hyperelliptic curve in a deterministic
and efficient method. In this paper we propose a deterministic encoding to hyperelliptic
curves over finite field. For cryptographic desires it is important to have an injective
encoding. In finite fields with characteristic three we obtain an injective encoding for
genus two hyperelliptic curves.
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1. Introduction

We first recall that a hyperelliptic curve H of gunes g is a curve by the equation
y2 = f(x), where f a squarefree, monic polynomial of degree 2g + 1. Every hyper-
elliptic curve of genus 1 is called an elliptic curve. In fact an elliptic curve over the
finite field Fq is the set E(Fq) which includes all of the points (x, y) such that

y2 = x3 + ax+ b

where a, b ∈ Fq with an additional point that is called infinity. The points on E(Fq)
with ∞ form an additive abelian group but for g ≥ 2 there is not a group law on
the points of a hyperelliptic curve. However the divisor group of H is denoted by
Div(H) is a free abelian group. A divisorD ∈ Div(H) is a formal sum D =

∑

mPP
where mP ∈ Z and mP = 0 for all but finitely many P ∈ H . Then the degree of D
is defined by degD =

∑

mP . The divisors of degree 0 form a subgroup of Div(H)
which is denoted by Div0(H). For every f ∈ ¯Fq(H) the divisor of f is defined
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by div(f) =
∑

ordP (f)P where ordP (f) is the order of vanishing of f at P . A
divisor D ∈ Div(H) is called a principal divisor if it has the form D = div(f) for
some f ∈ ¯Fq(H). Two divisors D1, D2 are called linearly equivalent if D1 −D2 is
principal. The group of principal divisors of H is denoted by Princ(H). Since every
principal divisor has degree 0, Princ(H) is a subgroup of Div0(H). The jacobian of
H over Fq is defined by J(H) = Div0(H)/Princ(H). Since in many cryptosystems
we need to a group we use the group J(H) rather than the set of points on H . We
have:

(
√
q − 1)2g ≤ #J(H) ≤ (

√
q + 1)2g

Therefore #J(H) ≈ qg.

2. Background

Encoding from finite fields element into the points of a given elliptic or hyperelliptic
curve is a more challenging problem and requires to be studied more carefully.
Before 2006 the usual method was Try and Increment. It was to take x ∈ Fq and
check whether this value corresponds to a valid abscissa of a point on the elliptic
curve. If not, try another abscissa until one of them works. One defect of this
algorithm is that the number of operation is not constant. namely the number of
steps depends on the input x.

Algorithm 1 Try and Increment Method

Require: : u an integer.
Ensure: : Q, a point of E(Fq).
for i = 0 to k − 1 do

(a) set x = u+ i

(b) If x3+ax+b is a quadratic residue in Fq, then return Q = (x, (x3+ax+b)
1
2 )

end for

return ⊥

The twisted curves method was to apply curve and its twist as suggested in [6]. If
E is defined by y2=x3+ax+b over Fq, the twist of E is a curve Ed defined by

dy2=x3+ax+b,

where d is a quadratic non-residue in Fq. Then for every x there exists y such that
the point (x, y) belongs to E or Ed. This method was little noticed since it requires
calculation on two curves and this doubles the running time.

When q≡2 (mod 3) the map x→x3 is a bijection from F
∗

q to itself. If E is defined
by the equation y2 = x3 + b, the map

f : u −→ ((u2 − b)
1
3 , u)

gives a bijection from Fq to affine points on the curve E. Therefore these curves are
supersingular for every b. The MOV attack gives an efficient computable method
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which enables to reduce the DLP on a supersingular elliptic curve to DLP on a
finite field [15]. Therefore in order to avoid this attack, much larger parameters
must be used.
In 2006 the first algorithm for encoding to elliptic curves in deterministic polynomial
time was proposed by Shallue and Woestijne [16]. The algorithm is based on the
Skalba equality which says that there exist four mapsX1(t), X2(t), X3(t), X4(t) such
that

f(X1(t))f(X2(t))f(X3(t)) = (X4(t))
2,

where f (x) = X3 + aX + b. Then in a finite field for a fixed parameter t, there
exists 1 6 j 6 3 such that f(Xj (t)) is a quadratic residue. This implies that

(Xj(t),
√

f(Xj(t))) is a point on E : y2 = f (x) . For q ≡ 3(mod 4) computing

the square root
√

f(Xj(t)) is simply an exponentiation but for q ≡ 1(mod 4), no
deterministic algorithm has been found for computing the square root. If we have
a non quadratic residue in Fq we can apply Tonelli Shanks algorithm to compute
the square root. Using Skalba equality the authors of [16] show that a modifica-
tion of Tonelli-Shanks algorithm can compute square roots deterministicaly in time
O(log4q). Shallue-Woestijne method runs in time O(log4q) for any field size q = pn

and in time O(log3q) when q ≡ 3 (mod 4). The maps were simplified and general-
ized to hyperelliptic curves of the forms y2 = xn+ax+ b and y2 = xn+ax2+ bx by
Ulas in 2007 [18]. We recall these maps for elliptic curves in the following result.

Lemma 2.1. Let f(x) = x3 + ax+ b and

X1(t, u) = u

X2(t, u) =
−b
a
(1 +

1

t4f(u)2 + t2f(u)
)

X3(t, u) = t2f(u)X2(t, u)

U(t, u) = t3f(u)2f(X2(t, u)).

Then
U(t, u)2 = f(X1(t, u)).f(X2(t, u)).f(X3(t, u))

In 2009 Icart proposed another method for encoding to elliptic curves [13]. If
q ≡ 2 (mod 3) the map x → x3 is a bijection in Fq and cube roots are uniquely

defined with x
1
3 = x

2q−1

3 .Icart defined an encoding as follows:

fa,b: Fpn−→Ea,b

u−→ (x, y) ,

where

x=(v2−b−u6

27
)

1
3

+
u2

3
y=ux+v v=

3a−u4

6u

He fixed fa,b (0) = O, the neutral element of the elliptic curve. Icart proved that for
all p ∈ Ea,b the set f−1

a,b (p) is computable in polynomial time and
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∣

∣

∣
f−1
a,b (p)

∣

∣

∣
6 4, namely a point has at most 4 preimages. He also proved that his

algorithm works with complexity O
(

log3q
)

and conjectured that the image of fa,b

contains 5
8 .#Ea,b(Fq) +O(q

1
2 ). Icart’s conjecture was proved by Farashahi, Shpar-

linski and Voloch[9].

Brier et al [5] proposed a further simplification of the Shallue-Woestijne-Ulas
algorithm for elliptic curves over finite field Fq with q ≡ 3(mod 4). They showed
every point p = (x, y) has at most 8 preimages.

For cryptographic purposes it is important to have an injective encoding into
an elliptic curve. In 2011 Farashahi [8] described an injective encoding to Hessian
curves with a point of order 3 over Fq where q ≡ 2(mod 3).
Fouque, Jeux and Tibouchi [10] proposed an injective encoding to elliptic curves of
the form

Eδ
c : y2 = x3 − 4δx2 + δ(c+ δ/c)

2
x,

where c ∈ Fq\{−1, 0, 1}, δ = ±1.
Bernstein, Hamburg, Krosnova and Lange [3] proposed an injective encoding for
elliptic curves of the form

Ea,b : y
2 = x(x2 + ax+ b)

with a, b ∈ Fq.

Foque and Tibouchi [11] proposed a deterministic encoding in to hyperelliptic
curves of the form

y2 = x2g+1 + a1x
2g−1 + · · ·+ agx,

where g is the genus of the curve.
We need to take some security considerations for choosing a hyperelliptic curves.
In this context, we have two important sequences:
1. If g is large there exists a subexponential algorithm for solving the discrete
logarithm problems in J(Fq).[1]
2. If g is small such that g > 5 the attack by gaudry can solve discrete logarithm
problem in J(Fq).[12]
Therefore for cryptographic desires we must consider the hyperelliptic curves of
genus 2,3,4.

3. Main result

In this section we first propose an algorithm for encoding to hyperelliptic curves of
the form y2 = xn + axn−1 + bx over finite field Fq. Then we show our proposed
method defines an injective encding where n = 5 (genus is 2) and q is a power of 3.

Lemma 3.1. Let g(x) = xn + axn−1 + bx. If λ is a quadratic non-residue such
that for some x ∈ Fq we have

(3.1) g(λ.x) = λg(x)
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then either x or λ.x is the abscissa of a point on the y2 = g(x). Moreover for each
λ the value

(3.2) x =
a(1− λn−2)

(λn−1 − 1)

satisfies (3.1).

Proof. Since λ is not a quadratic residue, if x satisfies (3.1) then either g(λ.x) or
g(x) must be a square in Fq. Therefor either x or λ.x must be abscissa of a point
on the curve y2 = g(x). Moreover we have:

g(λx) = λg(x)

(λx)n + a(λx)n−1 + b(λx) = λ(xn + axn−1 + bx)

λn−1xn + aλn−2xn−1 + bx = xn + axn−1 + bx

λn−1x+ aλn−2 = x+ a

x =
a(1− λn−2)

(λn−1 − 1)
.

Theorem 3.1. Let q ≡ 3(mod 4) and for any t ∈ Fq

X1(t) =
a(1− (−t)2n−4)

((−t)2n−2 − 1)

X2(t) = −t2X1(t)

U(t) = tg(X1(t))

Then
(U(t))2 = −g(X1(t))g(X2(t))

Proof. since q ≡ 3(mod 4), −1 is a quadratic non-residue and we can take λ = −t2
in previous lemma. Therefore X1(t) = x and X2(t) = λx and we have:

g(X1(t))g(X2(t)) = g(x)g(λ.x) = λg(x)2 = −t2g(x)2
= −(tg(x))2 = −(U(t))2

Remark 3.1. Let P = (XP , YP ) be a point generated by this method. We solve the
equations X1(t) = XP and X2(t) = XP to compute the pre-images of P . Since degX1(t) =
2n − 2 and degX2(t) = 2n − 2 each equation has at most 2n − 2 solutions. The minus

sign in the final step of the algorithm makes that set of points obtained of form (X1, g
q+1

4

1
)

and set of points obtained of form (X2,−g
q+1

4

2
) are separated. Hence a point has at most

2n− 2 pre-images.
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Algorithm 2 Encoding Algorithm

Require: : Fq such that q ≡ 3(mod 4), parameters a, t ∈ Fq.
Ensure: : (x, y) ∈ Hn,a,b(Fq) where Hn,a,b : y

2 = xn + axn−1 + bx.
If t = 0 then return (0, 0)
If t = ±1 then return O
λ←− −t2
X1 ←− a(1−λn−2)

(λn−1
−1)

X2 ←− λ.X1

g1 = Xn
1 + aXn−1

1 + bX1; g2 = Xn
2 + aXn−1

2 + bX2

If g1 is a square, return (X1, g
q+1

4

1 ), otherwise return (X2,−g
q+1

4

2 )

3.1. Injective encoding

In this section we express an injective encoding for hyperelliptic curves of the
form H2,a,b : y2 = x5 + ax4 + bx. If we want to use our proposed algorithm for
n = 5 we have:

X1(λ) =
a(1 − λ3)

(λ4 − 1)
X2(λ) =

a(λ− λ4)

(λ4 − 1)

for every quadratic non-residue λ.
If X1(λ1) = X1(λ2) we have:

λ4
1 − λ4

1λ
3
2 + λ3

2 − λ4
2 + λ3

1λ
4
2 − λ3

1 = 0.

We divide the sides of this equation by 1 − λ1 and 1 − λ2 and λ1 − λ2. Then we
have:

(3.3) (λ2
2 + λ2 + 1)λ2

1 + (λ2
2 + λ2)λ1 + λ2

2 = 0.

The discremnant of equation 3.3 is ∆1 = λ2
2(−3λ2

2 − 2λ2 − 3). Therefore if ∆1 is a
quadratic non-residue, this equation has no solution.
It also follows from X2(λ1) = X2(λ2) that:

λ4
1 − λ4

2 + λ1λ
4
2 − λ4

1λ2 − λ1 + λ2 = 0.

Similarly if we divide the sides of this equation by 1− λ1 and 1− λ2 and λ1 − λ2,
we have:

(3.4) λ2
1 + λ1(λ2 + 1) + λ2

2 + λ2 + 1 = 0

The discremnant of equation 3.4 is ∆2 = −3λ2
2 − 2λ2 − 3. Therefore if ∆2 is

a quadratic non-residue, this equation has no solution. By looking at equations
∆1 = λ2

2(−3λ2
2 − 2λ2 − 3) and ∆2 = −3λ2

2 − 2λ2 − 3, it can be concluded that
they are quadratic non-residues if for any λ as quadratic non-residue the value
∆ = −3λ2 − 2λ− 3 is a quadratic non-residue.
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Definition 3.1. Let p be a prime number and q = pn for n ∈ N. If {β1, . . . , βn−1}
be a basis for Fq over Fp , for every element a ∈ Fq we have:

a = a0 + a1β + · · ·+ an−1β
n−1 ai ∈ Fp

We define set S which consists of half the field elements as follows:

S = S0 ∪ S1 ∪ · · · ∪ Sn−1

Such that

S0 = {(a0, a1, . . . , an) : 0 < a0 ≤
p− 1

2
, ∀1 ≤ i ≤ n ai = 0}

S1 = {(a0, a1, . . . , an) : 0 < a1 ≤
p− 1

2
, ∀2 ≤ i ≤ n ai = 0}

...

Sn−1 = {(a0, a1, . . . , an) : 0 < an ≤
p− 1

2
}.

It is easy to see that S has cardinality pn
−1
2 and for each x ∈ Fq exactly one of x

or −x is in Fq .

Corollary 3.1. If we consider H2,a,b over finite fields of characteristic 3, the al-
gorithm 2 defines an injective encoding from S into points H2,a,b.

Proof. Since Char(Fq) = 3 we have ∆ = λ. Therefore the ∆ value is always a
quadratic non residue. Since each of λ comes by two values ±t, every point (x, y)
in the outpot of this algorithm has exactly 2 preimages in Fq. Therefore for the
elements of S we have an injective encoding.

Remark 3.2. We know that the set of points on Hn,a,b is not a group. Therefore if for
cryptographic purposes we need to be in a group, we can map Hn,a,b to the jacobian J of
Hn,a,b which is an abelian group. If we use the jacobian of a hyperelliptic curve instead
of an elliptic curve over a finite field Fq we can reduce key size by having the same level
of security. In our case by using a hyperelliptic curve of genus 2 over a finite field q ≃ 380

we have the same level of security when we use an elliptic curve group where q ≃ 3160.
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