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Abstract. In this paper, we study f−biharmonic curves as the critical points of the
f−bienergy functional E2(ψ) =

∫
M
f | τ (ψ)2 | ϑg, on a Lorentzian para-Sasakian

manifold M . We give necessary and sufficient conditions for a curve such that has
a timelike principal normal vector on lying a 4-dimensional conformally flat, quasi-
conformally flat and conformally symmetric Lorentzian para-Sasakian manifold to be
an f−biharmonic curve. Moreover, we introduce proper f−biharmonic curves on the
Lorentzian sphere S4

1 .
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1. Introduction

Harmonic maps ψ : (M, g) → (N, h) between Riemannian manifolds are the
critical points of the energy functional defined by

(1.1) E(ψ) =
1

2

∫

Ω

| dψ |2 ϑg,

for every compact domain Ω ⊂ M . The Euler-Lagrange equation of the energy
functional gives the harmonic equation defined by vanishing of

(1.2) τ(ψ) = trace∇dψ,

where τ(ψ) is called the tension field of the map ψ.

As a generalization of harmonic maps, biharmonic maps between Riemannian
manifolds were introduced by J. Eells and J.H. Sampson [7]. Biharmonic maps
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between Riemannian manifolds ψ : (M, g) → (N, h) are the critical points of the
bienergy functional

(1.3) E2(ψ) =
1

2

∫

Ω

| τ(ψ) |2 ϑg,

for any compact domain Ω ⊂M .

In [3], G.Y. Jiang derived the first and the second variation formulas for the
bienergy, showing that the Euler-Lagrange equation associated to E2 is

τ2(ψ) = −Jψ(τ(ψ))

= −△τ(Ψ)− traceRN(dψ, τ(ψ))dψ,

where Jψ is the Jacobi operator of ψ. The equation τ2(ψ) = 0 is called biharmonic
equation. Clearly, any harmonic maps is always a biharmonic map. A biharmonic
map that is not harmonic is called a proper biharmonic map.

For some recent geometric study of biharmonic maps see [14, 17, 18, 19, 24] and
the references therein. Also for some recent progress on biharmonic submanifolds
see [1, 2, 16, 20, 21] and for biharmonic conformal immersions and submersions see
[15, 25, 27].

The concept of f−biharmonic maps were initiated by W.J. Lu [23]. A smooth
map ψ : (M, g) → (N, h) between Riemannian manifolds is called an f−biharmonic
map if it is a critical point of the f−bienergy functional defined by

(1.4) E2,f (ψ) =
1

2

∫

Ω

f | τ(ψ) |2 ϑg,

for every compact domain Ω ⊂M .

The Euler-Lagrange equation gives the f−biharmonic map equation [23]

τ2,f = fτ2(ψ) + (△f)τ(ψ) + 2∇ψ
gradfτ(ψ)

= 0,

where τ(ψ) and τ2(ψ) are the tension and bitension fields of ψ, respectively. There-
fore, we have the following relationship among these types of maps [26]:

(1.5) Harmonic maps ⊂ Biharmonic maps ⊂ f −Biharmonic maps.

From now on we will call an f−biharmonic map, which is neither harmonic nor
biharmonic, a proper f−biharmonic map (see also [28]).

The study of Lorentzian almost paracontact manifold was initiated by K. Mat-
sumoto [9]. He also introduced the notion of Lorentzian para-Sasakian manifold.
In [4], I. Mihai and R. Rosca defined the same notion independently and there after
many authors [5, 11, 22] studied Lorentzian para-Sasakian manifolds.

Moreover, in [17] some geometric result for spacelike and timelike curves in a
4-dimensional conformally flat, quasi-conformally flat and conformally symmetric
Lorentzian para-Sasakian manifold to be proper biharmonic were given. Motivated
by this work, we introduced f−biharmonic curves on Lorentzian para-Sasakian
manifold and Lorentzian sphere S4

1 .
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2. Preliminaries

2.1. f−Biharmonic Maps

f−Biharmonic maps are critical points of the f−bienergy functional for maps
ψ : (M, g) → (N, h) between Riemannian manifolds:

(2.1) E2,f (ψ) =
1

2

∫

Ω

f | τ(ψ) |2 ϑg,

where Ω is a compact domain of M.

The following Theorem was proved in [23]:

Theorem 2.1. A map ψ : (M, g) → (N, h) between Riemannian manifolds is an
f−biharmonic map if and only if

(2.2) τ2,f = fτ2(ψ) + (△f)τ(ψ) + 2∇ψ
gradfτ(ψ) = 0,

where τ(ψ) and τ2(ψ) are the tension and bitension fields of ψ, respectively. τ2, f (ψ)
is called the f−bitension field of map ψ.

A special case of f−biharmonic maps is f−biharmonic curves. We have the
following.

Lemma 2.1. [26] An arclength parametrized curve γ : (a, b) → (Nm, g) is an
f−biharmonic curve with a function f : (a, b) → (0,∞) if and only if

(2.3) f(∇N
γ′∇N

γ′∇N
γ′γ′ −RN(γ′,∇N

γ′γ′)γ′) + 2f ′∇N
γ′∇N

γ′γ′ + f ′′∇N
γ′γ′ = 0.

2.2. Lorentzian almost paracontact manifolds

Let M be an n-dimensional differentiable manifold with a Lorentzian metric g,
i.e., g is a smooth symmetric tensor field of type (0, 2) such that at every point
p ∈M, the tensor

gp : TpM × TpM → R,

is a non-degenerate inner product of signature (−,+,+, ...,+), where TpM is the
tangent space of M at the point p. Then (M, g) is called a Lorentzian mani-
fold. A non-zero vector Xp ∈ TpM can be spacelike, null or timelike, if it satisfies
gp(Xp, Xp) > 0, gp(Xp, Xp) = 0 or gp(Xp, Xp) < 0, respectively.

Let M be an n-dimensional differentiable manifold equipped with a structure
(ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, ξ is a vector field, η is a 1-form on M such
that [9]

(2.4) ϕ2X = X + η(X)ξ,
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(2.5) η(ξ) = −1.

The above equations imply that

η ◦ ϕ = 0, ϕξ = 0, rank(ϕ) = n− 1.

Then M admits a Lorentzian metric g, such that

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ),

and M is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, g). Then
we get

(2.6) g(X, ξ) = η(X).

The manifoldM endowed with a Lorentzian almost paracontact structure (ϕ, ξ, η, g)
is called a Lorentzian almost paracontact manifold [9, 10]. In equations (2.4) and
(2.5) if we replace ξ by −ξ, we obtain an almost paracontact structure onM defined
by I. Sato [6].

A Lorentzian almost paracontact manifold equipped with the structure (ϕ, ξ, η, g)
is called a Lorentzian para-Sasakian manifold [9] if

(2.7) (∇Xϕ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ.

The conformal curvature tensor C is given by

C(X,Y )W = R(X,Y )W −
1

n− 2

{

S(Y,W )X − S(X,W )Y
+g(Y,W )QX − g(X,W )QY

}

+
r

(n− 1)(n− 2)
{g(Y,W )X − g(X,W )Y } ,

where S(X,Y ) = g(QX, Y ). The Lorentzian para-Sasakian manifold is called con-
formally flat if conformal curvature tensor vanishes i.e., C = 0.

The quasi-conformal curvature tensor Ĉ is defined by

Ĉ(X,Y )W = aR(X,Y )W − b

{

S(Y,W )X − S(X,W )Y
+g(Y,W )QX − g(X,W )QY

}

−
r

n

(

a

(n− 1)
+ 2b

)

{g(Y,W )X − g(X,W )Y } ,

where a, b constants such that ab 6= 0. Similarly the Lorentzian para-Sasakian
manifold is called quasi-conformally flat if Ĉ = 0.

We know that a conformally flat and quasi-conformally flat Lorentzian para-
Sasakian manifold Mn (n > 3) is of constant curvature 1 and also a Lorentzian
para-Sasakian manifold is locally isometric to a Lorentzian unit sphere if the relation
R(X,Y )·C = 0 holds onM [12]. For a conformally symmetric Riemannian manifold
[13], we get ∇C = 0. Thus for a conformally symmetric space the relation R(X,Y ) ·
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C = 0 satisfies. Hence a conformally symmetric Lorentzian para-Sasakian manifold
is locally isometric to a Lorentzian unit sphere [12].

Therefore, for a conformally flat, quasi-conformally flat and conformally sym-
metric Lorentzian para-Sasakian manifold M , we have [12]

(2.8) R(X,Y )W = g(Y,W )X − g(X,W )Y,

for any vector fields X,Y,W ∈ TM.

3. f−Biharmonic Curves in Lorentzian Para-Sasakian Manifolds

For a Lorentzian para-Sasakian manifold M , an arbitrary curve γ : I → M,

γ = γ(s) is called spacelike, timelike or lightlike (null), if all of its velocity vectors
γ′(s) are spacelike, timelike or lightlike (null), respectively. In this section, we
give some conditions for a curve having timelike normal vector on a 4-dimensional
conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-
Sasakian manifold M to be an f−biharmonic curve.

Theorem 3.1. Let γ : I → M be a curve parametrized by arclength and M be a
4-dimensional conformally flat, quasi-conformally flat and conformally symmetric
Lorentzian para-Sasakian manifold. Asuume that {T,N,B1, B2} be an orthonormal
Frenet frame field along γ such that principal normal vector N is timelike. Then γ
is a proper f−biharmonic curve if and only if one of the following cases happens:

i) The first curvature κ1 of the γ solves the following ordinary differential equa-
tion,

(3.1) 3(κ′1)
2 − 2κ1κ

′′

1 = 4κ41 − 4κ21,

with f = t1κ
−

3

2

1 and κ2 = 0.

ii) The first curvature κ1 of the γ solves the following ordinary differential equa-
tion,

(3.2) 3(κ′1)
2 − 2κ1κ

′′

1 = 4κ41 + 4κ41t
2
3 − 4κ21,

with f = t1κ
−

3

2

1 , κ2 6= 0, κ3 = 0, κ2

κ1

= t3.

Proof. Let γ be a curve parametrized by arclength on lying a 4-dimensional con-
formally flat, quasi-conformally flat and conformally symmetric Lorentzian para-
Sasakian manifold M and let {T,N,B1, B2} be an orthonormal Frenet frame field
along γ such that principal normal vector N is timelike.

In this case for this curve, the Frenet frame equations are given by [8]

(3.3)









∇TT

∇TN

∇TB1

∇TB2









=









0 κ1 0 0
κ1 0 κ2 0
0 κ2 0 κ3
0 0 −κ3 0

















T

N

B1

B2
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where T, N, B1, B2 are mutually orthogonal vectors and κ1, κ2 and κ3 are respec-
tively the first, the second and the third curvature of the γ.

In view of the Frenet formulas given in (3.3) and equation (2.8), we obtain

∇TT = κ1N,

∇T∇TT = κ21T + κ′1N + κ1κ2B1,

∇T∇T∇TT = (3κ1κ
′

1)T + (κ′′1 + κ31 + κ1κ
2
2)N

+(2κ′1κ2 + κ1κ
′

2)B1 + (κ1κ2κ3)B2,

and

R(T,∇TT )T = −κ1N,

where κ1, κ2 and κ3 are the first, the second and the third curvature of the γ,
respectively.

Considering Theorem 2.1 and equation (2.3), we get

τ2,f = f

[

(3κ1κ
′

1)T + (κ′′1 + κ31 + κ1κ
2
2 + κ1N)

+(2κ′1κ2 + κ1κ
′

2)B1 + (κ1κ2κ3)B2

]

+2f ′
[

κ21T + κ′1N + κ1κ2B1

]

+ f ′′ [κ1N ]

= 0.

Comparing the coefficients of above equation, we obtain that γ is an f−biharmonic
curve if and only if

(3.4) 3κ1κ
′

1 + 2κ21
f ′

f
= 0,

(3.5) κ′′1 + κ31 + κ1κ
2
2 + κ1 + 2κ′1

f ′

f
+ κ1

f ′′

f
= 0,

(3.6) 2κ′1κ2 + κ1κ
′

2 + 2κ1κ2
f ′

f
= 0,

(3.7) κ1κ2κ3 = 0.

Let κ1 be a non zero constant. Then from (3.4) we get f is constant. So γ is
biharmonic. Let κ2 be a non zero constant. From (3.4) and (3.6) one can easily see
that f is constant and γ is biharmonic.
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By using (3.4) - (3.7), if κ2 = 0, then f−biharmonic curve equation reduces to

(3.8) 3κ1κ
′

1 + 2κ21
f ′

f
= 0,

(3.9) κ′′1 + κ31 + κ1 + 2κ′1
f ′

f
+ κ1

f ′′

f
= 0.

Integrating the equation (3.8) we get f = t1κ
−

3

2

1 and using this result in (3.9), we
arrive at (i).

Otherwise, by use of (3.4) - (3.7), if κ1 6= constant and κ2 6= constant f−biharmonic
curve the equation is equivalent to

(3.10) f2κ31 = t21,

(3.11) (fκ1)
′′ = −fκ1(κ

2
1 + κ22 + 1),

(3.12) f2κ21κ2 = t2,

(3.13) κ3 = 0.

In view of (3.10), we find f = t1κ
−

3

2

1 and using this result in (3.11), we get κ2

κ1

= t3.

Finally substituting these equation in (3.11), we arrive at (ii).

Proposition 3.1. Let M be a 4-dimensional conformally flat, quasi-conformally
flat and conformally symmetric Lorentzian para-Sasakian manifold and γ : I →M

be an f−biharmonic spacelike curve parametrized by arclength such that principal
normal vector is timelike. If γ has constant geodesic curvature then γ is biharmonic.

4. f−Biharmonic Curves on Lorentzian Sphere S4
1

Suppose that M is a 4-dimensional conformally flat, quasi-conformally flat and
conformally symmetric Lorentzian para-Sasakian manifold. Since M is locally iso-
metric to a Lorentzian unit sphere S4

1 , we give some characterizations for f−biharmonic
curves in S4

1 . The Lorentzian unit sphere of radius 1 can be seen as the hyper-
quadradic

S4
1 = {p ∈ R

5
1 :< p, p >= 1},

in a Minkowski space R
5
1 with the metric

< , >: −dx21 + dx22 + dx23 + dx24 + dx25.
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Let γ : I → S4
1 be a curve parametrized by arclength. For an arbitrary vector field

X along γ, we have

(4.1) ∇TX = X ′+ < T,X > γ,

where ∇ is covariant derivative along γ in S4
1 .

Since S4
1 is a Lorentzian space form of the scalar curvature 1, we have

R(X,Y )W =< Y,W > X− < X,W > Y,

for all vector fields X,Y,W in the tangent bundle of S4
1 , where R is the curvature

tensor of S4
1 .

Now, we give the following:

Proposition 4.1. Let γ : I → S4
1 be a non-geodesic f−biharmonic curve parametrized

by arclength and {T,N,B1, B2} be a Frenet frame along γ such that

g(T, T ) = g(B1, B1) = g(B2, B2) = 1, g(N,N) = −1.

Then, we have

(4.2) γ(4) −

(

κ′′1
κ1

+ 2
κ′1
κ1

f ′

f
+
f ′′

f

)

γ′′ −

(

κ21 +
κ′′1
κ1

+ 2
κ′1
κ1

f ′

f
+
f ′′

f
+ 1

)

γ = 0.

Proof. Using (3.5) and taking the covariant derivative of the second equation in
(3.3), we get

∇2
TN = ∇T (κ1T + κ2B1)

= κ1∇TT + κ2∇TB1

= (κ21 + κ22)N + κ2κ3B2.

Using (3.5) in (4.3), we have

(4.3) ∇2
TN = −

(

κ′′1
κ1

+ 2
κ′1
κ1

f ′

f
+
f ′′

f
+ 1

)

N.

On the other hand from (4.1), we arrive at

∇2
TN = ∇T (N

′+ < T,N > γ)

= N ′′+ < T,N ′ > γ

= N ′′+ < T,∇TN− < N, T > γ > γ

= N ′′+ < T, κ1T + κ2B1 > γ

= N ′′ + κ1γ.

From (4.3) and (4.4), we obtain

(4.4)

(

κ′′1
κ1

+ 2
κ′1
κ1

f ′

f
+
f ′′

f
+ 1

)

N = N ′′ + κ1γ.
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Also in view of (4.1), we have

∇TT = T ′+ < T, T > γ = γ′′ + γ,

which yields

(4.5) N =
1

κ1
(γ′′ + γ).

By use of (4.5) and (4.4), we obtain (4.2).
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