
FACTA UNIVERSITATIS (NIŠ)
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Abstract. A graph Γ is called an n-Cayley graph over a group G if Aut(Γ) contains a
semi-regular subgroup isomorphic to G with n orbits. In this paper, we review some
recent results and future directions around the problem of computing the eigenvalues
on n-Cayley graphs.
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1. Introduction

The spectrum of a graph is one of the most important algebraic invariants as it
is known that numerous proofs in graph theory depend on the spectrum of graphs.
In particular, eigenvalues of Cayley graphs have attracted increasing attention due
to their prominent roles in algebraic graph theory and applications in many areas
such as expanders, chemical graph theory, quantum computing, etc [21]. This paper
is a survey of the literature on the eigenvalues of graphs having a semi-regular of
subgroup of their automorphism groups.

A digraph Γ is a pair (V,E) of vertices V and edges E where E ⊆ V × V . A
graph is a digraph with no edges of the form (α, α) and with the property that
(α, β) ∈ E implies (β, α) ∈ E. The set of all permutations of V which preserve the
adjacency structure of Γ is called the automorphism group of Γ; it is denoted by
Aut(Γ). In this paper all digraphs have no loops. For the most part our notation and
terminology are standard and mainly taken from [9] (for graph theory) and [16] (for
representation theory of finite groups). For the graph-theoretic and group-theoretic
terminology not defined here we refer the reader to [9, 16].

Let Γ be a (di)graph with n vertices. The adjacency matrix of A of Γ is an n×n
matrix with ij-entry equal to 1 if ith and jth vertices are adjacent and 0 otherwise.
The spectrum of a graph is the multi-set of eigenvalues of its adjacency matrix. It
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is known that numerous proofs in graph theory depend on the spectrum of graphs
and the spectrum of a graph is one of the most important algebraic invariants [9].

Let G be a group and S be a subset of G not containing the identity element
of G. The Cayley (di)graph of G with respect to S is a graph with a vertex set G
where (g, h) is an arc whenever hg−1 ∈ S. A large number of results on spectra
of Cayley graphs have been produced over the last more than four decades. For a
survey of the literature on eigenvalues of Cayley graphs and their applications see
[21].

By a theorem of Sabidussi [26], a (di)graph Γ is a Cayley graph over a group G
if Aut(Γ) contains a regular subgroup of Aut(Γ) isomorphic to G. As a generaliza-
tion, a (di)graph Γ is called an n-Cayley (di)graph over a group G if there exists
a semiregular subgroup of Aut(Γ) isomorphic to G with n orbits (of equal size).
Since every regular subgroup is a transitive semi-regular subgroup, every Cayley
(di)graphs is a 1-Cayley (di)graph. Also a Cayley graph over a finite group G hav-
ing a subgroup H of index n is an n-Cayley graph over H [1, Lemma 8]. n-Cayley
graphs over cyclic groups are called n-circulant. In particular 2-Cayley and 3-Cayley
graphs over cyclic groups are called bicirculant and tricirculant graphs [24], respec-
tively. Unlike Cayley graphs, in general n-Cayley graphs are not vertex-transitive
for n ≥ 2. Furthermore, there are vertex-transitive n-Cayley graphs which are
not Cayley graphs such as generalized Petersen graphs. Undirected and loop-free
2-Cayley graphs are called, by some authors, semi-Cayley graphs [25, 3] and also
bi-Cayley graphs [17]. In this paper, we follow [25] to use the term semi-Cayley.

n-Cayley graphs, in particular when n = 2 or n = 3, have played an important
role in many classical fields of graph theory, such as strongly regular graphs [19, 22,
23, 24, 25], automorphisms [2, 15, 28], isomorphisms [3, 5], symmetry properties of
graphs [10, 11, 20] and the spectrum of graphs [1, 4, 8, 12, 13]. In this paper, we
review recent results and future directions of some problems related to the spectrum
of n-Cayley graphs.

2. Presentation of n-Cayley graphs

Recall that a (di)graph Γ is called an n-Cayley graph over a group G if Aut(Γ)
contains a semi-regular subgroup isomorphic to G with n orbits (of equal size). It
is proved that every n-Cayley graph over a group G can be presented by suitable
n2 subsets of G:

Lemma 2.1. ([1, Lemma 2]) A digraph Γ is n-Cayley digraph over G if and only
if there exist subsets Tij of G, where 1 ≤ i, j ≤ n, such that Γ is isomorphic to a
digraph X with vertex set G× {1, 2, . . . , n} and edge set

E(X) =
⋃

1≤i,j≤n

{
((g, i), (tg, j)) | g ∈ G and t ∈ Tij

}
.

By Lemma 2.1, an n-Cayley (di)graph is characterized by a group G and n2

subsets Tij of G (some subsets may be empty). So we denote an n-Cayley (di)graph
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with respect to n2 subsets Tij by Γ = Cay(G;Tij | 1 ≤ i, j ≤ n). It is easy to see
that Cay(G;Tij | 1 ≤ i, j ≤ n) is undirected if and only if T−1

ij = Tji for all
1 ≤ i, j ≤ n. Also it is loop-free if 1 /∈ Tii for all 1 ≤ i ≤ n. Let Γ be a 2-Cayley
graph which is undirected and loop-free. Then there exist three subsets R = T11,
L = T22, S = T12 and T21 = S−1 of G such that R = R−1, L = L−1 and 1 /∈ R ∪ L
and Γ = Cay(G;Tij | 1 ≤ i, j ≤ 2). We denote this graph with SC(G;R,L, S) and
call it semi-Cayley graph. In the case R = L = Ø, we denote it by BCay(G;S) and
call it bi-Cayley graph.

There are a lot of examples of n-Cayley graphs, n ≥ 2. Here we provide some.

Example 2.1. Let P be the Petersen graph. Then P = SC(G;R,L, S), where G = 〈a〉 ∼=
Z5, R = {a, a4}, L = {a2, a3} and S = {1}.

Example 2.2. ([1, Lemma 8]) Let Γ = Cay(G,S) be a Cayley (di)graph. Suppose that
there exists a subgroup H of G with index n. If {t1, . . . , tn} is a left transversal to H in
G, then Γ ∼= Cay(H,Tij | 1 ≤ i, j ≤ n), where Tij = {h ∈ H | t−1

j hti ∈ S} = H ∩ tjSt
−1

i .

Example 2.3. The I-graph I(n, j, k) is a cubic graph of order 2n with vertex set {ui, vi |
0 ≤ i ≤ n− 1} and edge set {uiui+j , uivi, vivi+k}. Graphs I(n, 1, k) are called generalized
Petersen graphs. It is easy to see that I(n, j, k) = SC(G;R,L, S), where G = 〈a〉 ∼= Zn,
R = {aj , a−j}, L = {ak, a−k} and S = {1}.

Example 2.4. Let RW (n, j, k) be a Rose Window graph, for the definition of graph
see [18]. RW (n, j, k) is a 4-valent bicirculant graph isomorphic to SC(G;R,L, S), where
G = 〈a〉 ∼= Zn, R = {a, a−1}, L = {aj , a−j} and S = {1, ak}.

Example 2.5. For given natural numbers n ≥ 3 and 1 ≤ r, j, k ≤ n − 1, with j 6= n/2
and r 6= k, the Tabačjn graph T (n, r, k, j) is a pentavalent graph with vertex set {xi | i ∈
Zn} ∪ {yi | i ∈ Zn} and edge set

{xixi+1 | i ∈ Zn} ∪ {yiyi+j | i ∈ Zn} ∪ {xiyi+r | i ∈ Zn} ∪ {xiyi+k | i ∈ Zn}.

It is easy to see that T (n, r, k, j) = Γ ∼= SC(G;R,L, S), where G = 〈a〉 ∼= Zn, R = {a, a−1},
L = {aj , a−j} and S = {1, ar, ak}.

Example 2.6. LetKr,r,...,r be the n-partite complete graph. ThenKr,r,...,r = Cay(G; Tij |
1 ≤ i, j ≤ n), where G is a finite group of order r, and for all 1 ≤ i, j ≤ n where j 6= i,
Tii = Ø and Tij = G.

3. Eigenvalues of n-Cayley (di)graphs

In 2007, the spectrum of bi-Cayley graphs over finite abelian groups computed in
[29]:

Theorem 3.1. Let Γ = BCay(G,S) be a bi-Cayley graph over finite abelian group
G = Zn1

× . . .× Znt
with respect to S. Then eigenvalues of Γ are

±|
∑

(i1,...,it)∈S

ωr1i1
n1

. . . ωrtit
nt

|, rj = 0, . . . , nj − 1, j = 1, . . . , t.
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In 2010, Gao and Luo improved Theorem 3.1. They studied the spectrum of
semi-Cayley graphs over finite abelian groups. Using matrix theory, they derived a
formula of the spectrum of semi-Cayley graphs over finite abelian groups:

Theorem 3.2. ([12, Theorem 3.2]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph
over a finite abelian group G = Zn1

× . . .× Znt
. Then Γ has eigenvalues

λR
r1...rt

+ λR
r1...rt

±
√

(λR
r1...rt

− λL
r1...rt

)2 + 4|λS
r1...rt

|2

2
,

rj = 0, . . . , nj − 1, j = 1, . . . , t, where λX
r1...rt

=
∑

(i1,...,it)∈X ωr1i1
n1

. . . ωrtit
nt

and ωn

is the primitive nth root of unity.

Also the spectrum of a bi-Cayley graph of an arbitrary group with respects to
a normal subset computed in [6, Theorem 2.1], a generalization of Theorem 3.1. In
2013, Theorem 3.2 extended to n-Cayley graphs, n ≥ 2, over arbitrary groups by
Arezoomand and Taeri in [1] using representation theory of finite groups. Let us
recall some definitions of the latter paper. Let G be a finite group and C[G] be
the complex vector space of dimension |G| with basis {eg | g ∈ G}. We identify
C[G] with the vector space of all complex-valued functions on G. Thus a function
ϕ : G → C corresponds to the vector ϕ =

∑

g∈G ϕ(g)eg and vice versa. In particular,
the vector eg, where g ∈ G, of the standard basis corresponds to the function eg,
where

eg(h) =

{
1 h = g
0 h 6= g.

The (left) regular representation ρreg of G on C[G] is defined by its action on
the basis {eh | h ∈ G}; that is for all g, h ∈ G, ρreg(g)eh = egh. Let Irr(G) =
{ρ1, . . . , ρm} be the set of all irreducible inequivalent C-representations of G and dk
be the degree of ρk, k = 1, . . . ,m. Let eig be the 1×n|G| vector with n blocks, where
ith block is eg, as defined, and other blocks are 01×|G| vectors. Let V be the vector
space with basis {eig | g ∈ G, 1 ≤ i ≤ n}. Clearly V ∼= C[G]⊕ C[G]⊕ · · · ⊕ C[G]

︸ ︷︷ ︸

n−times

, as

C[G] = 〈eg | g ∈ G〉. So dimC V = n dimC C[G] = n|G|. Let Γ = Cay(G;Tij | 1 ≤
i, j ≤ n) and A = [a(g,i)(h,j)]g,h∈G,1≤i,j≤n be the adjacency matrix of Γ. Viewing A
as the linear map

A : V → V

eig 7→

n∑

j=1

∑

h∈G

a(h,j)(g,i)e
j
h, 1 ≤ i ≤ n, g ∈ G,

it is proved that:

Theorem 3.3. ([1, Theorem 6]) Let Γ = Cay(G;Tij | 1 ≤ i, j ≤ n) be an n-Cayley
digraph over a finite group G and Irr(G) = {ρ1, . . . , ρm}. For each l ∈ {1, . . . ,m},
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we define ndl × ndl block matrix Al :=
[

A
(l)
ij

]

, where A
(l)
ij =

∑

t∈Tji
ρ(l)(t). Let

χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A, respectively. Then

χA(λ) = Πm
l=1χAl

(λ)dl .

Example 3.1. ([7, Corollary 2.3]) The eigenvalues of I(n, j, k) are

cos(2ljπ/n) + cos(2lkπ/n) ±
√

(cos(2ljπ/n) − cos(2lkπ/n))2 + 1, l = 0, . . . , n− 1.

Example 3.2. ([7, Corollary 2.4]) The eigenvalues of RW (n, j, k) are

cos(2lπ/n)+cos(2ljπ/n)±
√

(cos(2lπ/n) − cos(2ljπ/n))2 + 2 + 2 cos(2lkπ/n), l = 0, . . . , n−1.

Example 3.3. ([7, Corollary 2.5]) The eigenvalues of T (n, r, k, j) are

cos(2lπ/n) + cos(2ljπ/n) ±
√

(cos(2lπ/n) − cos(2ljπ/n))2 + αl, l = 0, . . . , n− 1,

where αl = 3 + 2
(

cos(2πlr/n) + cos(2πlk/n) + cos(2πl(r − k)/n)
)

.

Since any Cayley graph over a group G is a 1-Cayley graph over G, as a direct
consequence of Theorem 3.3, we can reprove the following result which is proved in
[27]:

Corollary 3.1. Let Γ = Cay(G,S) be a Cayley digraph over a finite group G
with irreducible matrix representations ̺(1), . . . , ̺(m) . Let dl be the degree of ̺(l).

For each l ∈ {1, . . . ,m}, define a dl × dl block matrix Al :=
[

A
(l)
S

]

, where A
(l)
S =

∑

s∈S ̺(l)(s). Let χAl
(λ) and χA(λ) be the characteristic polynomial of Al and A,

the adjacency matrix of Γ, respectively. Then χA(λ) = Πm
l=1χAl

(λ)dl .

Let G be a finite abelian group. Then by [16, Theorem 9.8], putting n = 2
in Theorem 3.3, Theorem 3.2 directly follows. Also Theorems 4.6 and 4.3 of [12]
improved in [1]:

Corollary 3.2. ([1, Corollary 9]) Let Γ = Cay(G,S) be a Cayley digraph, H = 〈a〉
a cyclic subgroup of G of order n and of index 2 with left transversal {t1, t2} . Then
the characteristic polynomial of the adjacency matrix of Γ is χA(λ) = Πn−1

k=0 (λ −
λ+
k )(λ − λ−

k ), where

λ+
k =

λ11
k + λ22

k +
√

(λ11
k − λ22

k )2 + 4λ12
k λ21

k

2
,

λ−
k =

λ11
k + λ22

k −
√

(λ11
k − λ22

k )2 + 4λ12
k λ21

k

2
,

λij
k =

∑

t∈Tji
ωkt
n and Tij = {t | 0 ≤ t ≤ n− 1, at ∈ tjSt

−1
i }.
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Let Γ be a k-regular graph with n vertices and adjacency matrix A and Ac

be the adjacency matrix of the complement of Γ. Then (λ + k + 1)χAc(λ) =
(−1)n(λ−n+ k+1)χA(−λ− 1), see [9, p. 20]. Despite of Cayley graphs, n-Cayley
graphs n ≥ 2, are not necessarily regular, but we have a similar relation between
the characteristic polynomials of any n-Cayley graph and its complement which is
given in the next theorem:

Theorem 3.4. ([1, Theorem 10]) Let Γ = Cay(G, Tij | 1 ≤ i, j ≤ n) be an n-
Cayley graph over a finite group G, n ≥ 1. Let Γc be the complement of Γ with
adjacency matrix Ac. Then the characteristic polynomials of Γ and Γc are related
with the following equation:

χB1
(λ)χA(−λ− 1) = (−1)|G|−1χA1

(−λ− 1)χAc(λ),

where B1 = |G|J − In − A1, J is the all ones matrix of degree n, and A1 =
[|Tji|]1≤i,j≤n.

An eigenvector of the adjacency matrix of a graph Γ is said to be main eigenvec-
tor if it is not orthogonal to the all ones vector j. An eigenvalue of a graph Γ is said
to be a main eigenvalue if it has a main eigenvector. By Perron-Frobenius Theorem,
the largest eigenvalue of a graph is a main eigenvalue. It is also well known that
a graph is regular if and only if it has exactly one main eigenvalue. So for every
Cayley graph Γ = Cay(G,S), |S| is the only main eigenvalue of Γ. Since n-Cayley
graphs, for n ≥ 2 are not necessarily regular, determining the main eigenvalues of
these graphs seems to be important. This problems reduced to determining main
eigenvalues of the matrix A1:

Theorem 3.5. ([1, Corollary 12]) Let Γ = Cay(G, Tij | 1 ≤ i, j ≤ n) be an n-
Cayley graph over a finite group G and n ≥ 2. The main eigenvalues of Γ is equal
to main eigenvalues of the matrix A1 = [|Tji|]1≤i,j≤n.

4. Integrality of n-Cayley graphs

A graph Γ is called integral if all eigenvalues of the adjacency matrix of Γ are
integers. The concept of integral graphs was first defined by Harary and Schwenk
[14]. During the last forty years many mathematicians have tried to construct
and classify some special classes of integral graphs including Cayley graphs(for a
survey see [21]). It seems that integral graphs are very rare and determining all the
integral n-Cayley graphs, even for n = 2, is difficult. It is easy to construct integral
semi-Cayley graphs over finite abelian groups, as the following corollary shows:

Corollary 4.1. ([12, Corollary 3.5]) Let Γ = SC(G;R,R, S) be a semi-Cayley
graph over a finite abelian group G. If Cay(G,R) and Cay(G,S) are integral then
Γ is integral.
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The study of integrality of bi-Cayley graphs started by Arezoomand and Taeri
in 2015:

Theorem 4.1. ([4, Corollary 3.10]) Every bi-Cayley graph of a finite group G is
integral if and only if G is isomorphic to one of the groups Zk

2 , k ≥ 1, Z3 or S3.

Also finite groups admitting a connected cubic integral bi-Cayley graph deter-
mined in the following theorem:

Theorem 4.2. ([8, Theorem A]) A finite group G admits a connected cubic inte-
gral bi-Cayley graph if and only if G is isomorphic to one of the groups

Z
2
2, Z3, Z4, Z6, Z2 × Z6, S3, A4, Dic12.

The following questions naturally arise:

Problem 4.1. Determine finite groups admitting a connected k-regular, k ≥ 4,
bi-Cayley graphs.

Problem 4.2. Let Γ = BCay(G,S). In what conditions on S, is Γ an integral?

Problem 4.3. Determine finite groups in which all bi-Cayley graphs over them of
the valency at most k ≥ 2 are integral.

Problem 4.4. Let Γ = SC(G;R,L, S) be a semi-Cayley graph over a group G. In
what conditions on R,L and S is Γ an integral?

5. Laplacian and signless Laplacian eigenvalues of n-Cayley graphs

Let Γ be a graph with vertex set {v1, . . . , vn}. Recall that the adjacency matrix
of Γ is an n × n matrix A = [aij ], where aij = 1 whenever vi and vj are adjacent
and aij = 0, otherwise. The degree matrix of Γ is a diagonal n × n matrix D =
diag(d1, . . . , dn), where di is the number of vertices adjacent to vi. The matrices
L = D−A and Q = D+A are called Laplacian and signless Laplacian matrices of
Γ, respectively. The characteristic polynomial of an n×n matrix X is det(λIn−X),
where In is the n × n identity matrix and the roots of this polynomial are called
eigenvalues of X . In this paper, the Laplacian eigenvalues and signless Laplacian
eigenvalues of a graph Γ are eigenvalues of Laplacian and signless Laplacian matrices
of Γ, respectively.

In 2015, the Laplacian and signless Laplacian spectrum of semi-Cayley graphs
over abelian groups computed:

Theorem 5.1. ([13, Theorem 1]) Let Γ = SC(G;R,L, S) be a semi-Cayley graph
over a finite abelian group G = Zn1

× . . .× Znt
. Then Γ has Laplacian eigenvalues

(resp. signless Laplacian eigenvalues)

µR
r1...rt

+ µL
r1...rt

+ 2|S| ±
√

(µR
r1...rt

− µL
r1...rt

)2 + 4|λS
r1...rt

|2

2
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rj = 0, . . . , nj − 1, j = 1, . . . , t, where λS
r1...rt

are eigenvalues of Cay(G,S), and
µR
r1...rt

, µL
r1...rt

are the Laplacian (resp. signless Laplacian) eigenvalues of Cay(G,R)
and Cay(G,L), respectively.

The n-sunlet graph on 2n vertices is obtained by attaching n pendant edges to
the cycle Cn. It is easy to see that Γ = SC(G,R, S, T ), where G = 〈a〉 ∼= Zn,
R = {a, a−1}, S = Ø and T = {1}.

Example 5.1. Let Γ be an n-sunlet graph. Then

(1) Lpalcian eigenvalues of Γ are

2− cos
2πl

n
±

√

(1− cos
2πl

n
)2 + 1,

where l = 0, . . . , n− 1.

(2) signless Laplacian eigenvalues of Γ are

2 + cos
2πl

n
±

√

(1 + cos
2πl

n
)2 + 1,

where l = 0, . . . , n− 1.

As a corollary, one can construct semi-Cayley graphs with an integral Laplacian
and signless Laplacian spectrum:

Corollary 5.1. ([13, Corollary 4.6]) Let Γ = SC(G;R,R, S) be a semi-Cayley
graph over a finite abelian group G. If Cay(G,R) and Cay(G,S) are integral graphs
then Γ is a Laplacian and signless Laplacian integral graph.

We end the paper with some open problems:

Problem 5.1. Determine the Laplacian and signless Laplacian eigenvalues of semi-
Cayley graphs over non-abelian groups. Also do this for n-Cayley graphs when
n ≥ 3.

Problem 5.2. In what conditions on R,L and S, SC(G;R,L, S) is Laplacian (and
signless Laplacian) an integral?
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