ON CAPABLE GROUPS OF ORDER $p^{4} *$

Mohammad A. Salahhsour and Ali Reza Ashrafi

(C) 2019 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. A group H is said to be capable, if there exists another group G such that $\frac{G}{Z(G)} \cong H$, where $Z(G)$ denotes the center of G. In a recent paper [5], the authors considered the problem of capability of five non-abelian p-groups of order p^{4} into account. In this paper, we try to solve the problem of capability by considering three other groups of order p^{4}. It is proved that the group

$$
H_{6}=\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x=x^{p+1} y, z x=x y z, y z=z y\right\rangle
$$

is not capable. Moreover, if $p>3$ is a prime number and $d \not \equiv 0,1(\bmod p)$ then the following groups are not capable:

$$
\begin{aligned}
H_{7}^{1} & =\left\langle x, y, z \mid x^{9}=y^{3}=1, z^{3}=x^{3}, y x=x^{4} y, z x=x y z, z y=y z\right\rangle \\
H_{7}^{2} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x=x^{p+1} y, z x=x^{p+1} y z, z y=x^{p} y z\right\rangle \\
H_{8}^{1} & =\left\langle x, y, z \mid x^{9}=y^{3}=1, z^{3}=x^{-3}, y x=x^{4} y, z x=x y z, z y=y z\right\rangle \\
H_{8}^{2} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x=x^{p+1} y, z x=x^{d p+1} y z, z y=x^{d p} y z\right\rangle
\end{aligned}
$$

Keywords: Capable group; p-group; non-abelian p-groups; center.

1. Introduction

A group H is said to be capable if there exists another group G such that $\frac{G}{Z(G)} \cong H$, or equivalently H can be represented as the inner automorphism group of a given group G. The capability of groups was first studied by Baer [1] who was asked the question "which conditions a group H must fulfill in order to be the group of inner automorphisms of a group G?". In the mentioned paper, he determined all capable groups which are direct products of cyclic groups. Since the time that

[^0]Hall and Senior published their inovating work [3], such groups are called capable. It is well-known that the classification of capable groups is the first step towards the classification of prime power order groups [4]. The following theorem of Baer is well-known in the context of capable groups.

Theorem 1.1. Let A be a finite abelian group written as $A=\mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}$ such that each integer n_{i+1} is divisible by n_{i}. Then A is capable if and only if $k \geq 2$ and $n_{k-1}=n_{k}$.

Burnside [2] was classified all p-groups of order p^{4} which p is an odd prime number. This classification is expressed in the following theorem:

Theorem 1.2. Suppose p is an odd prime number and $d \not \equiv 0,1(\bmod p)$. Then there are fifteen different groups of order p^{4} up to isomorphisms. Five of those are abelian and the non-abelian groups are in the list below.

$$
\begin{aligned}
H_{1} & =\left\langle x, y \mid x^{p^{3}}=y^{p}=1, y x y^{-1}=x^{p^{2}+1}\right\rangle, \\
H_{2} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, x y=y x, x z=z x, z y z^{-1}=x^{p} y\right\rangle, \\
H_{3} & =\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1, y x y^{-1}=x^{p+1}\right\rangle, \\
H_{4} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, x y=y x, y z=z y, z x z^{-1}=x^{p+1}\right\rangle, \\
H_{5} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, x y=y x, y z=z y, z x z^{-1}=x y\right\rangle, \\
H_{6} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x y^{-1}=x^{p+1}, z x z^{-1}=x y, y z=z y\right\rangle, \\
H_{7}^{1} & =\left\langle x, y, z \mid x^{9}=y^{3}=1,[y, z]=1, z^{3}=x^{3}, y^{-1} x y=x^{4}, z^{-1} x z=x y^{-1}\right\rangle, \\
H_{7}^{2} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x y^{-1}=x^{p+1}, z x z^{-1}=x^{p+1} y, z y z^{-1}=x^{p} y\right\rangle \\
H_{8}^{1} & =\left\langle x, y, z \mid x^{9}=y^{3}=1,[y, z]=1, z^{3}=x^{-3}, y^{-1} x y=x^{4}, z^{-1} x z=x y^{-1}\right\rangle, \\
H_{8}^{2} & =\left\langle x, y, z \mid x^{p^{2}}=y^{p}=z^{p}=1, y x y^{-1}=x^{p+1}, z x z^{-1}=x^{d p+1} y, z y z^{-1}=x^{d p} y\right\rangle \\
H_{9} & =\left\langle x, y, z, t \mid x^{p}=y^{p}=z^{p}=t^{p}=[x, y]=[x, z]=[x, t]=[y, z]=[y, t]=1, t z t^{-1}=x z\right\rangle, \\
H_{10}^{1} & =\left\langle x, y, z \mid x^{9}=y^{3}=z^{3}=1, x y=y x, z^{-1} x z=x y, z^{-1} y z=x^{-3} y\right\rangle, \\
H_{10}^{2} & =\left\langle x, y, z, t \mid x^{p}=y^{p}=z^{p}=t^{p}=[x, y]=[x, z]=[x, t]=[y, z]=[t, y] x^{-1}=[t, z] y^{-1}=1\right\rangle
\end{aligned} \quad p>3 .
$$

Zainal et al. [5] examined the capability of five groups out of ten non-abelian groups of order p^{4} and proved that among first five groups the previous theorem, only the group number 3 is capable. We record this result in the following theorem:

Theorem 1.3. (See [5]) The groups $H_{i}, 1 \leq i \leq 5$, is capable if and only if $i=3$.

2. Main Results

Our aim in this section is to prove the groups numbers 6,7 and 8 in Theorem 1.2 are not capable.

Theorem 2.1. The group H_{6} is not capable.

Proof. By definition of H_{6} and some calculations we have the following equations,

$$
\begin{align*}
y^{j} x^{i} & =x^{i j p+i} y^{j} \tag{2.1}\\
z^{k} x^{i} & =x^{\frac{i(i-1)}{2} k p+i} y^{i k} z^{k} \tag{2.2}
\end{align*}
$$

We put $i=p$ and $j=k=1$ in Equations 2.1 and 2.2. Since p is odd and $x^{p^{2}}=y^{p}=1, y x^{p}=x^{p} y$ and $z x^{p}=x^{p} z$. Thus $\left\langle x^{p}\right\rangle \leq Z\left(H_{6}\right)$ and $\left|Z\left(H_{6}\right)\right|=p$ or p^{2}. Suppose $\left|Z\left(H_{6}\right)\right|=p^{2}$. Then for every $h \in H_{6} \backslash Z\left(H_{6}\right), Z\left(H_{6}\right)\left\langle C_{H_{6}}(h)\right\rangle \leq H_{6}$ and so $\left|C_{H_{6}}(h)\right|=p^{3}$. This proves that the conjugacy class $h^{H_{6}}$ has size p. Choose j, k with this condition that $0 \leq j, k \leq p-1$. Since x is not central and by Equations 2.1 and $2.2, y^{j} x y^{-j}=x^{j p+1}$ and $z^{k} x z^{-k}=x y^{k}$, we find that $\left|x^{H_{6}}\right|>p$ which is not possible. Therefore $\left|Z\left(H_{6}\right)\right|=p$ and $Z\left(H_{6}\right)=\left\langle x^{p}\right\rangle$.

If H_{6} is capable then there exists a non-abelian group G with center Z such that $H_{6} \cong \frac{G}{Z}$. Since G is not centerless, there are elements $a, b, c \in G \backslash Z$ such that

$$
\frac{G}{Z}=\left\langle\begin{array}{c}
a Z, b Z, c Z \mid(a Z)^{p^{2}}=(b Z)^{p}=(c Z)^{p}=1,(b Z)(a Z)=(a Z)^{p+1}(b Z), \\
(c Z)(a Z)=(a Z)(b Z)(c Z),(b Z)(c Z)=(c Z)(b Z)
\end{array}\right\rangle
$$

By definition, $a^{p^{2}}, b^{p}, c^{p} \in Z$ and by Equation 2.1 one can see the following equation:

$$
\begin{equation*}
b a^{p}=a^{p} b . \tag{2.3}
\end{equation*}
$$

By Equation 2.2 and some calculations, we have:

$$
\begin{equation*}
(a Z c Z)^{n}=(a Z)^{t_{n} p}(a Z)^{n}(b Z)^{\frac{n(n-1)}{2}}(c Z)^{n} \tag{2.4}
\end{equation*}
$$

in which $t_{n}=\frac{n(n-1)(n-2)}{6}$. By substituting $n=p$ in Equation 2.4, we obtain the following equality:

$$
\begin{equation*}
(a Z c Z)^{p}=(a Z)^{t_{p} p}(a Z)^{p} \tag{2.5}
\end{equation*}
$$

We now consider two cases that $p=3$ or $p>3$.

1. $p>3$. Then $p \mid t_{p}$ and so by Equation 2.5 and this fact that $a^{p^{2}} \in Z$,

$$
\begin{aligned}
(a c)^{p} Z & =(a c Z)^{p} \\
& =(a Z c Z)^{p} \\
& =(a Z)^{t_{p} p}(a Z)^{p} \\
& =(a Z)^{p} \\
& =a^{p} Z
\end{aligned}
$$

Hence there exists $z \in Z$ such that $(a c)^{p}=a^{p} z$ and so $c a^{p}=a^{p} c$. Finally, we apply Equation 2.3 to conclude that $a^{p} \in Z$ which is a contradiction.
2. $p=3$. Then $t_{p}=1$ and by Equation $2.5,(a c)^{3} Z=(a Z c Z)^{3}=(a Z)^{3}(a Z)^{3}$ $=(a Z)^{6}=a^{6} Z$. Hence there exists $z \in Z$ such that $(a c)^{3}=a^{6} z$ and so $c a^{6}=a^{6} c$. By these equations and and Equation 2.3, we conclude that $a^{6} \in Z$ which is our final contradiction.

Therefore, the group H_{6} is not capable.
Theorem 2.2. The group H_{7}^{1} is not capable.
Proof. By definition of H_{7}^{1} and some tedious calculations, one can see that

$$
\begin{align*}
y^{j} x^{i} & =x^{3 i j+i} y^{j} \tag{2.6}\\
z^{k} x^{i} & =x^{3 k \frac{i(i-1)}{2}+i} y^{i k} z^{k} \tag{2.7}
\end{align*}
$$

We put $i=3$ and $j=k=1$ in Equations 2.6 and 2.7. Since $x^{9}=y^{3}=1$, $y x^{3}=x^{3} y$ and $z x^{3}=x^{3} z$ and so $\left\langle x^{3}\right\rangle \leq Z\left(H_{7}^{1}\right)$. On the other hand, $\left|H_{7}^{1}\right|=3^{4}$ and hence $\left|Z\left(H_{7}^{1}\right)\right|=3$ or 9 . Suppose $\left|Z\left(H_{7}^{1}\right)\right|=9$. Then for every $h \in H_{7}^{1} \backslash Z\left(H_{7}^{1}\right)$, $Z\left(H_{7}^{1}\right)\left\langle C_{H_{7}^{1}}(h)\right\rangle \leq H_{7}^{1}$ which implies that $\left|C_{H_{7}^{1}}(h)\right|=3^{3}$ or equivalently $\left|h^{H_{7}^{1}}\right|=3$. Note that $x \in H_{7}^{1} \backslash Z\left(H_{7}^{1}\right)$. Choose j, k such that $0 \leq j, k \leq 2$. By Equations 2.6 and 2.7, $y^{j} x y^{-j}=x^{3 j+1}$ and $z^{k} x z^{-k}=x y^{k}$ which shows that $\left|x^{H_{7}^{1}}\right|>3$. This contradiction implies that $\left|Z\left(H_{7}^{1}\right)\right|=3$ and $Z\left(H_{7}^{1}\right)=\left\langle x^{3}\right\rangle$. If H_{7}^{1} is capable, there is a non-abelian group G with center Z such that $H_{7}^{1} \cong \frac{G}{Z}$. Since G is not centerless, there are elements $a, b, c \in G \backslash Z$ such that

$$
\frac{G}{Z}=\left\langle\begin{array}{c}
a Z, b Z, c Z \mid(a Z)^{9}=(b Z)^{3}=1,(c Z)^{3}=(a Z)^{3},(b Z)(a Z)=(a Z)^{4}(b Z), \\
(c Z)(a Z)=(a Z)(b Z)(c Z),(c Z)(b Z)=(b Z)(c Z)
\end{array}\right\rangle
$$

Obviously $a^{9}, b^{3}, c^{9} \in Z$ and by Equation 2.6,

$$
(a Z b Z)^{n}=(a Z)^{3 \frac{n(n-1)}{2}}(a Z)^{n}(b Z)^{n}
$$

In above equation, we put $n=3$. Since $a^{9}, b^{3} \in Z,(a b)^{3} Z=(a b Z)^{3}=(a Z b Z)^{3}=$ $(a Z)^{9}(a Z)^{3}(b Z)^{3}=(a Z)^{3}=a^{3} Z$ and so there exists $z \in Z$ such that $(a b)^{3}=a^{3} z$. Therefore,

$$
\begin{equation*}
b a^{3}=a^{3} b \tag{2.8}
\end{equation*}
$$

On the other hand, $a^{3} Z=c^{3} Z$ and so there exists $z_{1} \in Z$ such that

$$
\begin{equation*}
a^{3}=c^{3} z_{1} \tag{2.9}
\end{equation*}
$$

Put $k=1$ and $i=3$ in Equation 2.7. Since $o(a Z)=9$ and $o(b Z)=3$,

$$
\begin{aligned}
c a^{3} Z & =(c Z)(a Z)^{3} \\
& =(a Z)^{9}(a Z)^{3}(b Z)^{3}(c Z) \\
& =(a Z)^{3}(c Z) \\
& =a^{3} c Z
\end{aligned}
$$

Thus there exists $z_{2} \in Z$ such that

$$
\begin{equation*}
c a^{3}=a^{3} c z_{2} \tag{2.10}
\end{equation*}
$$

Now by inserting the Equation 2.9 in $2.10, c c^{3} z_{1}=c^{3} z_{1} c z_{2}$ which shows that $z_{2}=1$. Apply again Equation 2.10 to conclude that $c a^{3}=a^{3} c$. Now by Equation $2.8 a^{3} \in Z$ and hence $(a Z)^{3}=Z$ which is our final contradiction.

Theorem 2.3. The group H_{7}^{2} is not capable.
Proof. By presentation of H_{7}^{2} and some tedious calculations one can see that

$$
\begin{align*}
y^{j} x^{i} & =x^{i j p+i} y^{j} \tag{2.11}\\
z^{k} x^{i} & =x^{\frac{i(i+1)}{2} k p+\frac{k(k-1)}{2} i p+i} y^{i k} z^{k} \tag{2.12}\\
z^{k} y^{j} & =x^{j k p} y^{j} z^{k}
\end{align*}
$$

By substituting $i=p$ and $j=k=1$ in Equations 2.11 and 2.12 we have $y x^{p}=x^{p} y$ and $z x^{p}=x^{p} z$. Hence $\left\langle x^{p}\right\rangle \leq Z\left(H_{7}^{2}\right)$ and arguments similar to the proof of Theorem 2.1 show that $Z\left(H_{7}^{2}\right)=\left\langle x^{p}\right\rangle$. If H_{7}^{2} is capable, there is a non-abelian group G with center Z such that and $H_{7}^{2} \cong \frac{G}{Z}$. Since G is not centerless, there are elements $a, b, c \in G \backslash Z$ such that

$$
\frac{G}{Z}=\left\langle\begin{array}{c}
a Z, b Z, c Z \mid(a Z)^{p^{2}}=(b Z)^{p}=(c Z)^{p}=1,(b Z)(a Z)=(a Z)^{p+1}(b Z), \\
(c Z)(a Z)=(a Z)^{p+1}(b Z)(c Z),(c Z)(b Z)=(a Z)^{p}(b Z)(c Z)
\end{array}\right\rangle
$$

Thus $a^{p^{2}}, b^{p}, c^{p} \in Z$. Now by Equation 2.11 and a similar argument as Theorem 2.1,

$$
\begin{equation*}
b a^{p}=a^{p} b . \tag{2.13}
\end{equation*}
$$

Apply Equation 2.12 to conclude that

$$
(a Z c Z)^{n}=(a Z)^{k_{n} p}(a Z)^{n}(b Z)^{\frac{n(n-1)}{2}}(c Z)^{n}
$$

in which $k_{n}=\frac{n(n-1)(2 n-1)}{6}$. Next we assume that $n=p$. Since b^{p}, c^{p} are central,

$$
\begin{aligned}
(a c)^{p} Z & =(a c Z)^{p}=(a Z c Z)^{p} \\
& =(a Z)^{k_{p} p}(a Z)^{p}(b Z)^{\frac{p(p-1)}{2}}(c Z)^{p} \\
& =(a Z)^{\left(k_{p}+1\right) p}=a^{\left(k_{p}+1\right) p} Z
\end{aligned}
$$

Hence there exists $z \in Z$ such that

$$
\begin{equation*}
(a c)^{p}=a^{\left(k_{p}+1\right) p} z \tag{2.14}
\end{equation*}
$$

It is clear that $p \mid 6 k_{p}$. Since $p>3, p \mid k_{p}$ and so $p \nmid k_{p}+1$. Since $(a c)^{p}(a c)=$ $(a c)(a c)^{p}$, Equation 2.14 implies that $c a^{\left(k_{p}+1\right) p}=a^{\left(k_{p}+1\right) p} c$ and by Equation 2.13, $a^{\left(k_{p}+1\right) p} \in Z$. So, $(a Z)^{\left(k_{p}+1\right) p}=Z$. But $o(a Z)=p^{2}$ and hence $p^{2} \mid\left(k_{p}+1\right) p$ which implies that $p \mid k_{p}+1$. This contradiction completes the proof.

Theorem 2.4. The group H_{8}^{1} is not capable.
Proof. By presentation of H_{8}^{1} we have:

$$
\begin{align*}
y^{j} x^{i} & =x^{3 i j+i} y^{j} \tag{2.15}\\
z^{k} x^{i} & =x^{3 k \frac{i(i-1)}{2}+i} y^{i k} z^{k} \tag{2.16}
\end{align*}
$$

Again substitute $i=3$ and $j=k=1$ in Equations 2.15 and 2.16. Since $x^{9}=y^{3}=1$, $y x^{3}=x^{3} y$ and $z x^{3}=x^{3} z$. Thus $\left\langle x^{3}\right\rangle \leq Z\left(H_{8}^{1}\right)$. Similar to the proof of Theorem 2.2, $Z\left(H_{8}^{1}\right)=\left\langle x^{3}\right\rangle$. If H_{8}^{1} is capable, there is a non-abelian group G with center Z such that $H_{8}^{1} \cong \frac{G}{Z}$. Since G is not centerless, there are elements $a, b, c \in G \backslash Z$ such that

$$
\frac{G}{Z}=\left\langle\begin{array}{c}
a Z, b Z, c Z \mid(a Z)^{9}=(b Z)^{3}=1,(c Z)^{3}=(a Z)^{-3},(b Z)(a Z)=(a Z)^{4}(b Z) \\
(c Z)(a Z)=(a Z)(b Z)(c Z),(c Z)(b Z)=(b Z)(c Z)
\end{array}\right\rangle
$$

Obviously, $a^{9}, b^{3}, c^{9} \in Z$ and by Equation 2.15,

$$
(a Z b Z)^{n}=(a Z)^{3 \frac{n(n-1)}{2}}(a Z)^{n}(b Z)^{n}
$$

Put $n=3$. Since $a^{9}, b^{3} \in Z$,

$$
(a b)^{3} Z=(a b Z)^{3}=(a Z b Z)^{3}=(a Z)^{9}(a Z)^{3}(b Z)^{3}=(a Z)^{3}=a^{3} Z
$$

Hence there exists $z \in Z$ such that $(a b)^{3}=a^{3} z$ and so

$$
\begin{equation*}
b a^{3}=a^{3} b \tag{2.17}
\end{equation*}
$$

On the other hand, $c^{3} Z=a^{-3} Z$ and so there exists $z_{1} \in Z$ such that

$$
\begin{equation*}
a^{3}=c^{-3} z_{1} \tag{2.18}
\end{equation*}
$$

Since $o(a Z)=9$ and $o(b Z)=3$, by Equation 2.16 and substituting $k=1$ and $i=3$, we can see that

$$
\begin{aligned}
c a^{3} Z & =(c Z)(a Z)^{3} \\
& =(a Z)^{9}(a Z)^{3}(b Z)^{3}(c Z) \\
& =(a Z)^{3}(c Z)=a^{3} c Z
\end{aligned}
$$

and so there exists $z_{2} \in Z$ such that

$$
\begin{equation*}
c a^{3}=a^{3} c z_{2} \tag{2.19}
\end{equation*}
$$

We now insert Equation 2.18 in our last equation to deduce that $c c^{-3} z_{1}=$ $c^{-3} z_{1} c z_{2}$. Thus $z_{2}=1$ and by Equation 2.19, $c a^{3}=a^{3} c$. Therefore, $a^{3} \in Z$ and hence $9=o(a Z) \mid 3$, which is impossible. This completes the proof.

Theorem 2.5. The group H_{8}^{2} is not capable.

Proof. By presentation of H_{8}^{2} and some tedious calculations, we have

$$
\begin{align*}
y^{j} x^{i} & =x^{i j p+i} y^{j} \tag{2.20}\\
z^{k} x^{i} & =x^{\frac{i(i-1)}{2} k p+\frac{k(k+1)}{2} i d p+i} y^{i k} z^{k} \tag{2.21}\\
z^{k} y^{j} & =x^{j k d p} y^{j} z^{k}
\end{align*}
$$

In Equations 2.20 and 2.21, we insert $i=p$ and $j=k=1$. It is clear that $y x^{p}=x^{p} y$ and $z x^{p}=x^{p} z$ and so $\left\langle x^{p}\right\rangle \leq Z\left(H_{8}^{2}\right)$. Similar to Theorem 2.1, we can see that $Z\left(H_{8}^{2}\right)=\left\langle x^{p}\right\rangle$. If H_{8}^{2} is capable, there is a non-abelian group G with center Z such that $H_{8}^{2} \cong \frac{G}{Z}$. Since G is not centerless, there are elements $a, b, c \in G \backslash Z$ such that

$$
\frac{G}{Z}=\left\langle\begin{array}{r}
a Z, b Z, c Z \mid(a Z)^{p^{2}}=(b Z)^{p}=(c Z)^{p}=1,(b Z)(a Z)=(a Z)^{p+1}(b Z) \\
(c Z)(a Z)=(a Z)^{d p+1}(b Z)(c Z),(c Z)(b Z)=(a Z)^{d p}(b Z)(c Z)
\end{array}\right\rangle
$$

where $d \not \equiv 0,1(\bmod p)$. It is obvious that $a^{p^{2}}, b^{p}, c^{p} \in Z$ and by Equations 2.20 and a similar argument used in the proof of the Theorem 2.1,

$$
\begin{equation*}
b a^{p}=a^{p} b \tag{2.22}
\end{equation*}
$$

Moreover, by Equation 2.21,

$$
\begin{equation*}
(a Z c Z)^{n}=(a Z)^{s_{n} d p}(a Z)^{t_{n} p}(a Z)^{n}(b Z)^{\frac{n(n-1)}{2}}(c Z)^{n} \tag{2.23}
\end{equation*}
$$

in which $s_{n}=\frac{n(n-1)(n+1)}{6}$ and $t_{n}=\frac{n(n-1)(n-2)}{6}$. It is easy to see that $p \mid s_{p}$ and $p \mid t_{p}$. Also by inserting $n=1$ in Equation 2.23,

$$
\begin{aligned}
(a c)^{p} Z & =(a c Z)^{p}=(a Z c Z)^{p} \\
& =(a Z)^{s p d p}(a Z)^{t_{p} p}(a Z)^{p}(b Z)^{\frac{p(p-1)}{2}}(c Z)^{p} \\
& =(a Z)^{p}=a^{p} Z
\end{aligned}
$$

Hence there exists $z \in Z$ such that $(a c)^{p}=a^{p} z$ and so $c a^{p}=a^{p} c$. This implies that $a^{p} \in Z$ and therefore $p^{2}=o(a Z) \mid p$, which is our final contradiction.

3. Concluding Remarks

In this paper the authors continued a recently published paper of Zainal et al. [5] in investigating finite p-groups of order p^{4}. It is proved that three non-abelian groups of this order are not capable. By results of [5] and our results to complete the classification of capable group of order p^{4} it is enough to investigate the groups H_{9} and H_{10} in Theorem 1.2. Our calculations with computer algebra software GAP in working with small groups of order p^{4} suggests the following conjecture:

Conjecture 3.1. The groups H_{9} and H_{10} are not capable.

Acknowledgment. The authors would like to thank the referee for several insightful remarks and comments, that led to a significant clarification and improvement of this work.

REFERENCES

1. R. BaER: Groups with preassigned central and central quotient groups, Trans. Amer. Math. Soc. 44 (1938) 387-412.
2. W. Burnside: Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1897.
3. M. Hall and J. K. Senior: The Groups of Order $2^{n}(n \leq 6)$, Macmillan, New York, 1964.
4. P. Hall: The classification of prime-power groups, J. reine angew. Math. 182 (1940) 130-141.
5. R. Zainal, N. M. Mohd Ali, N. H. Sarmin and S. Rashid: On the capability of nonabelian groups of order p^{4}, Proceedings of the 21st National Symposium on Mathematical Sciences (SKSM21), AIP Conf. Proc. 1605 (2014) 575-579.

Mohammad Ali Salahshour
Faculty of Mathematical Sciences
Department of Pure Mathematics
University of Kashan
Kashan 87317-53153, I. R. Iran
salahshour@iausk.ac.ir

Ali Reza Ashrafi
Faculty of Mathematical Sciences
Department of Pure Mathematics
University of Kashan
Kashan 87317-53153, I. R. Iran
ashrafi@kashanu.ac.ir

[^0]: Received January 02, 2019; accepted February 26, 2019
 2010 Mathematics Subject Classification. Primary 20D15; Secondary 20F14
 *The authors were supported in part by the University of Kashan under grant No. 364988/227.

