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1. Introduction and Preliminaries

The past few decades have witnessed substantial developments in the field of
integral equations and their applications have arisen in many areas, ranging from
economics to engineering. Now it is an unquestionable fact that the theory of
iterative approximation of fixed points plays a significant role in recent progress
of integral equations and their applications. In this context, fixed point iterative
methods for solving integral equations have already gained a splendid boost over
the past few years (see, for example [1],[2],[4],[5],[7],[8],[16],[17],[19],[20]).
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In 2011, Sahu [23] introduced a normal S-iterative method as follows: x0 ∈ X,
xn+1 = Tyn,
yn = (1− ξn)xn + ξnTxn, n ∈ N

(1.1)

where X is an ambient space, T is a self-map of X and {ξn}∞n=0 is a real sequence
in [0, 1] satisfying certain control condition(s).

It has been shown both analytically and numerically in [23] and [12] that the it-
erative method (1.1) converges faster than Picard [22], Mann [21], and Ishikawa [10]
iterative processes in the sense of Berinde [3] for the class of contraction mappings.

This iterative method, due to its simplicity and fastness, has attracted the atten-
tion of many researchers and has been examined in various settings (see [9],[11],[13],
[14],[15],[18],[24]).

In this paper, inspired by the above mentioned achievements of normal S-
iterative method (1.1), we will use it to show that normal S-iterative method (1.1)
converges strongly to the solution of the following integral equation which has been
considered in [6]:

x (t) =

b∫
a

K (t, s) · h (s, x (s) , x (a) , x (b)) ds+ f (t) , t ∈ [a, b] ,(1.2)

where K : [a, b] × [a, b]→ R, h : [a, b]× R3 → R and f , x : [a, b]→ R.

Also we give a data dependence result for the solution of integral equation (1.2)
with the help of normal S-iterative method (1.1).

We need the following pair of known results:

Theorem 1.1. [6] Assume that the following conditions are satisfied:

(A1) K ∈ C ([a, b]× [a, b]);

(A2) h ∈ C
(
[a, b]× R3

)
;

(A3) f , x ∈ C [a, b];

(A4) there exist constants α, β, γ > 0 such that

|h (s, u1, u2, u3)− h (s, v1, v2, v3)| ≤ α |u1 − v1|+ β |u2 − v2|+ γ |u3 − v3| ,

for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

(A5) MK (α+ β + γ) (b− a) < 1,

where MK denotes a positive constant such that for all t, s ∈ [a, b]

|K (t, s)| ≤MK .

Then the equation (1.2) has a unique solution x∗ ∈ C [a, b], which can be obtained
by the successive approximations method starting with any element x0 ∈ C [a, b].
Moreover, if xn is the n-th successive approximation, then one has:

|xn − x∗| ≤
[MK (α+ β + γ) (b− a)]

n

1−MK (α+ β + γ) (b− a)
· |x0 − x1| .
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Lemma 1.1. [25] Let {βn}∞n=0 be a sequence of non negative numbers for which
one assumes there exists n0 ∈ N (set of natural numbers), such that for all n ≥ n0

βn+1 ≤ (1− µn)βn + µnγn,

where µn ∈ (0, 1) , for all n ∈ N,
∞∑
n=0

µn = ∞ and γn ≥ 0, ∀n ∈ N. Then the

following inequality holds:

0 ≤ lim sup
n→∞

βn ≤ lim sup
n→∞

γn.

2. Main Results

Theorem 2.1. Assume that all the conditions (A1) − (A5) in Theorem 1.1 are

fulfilled. Let {ξn}∞n=0 be a real sequence in [0, 1] satisfying
∞∑
n=0

ξn = ∞. Then

equation (1.2) has a unique solution x∗ ∈ C [a, b] and normal S-iterative method
(1.1) converges to x∗ with the following estimate:

‖xn+1 − x∗‖ ≤
[MK (α+ β + γ) (b− a)]

n+1

e(1−MK(α+β+γ)(b−a))
∑n

k=0 ξk
‖x0 − x∗‖ .

Proof. We consider the Banach space B = (C [a, b] , ‖·‖C), where ‖·‖C is the Cheby-
shev’s norm on C [a, b], defined by ‖·‖C = {sup |x (t)| : t ∈ [a, b]} . Let {xn}∞n=0 be
iterative sequence generated by Normal-S iteration method (1.1) for the operator
T : B → B defined by

T (x (t)) =

b∫
a

K (t, s) · h (s, x (s) , x (a) , x (b)) ds+ f (t) , t ∈ [a, b] .(2.1)

We will show that xn → x∗ as n→∞.

From (1.1), (2.1), and assumptions (A1)− (A4), we have that

|xn+1 (t)− x∗ (t)| = |T (yn (t))− T (x∗ (t))|

=

∣∣∣∣∣∣
b∫
a

K (t, s) ·
[

h (s, yn (s) , yn (a) , yn (b))
−h (s, x∗ (s) , x∗ (a) , x∗ (b))

]
ds

∣∣∣∣∣∣
≤

b∫
a

|K (t, s)| ·
∣∣∣∣ h (s, yn (s) , yn (a) , yn (b))
−h (s, x∗ (s) , x∗ (a) , x∗ (b))

∣∣∣∣ ds
≤ MK

b∫
a

[
α |yn (s)− x∗ (s)|+ β |yn (a)− x∗ (a)|

+γ |yn (b)− x∗ (b)|

]
ds,



688 Y. Atalan, F. Gürsoy and A. R. Khan

|yn (t)− x∗ (t)| ≤ (1− ξn) |xn (t)− x∗ (t)|+ ξn |T (xn) (t)− T (x∗) (t)|
= (1− ξn) |xn (t)− x∗ (t)|

+ξn

∣∣∣∣∣∣
b∫
a

K (t, s) ·
[

h (s, xn (s) , xn (a) , yn (b))
−h (s, x∗ (s) , x∗ (a) , x∗ (b))

]
ds

∣∣∣∣∣∣
≤ (1− ξn) |xn (t)− x∗ (t)|

+ξnMK

b∫
a

[
α |xn (s)− x∗ (s)|+ β |xn (a)− x∗ (a)|

+γ |xn (b)− x∗ (b)|

]
ds

Now, by taking supremum in the above inequalities, we get

‖xn+1 − x∗‖ ≤MK (α+ β + γ) (b− a) ‖yn − x∗‖ ,(2.2)

and
‖yn − x∗‖ ≤ [1− ξn (1−MK (α+ β + γ) (b− a))] ‖xn − x∗‖ ,(2.3)

respectively.

Combining (2.2) with (2.3), we obtain

‖xn+1 − x∗‖(2.4)

≤ MK (α+ β + γ) (b− a) [1− ξn (1−MK (α+ β + γ) (b− a))] ‖xn − x∗‖ .

Thus, by induction, we get

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖ [MK (α+ β + γ) (b− a)]
n+1

×
∏n

k=0
[1− ξk (1−MK (α+ β + γ) (b− a))] .(2.5)

Since ξk ∈ [0, 1] for all k ∈ N, the assumption (A5) yields

ξk (1−MK (α+ β + γ) (b− a)) < 1.(2.6)

From the classical analysis, we know that 1 − x ≤ e−x for all x ∈ [0, 1]. Hence by
utilizing this fact with (2.6) in (2.5), we obtain

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖ [MK (α+ β + γ) (b− a)]
n+1

(2.7)

×e−(1−MK(α+β+γ)(b−a))
∑n

k=0 ξk ,

which yields limn→∞ ‖xn − x∗‖ = 0.

We now prove a closeness of solutions of integral equation (1.2) with the help of the
normal-S iterative method (1.1).

We consider the following equation:

T̃ (x̃ (t)) =

b∫
a

K (t, s) · h̃ (s, x̃ (s) , x̃ (a) , x̃ (b)) ds+ g (t) , t ∈ [a, b] ,(2.8)
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where K : [a, b]× [a, b]→ R, h̃ : [a, b]× R3 → R and g : [a, b]→ R.

Now, we define the following normal-S iterative methods associated with T in
(2.1) and T̃ in (2.8), respectively:

x0 ∈ C [a, b] ,

xn+1 =
b∫
a

K (t, s) · h (s, yn (s) , yn (a) , yn (b)) ds+ f (t) ,

yn = (1− ξn)xn

+ξn
b∫
a

K (t, s) · h (s, xn (s) , xn (a) , xn (b)) ds+ f (t) , t ∈ [a, b] , n ∈ N,

(2.9)
and

x̃0 ∈ C [a, b] ,

x̃n+1 =
b∫
a

K (t, s) · h̃ (s, ỹn (s) , ỹn (a) , ỹn (b)) ds+ g (t) ,

ỹn = (1− ξn) x̃n

+ξn
b∫
a

K (t, s) · h̃ (s, x̃n (s) , x̃n (a) , x̃n (b)) ds+ g (t) , t ∈ [a, b] , n ∈ N,

(2.10)

where {ξn}∞n=0 is a real sequence in [0, 1], K : [a, b]×[a, b]→ R, h, h̃ : [a, b]×R3 → R
and f ,g : [a, b]→ R.

Theorem 2.2. Consider the sequences {xn}n=0 and {x̃n}∞n=0 generated by (2.9)
and (2.10), respectively, with the real sequence {ξn}∞n=0in [0, 1] satisfying 1

2 ≤ ξn for
all n ∈ N. Assume that:

(i) all the conditions of Theorem 2.1 hold and x∗ and x̃∗ are solutions of equa-
tions (2.1) and (2.8), respectively;

(ii) there exist non negative constants ε1 and ε2 such that∣∣∣h (s, u, v, w)− h̃ (s, u, v, w)
∣∣∣ ≤ ε1 and |f (t)− g (t)| ≤ ε2, for all t, s ∈ [a, b], u, v, w ∈

R.

If the sequence {x̃n}∞n=0 converge to x̃∗, then we have

‖x∗ − x̃∗‖ ≤ 3 [MK (b− a) ε1 + ε2]

1−MK (α+ β + γ) (b− a)
.(2.11)

Proof. Using (1.1), (2.1), (2.8)-(2.10), and assumptions (A1)-(A4) and (ii), we ob-
tain

|xn+1 (t)− x̃n+1 (t)| =
∣∣∣T (yn) (t)− T̃ (ỹn) (t)

∣∣∣
=

∣∣∣∣∣∣
b∫
a

K (t, s) · h (s, yn (s) , yn (a) , yn (b)) ds+ f (t)
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−
b∫
a

K (t, s) · h̃ (s, ỹn (s) , ỹn (a) , ỹn (b)) ds− g (t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
b∫
a

K (t, s) ·
[

h (s, yn (s) , yn (a) , yn (b))

−h̃ (s, ỹn (s) , ỹn (a) , ỹn (b))

]
ds

∣∣∣∣∣∣
+ |f (t)− g (t)|

≤ MK

b∫
a


∣∣∣∣ h (s, yn (s) , yn (a) , yn (b))
−h (s, ỹn (s) , ỹn (a) , ỹn (b))

∣∣∣∣
+

∣∣∣∣ h (s, ỹn (s) , ỹn (a) , ỹn (b))

−h̃ (s, ỹn (s) , ỹn (a) , ỹn (b))

∣∣∣∣
 ds

+ |f (t)− g (t)|

≤ MK

b∫
a

(
α |yn (s)− ỹn (s)|

+β |yn (a)− ỹn (a)|+ γ |yn (b)− ỹn (b)|+ ε1

)
ds

+ε2

≤ MK

b∫
a

(
α |yn (s)− ỹn (s)|

+β |yn (a)− ỹn (a)|+ γ |yn (b)− ỹn (b)|

)
ds

+MK

b∫
a

ε1ds+ ε2,

|yn (t)− ỹn (t)| ≤ (1− ξn) |xn (t)− x̃n (t)|+ ξn

∣∣∣T (xn) (t)− T̃ (x̃n) (t)
∣∣∣

≤ (1− ξn) |xn (t)− x̃n (t)|

+ξnMK

b∫
a


∣∣∣∣ h (s, xn (s) , xn (a) , xn (b))
−h (s, x̃n (s) , x̃n (a) , x̃n (b))

∣∣∣∣
+

∣∣∣∣ h (s, x̃n (s) , x̃n (a) , x̃n (b))

−h̃ (s, x̃n (s) , x̃n (a) , x̃n (b))

∣∣∣∣
 ds

+ξn |f (t)− g (t)|
≤ (1− ξn) |xn (t)− x̃n (t)|

+ξnMK

b∫
a

(
α |xn (s)− x̃n (s)|

+β |xn (a)− x̃n (a)|+ γ |xn (b)− x̃n (b)|+ ε1

)
ds

+ξnε2.

Now, by taking supremum in the above inequalities, we get

‖xn+1 − x̃n+1‖ ≤ MK (α+ β + γ) (b− a) ‖yn − ỹn‖(2.12)

+MK (b− a) ε1 + ε2,
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and

‖yn − ỹn‖ ≤ [1− ξn (1−MK (α+ β + γ) (b− a))] ‖xn − x̃n‖(2.13)

+ξnMK (b− a) ε1 + ξnε2,

respectively.

Combining (2.12) with (2.13) and using assumptions (A5) and 1
2 ≤ ξn for all

n ∈ N in the resulting inequality, we get

‖xn+1 − x̃n+1‖ ≤ [1− ξn (1−MK (α+ β + γ) (b− a))] ‖xn − x̃n‖
+ξnMK (b− a) ε1 + ξnε2 + 2ξnMK (b− a) ε1 + 2ξnε2

= [1− ξn (1−MK (α+ β + γ) (b− a))] ‖xn − x̃n‖
+ξn (1−MK (α+ β + γ) (b− a))

× 3 [MK (b− a) ε1 + ε2]

1−MK (α+ β + γ) (b− a)
.(2.14)

Denote by

βn = ‖xn − x̃n‖ ,
µn = ξn (1−MK (α+ β + γ) (b− a)) ∈ (0, 1) ,

γn =
3 [MK (b− a) ε1 + ε2]

1−MK (α+ β + γ) (b− a)
≥ 0.

The assumption 1
2 ≤ ξn for all n ∈ N implies

∞∑
n=0

ξn = ∞. Now it can be easily

seen that (2.14) satisfies all the conditions of Lemma 1.1. Hence it follows by its
conclusion that

0 ≤ lim sup
n→∞

‖xn − x̃n‖ ≤ lim sup
n→∞

3 [MK (b− a) ε1 + ε2]

1−MK (α+ β + γ) (b− a)
.

By (i), we have that limn→∞ xn = x∗. Using this fact and the assumption
limn→∞ x̃n = x̃∗, we get

‖x∗ − x̃∗‖ ≤ 3 [MK (b− a) ε1 + ε2]

1−MK (α+ β + γ) (b− a)
.

Remark 2.1. The result given in Theorem 2.2 relate the solutions of equations (2.1) and

(2.8) in the sense that if f is close to g and h is close to h̃, then not only the solutions
of equations (2.1) and (2.8) are close to each other, but also depend continuously on the
functions involved therein. Further, if ε1 → 0 and ε2 → 0, then the solution x∗ of equation
(2.1) tends the solution x̃∗ of the equation (2.8).
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Example 2.1. Consider the following integral equation

x (t) =

1∫
0

3t− 2s

5

[
s− sinx (s)

2
+
x (0) + x (1)

3

]
ds+

t+ e−t

3
, t ∈ [0, 1] .

where K ∈ C ([0, 1]× [0, 1]), K (t, s) = 3t−2s
5

, h ∈ C
(
[0, 1]× R3

)
, h (s, u, v, w) = s−sinu

2
+

v+w
3

, f ∈ C [0, 1], f (t) = t+e−t

3
, x ∈ C [0, 1] and its perturbed integral equation

x̃ (t) =

1∫
0

3t− 2s

5

[
s− sin x̃ (s)

2
+
x̃ (0) + x̃ (1)

3
− s+

1

7

]
ds+

t+ 2e−t

3
, t ∈ [0, 1] ,

where K ∈ C ([0, 1]× [0, 1]), K (t, s) = 3t−2s
5

, k ∈ C
(
[0, 1]× R3

)
, k (s, u, v, w) = s−sinu

2
+

v+w
3
− s+ 1

7
, g ∈ C [0, 1], g (t) = t+2e−t

3
, x̃ ∈ C [0, 1].

Define the operator T : C [0, 1]→ C [0, 1] by

T (x (t)) =

1∫
0

3t− 2s

5

[
s− sinx (s)

2
+
x (0) + x (1)

3

]
ds+

t+ e−t

3
, t ∈ [0, 1] .

We now show that the operator T is a contraction with contractivity factor 7
10

. Indeed,

|T (x1 (t))− T (x2 (t))|

=

∣∣∣∣∣∣
1∫

0

3t− 2s

5

[
s− sinx1 (s)

2
+
x1 (0) + x1 (1)

3
− s− sinx2 (s)

2
− x2 (0) + x2 (1)

3

]
ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1∫

0

∣∣∣∣3t− 2s

5

∣∣∣∣ ∣∣∣∣s− sinx1 (s)

2
+
x1 (0) + x1 (1)

3
− s− sinx2 (s)

2
− x2 (0) + x2 (1)

3

∣∣∣∣ ds
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1∫

0

∣∣∣∣3t− 2s

5

∣∣∣∣ [1

2
|sinx1 (s)− sinx2 (s)|+ 1

3
|x1 (0)− x2 (0)|+ 1

3
|x1 (1)− x2 (1)|

]
ds

∣∣∣∣∣∣ .
Now using the Chebyshev norm, we obtain

‖Tx1 − Tx2‖ ≤ sup
t,s∈[0,1]

∣∣∣∣3t− 2s

5

∣∣∣∣ (1

2
+

1

3
+

1

3

)
(1− 0) ‖x1 − x2‖

=
7

10
‖x1 − x2‖ .

One can easily show on the same lines as above that the mapping T̃ : C [0, 1] → C [0, 1]
defined by

T̃ (x̃ (t)) =

1∫
0

3t− 2s

5

[
s− sin x̃ (s)

2
+
x̃ (0) + x̃ (1)

3
− s+

1

7

]
ds+

t+ 2e−t

3
, t ∈ [0, 1] ,

is also a contraction with contractivity factor 7
10

.
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Since all the conditions of Theorem 2.1 are satisfied by the integral equations (2.1) and
(2.8) so by its conclusion, normal S-iterative method (1.1) converges to unique solution x∗

and x̃∗, respectively in C [0, 1].

Now we have the following estimates:

|K (t, s)| =
∣∣∣∣3t− 2s

5

∣∣∣∣ ≤ 3

5
= MK , t, s ∈ [0, 1] ,

|h (s, u, v, w)− k (s, u, v, w)| =
∣∣∣∣s− 1

7

∣∣∣∣ ≤ 1

7
= ε1, foralls ∈ [0, 1] , u, v, w ∈ R,

|f (t)− g (t)| =
∣∣∣∣ t+ e−t − t− 2e−t

3

∣∣∣∣ =
e−t

3
≤ 1

3
= ε2, s ∈ [0, 1] .

In view of the above estimates, all the conditions of Theorem 2.2 are satisfied and hence
from (2.11), we have

‖x∗ − x̃∗‖ ≤ 88

21
.
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