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Abstract. Let G be a finite group. The set D ⊆ G with |D| = k is called a (n, k, λ, µ)-
partial difference set (PDS) in G if the differences d1d

−1

2
, d2, d2 ∈ D, d1 6= d2, rep-

resent each non-identity element in D exactly λ times and each non-identity element
in G − {D} exactly µ times. In the present paper, we determine for which group
G ∈ {D2n, T4n, U6n, V8n} the derangement set is a PDS. We also prove that the de-
rangement set of a Frobenius group is a PDS.
Keywords. Finite group; Frobenius group; derangement set.

1. Introduction

Let G be a finite group. A symmetric subset of group G is a subset S ⊆ G, where
1 6∈ S and S = S−1. The Cayley graph Γ = Cay(G,S) with respect to S is a graph
whose vertex set is V (Γ) = G and two vertices x, y ∈ V (Γ) are adjacent if and only
if yx−1 ∈ S. It is a well-known fact that a Cayley graph is connected if and only
if G = 〈S〉. Also a Cayley graph is a regular graph (every vertex has the same
degree).

A derangement is a permutation with no fixed points. The set D of permu-
tation group is derangement if all elements of D are derangements. Suppose G is
a permutation group and D ⊆ G is a derangement set. The derangement graph
ΓG = Cay(G,D) has the elements of G as its vertices and two vertices are adjacent
if and only if they do not intersect.

Suppose G is a permutation group of degree n. A subset S of G is said to be
intersecting if for any pair of permutations σ, τ ∈ S there exists i ∈ {1, 2, . . . , n}
such that στ−1(i) = i. A group G has the Erdös-Ko-Rado (ekr) property, if for
any intersecting subset S ⊆ G, |S| is bounded above by the size of the largest point
stabilizer in G. The maximal intersecting set is one with maximum size. A group
can have the property under one action while it fails to have this property under
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another action. We refer to [1, 2, 8, 9, 13, 17] for background information about the
history of this intresting problem.

Section 2 includes the ekr properties of well-known groups. In section 3, the
derangement set of well-known groups are studied.

2. Erdös-Ko-Rado property

For the subgroupH of groupG and the element g ∈ G, the conjugate of subgroupH
in G is denoted by Hg = g−1Hg. Suppose G ≤ Sym(n) is a transitive permutation
group, then G is called a Frobenius group if it has a non-trivial subgroup H , where
H ∩Hg = {1}, for all g ∈ G \H . The kernel of Frobenius group G is defined as

K = (G \ ∪g∈GH
g) ∪ {1}.

It is not difficult to see that all non-identity elements of K are all derangement
elements of G. In other words, let G be a non-trivial permutation group and
G∗ = G − {1}. If G is a Frobenius group then for all g ∈ G∗, |fix(g)| ≤ 1 and at
least there exist an element g0 ∈ G∗ such that |fix(g0)| = 1.

Theorem 2.1. [16] (Frobenius Theorem) Suppose H is a proper non-identity
subgroup of G such that for all g ∈ G \ H, we have H ∩ g−1Hg = {1}. Let
K = G \ ∪g∈Gg

−1(H \ {1})g, then K ✁G, G = KH and H ∩K = {1}.

Proposition 2.1. [2] Every Frobenius group has the ekr property.

Theorem 2.2. Let G ≤ Sym(n) and the derangement graph Cay(G,D) be the
disjoint union of n-cliques. Then G has the ekr property.

Proof. Let {k1, k2, . . . , kn−1} be the set of derangements of G and {gi, gik1, . . . , gi
kn−1} be the vertices of the i-th clique in derangemen graph Cay(G,D), where
gi ∈ G. Since each clique has size n and G acts on n elements, every elemen of each
clique has exactly one fixed point and every pair of elements in a clique has no same
fixed point. Let H be the set of all vertices in Cay(G,D) that fixes point x. Suppose
1 6= grkt ∈ H and (grkt)

g ∈ H , where g ∈ G − H . So g−1grktg(x) = x and thus
grktg(x) = g(x). This means that grkt fixes g(x) while g(x) 6= x, a contradiction.
The proof is completed.

A group G acting on a set X is transitive if for every pair of points (a, b) ∈ X
there exist x ∈ G such that x.a = b. The permutation group G is regular if G acts
transitively on X and for all x ∈ X , Gx = 1. A group G is 2–transitive if for any
two ordered pairs (a, r), (b, s) ∈ X , with a 6= r and b 6= s there exists x ∈ G such
that x.a = b and x.r = s . We say that G is sharply 2-transitive if G is 2-transitive
and for any two points x, y ∈ X , Gx,y = 1. In this paper by, (G|X) we mean that
the group G acts on the set X .



On the partial difference sets in Cayley derangement graphs 653

Theorem 2.3. [5] Let (G|X) be transitive and x ∈ X. Then (G|X) is 2-transitive
if and only if Gx acts transitvely on the set X − {x}.

Theorem 2.4. [5] (The orbit-stabilizer property) Let (G|X) and x ∈ X. If G is
finite, then |xG||Gx| = |G|.

Theorem 2.5. [5] (Galois Theorem). Let (G|X) be a transitive permutation
group of degree a prime number. Then the group G is solvable if and only if for all
x, y ∈ X, x 6= y, we have Gx,y = 1.

Theorem 2.6. Let (G|X) be a 2-transitive permutation group of degree n and
(x1, x2) ∈ X2. Then |G| = n(n− 1)|Gx1,x2

|.

Proof. Suppose the group G acts on X , transitively. So the action of G on X has
one orbit. Then by Theorem 2.4, |G| = n|Gx1

|. On the other hand, by Theorem 2.3
group Gx1

acts transitively on the set X−{x1}, and by the orbit-stabilizer property
|Gx1

| = (n− 1)|Gx1,x2
|. This completes the proof.

Theorem 2.7. Let (G|X) be a transitive non-regular group of degree a prime num-
ber. If G is solvable then G has the ekr property.

Proof. Since G is non-regular, there exist x ∈ X such that Gx 6= 1. By Theorem
2.5, for x, y ∈ X we have Gx,y = 1 and this means that every non-identity element
of G fixes at most one element. If every non-identity element of G fixes no element
of X , then |G| = |X | and it is contradict with the non-regularity of G. So there
exist at least one 1 6= x ∈ X such that |Gx| = 1. Hence, G is Frobenius group and
by Proposition 2.1, it has the ekr property.

Theorem 2.8. Let (G|X) be a transitive permutation group such that the action
G is non-regular and for all x, y ∈ X, x 6= y, we have Gx,y = 1. Then G has the
ekr property.

Proof. Similar to the proof of theorm 2.7, we can conclude that G is Frobenius
group and the result follows.

Theorem 2.9. [5] Let (G|X) and the act of G be 2-transitive. Then the action
of G on X is sharply 2-transitive if and only if |G| = n(n− 1).

Theorem 2.10. Let (G|X) be 2-transitive non-regular permutation group of degree
n such that |G| = n(n− 1). Then G has the ekr property.

Proof. By Theorem 2.9, G is a sharply 2-transitive group and so for x, y ∈ X(x 6= y),
we have Gx,y = 1. Now, similar to the proof of Theorem 2.7, G is a Frobenius group
and thus it has the ekr property.
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Let ρ : G → GL(n,F) be a representation with ρ(g) = [g]β . The character
χρ : G → C of ρ is defined as χρ(g) = tr([g]β) for some basis β. The character χ
of an irreducible representation is called the irreducible character and χ is linear, if
χ(1) = 1. The set of all irreducible characters of group G is denoted by Irr(G).

Let (G|X) and fix(g) = {x ∈ X |g(x) = x}. The character π such that π(g) =
|fix(g)| is called permutation character and the character χ = |fix(g)| − 1 is called
standard character.

Theorem 2.11. [12] Let G be 2-transitive group, then the standard character of
G is irreducible character.

Theorem 2.12. [6] Let G be a finite group with a normal symmetric subset S.
Let A be the adjacency matrix of graph Cay(G,S). Then the eigenvalues of A are
given by

[λχ]
χ(1)2 , χ ∈ Irr(G)

where λχ = 1
χ(1)

∑

s∈S χ(s).

Theorem 2.13. The derangement graph of any 2-transitive group is not a bipar-
tite graph.

Proof. Let G acts 2-transitive on n elementsa and complete bipartite graph Kr,s be
the derangement graph of G. Since the derangement graph is a regular graph, we
have r = s. The eigenvalues of Kr,r are {[−r]1, [0]2r−2, [r]1}. On the other hand by
Theorem 2.11, the standard character π of a 2-transitive group is irreducible. So by

Theorem 2.12, we have λχ = −|D|
χ(1) = −r

n−1 . Since the rational eigenvalues of a graph

are integers, we have n = 2 and then G ∼= Z2 or G ∼= {1}.

3. Partial difference set

Let G be a finite group and D ⊆ G. Then D is a (n, k, λ, µ)-partial difference set
(PDS) in G if and only if DD−1 = γ1G+λD+µ(G−D), where γ = k−µ if 1G 6∈ D
and γ = k − λ if 1G ∈ D. We will usually assume that 1G 6∈ D and D(−1) = D, in
which case, we have

D2 = (k − µ)1G + (λ− µ)D + µG.

Partial difference sets were named by I. M. Chakravarti, 1969 [4], but introduced
by Bose and Cameron, 1965 [3] in their studies of calibration designs and the bridge
tournament problem. D is called abelian if G is abelian. It is well known that a
PDS D with 1 6∈ D and {d−1 : d ∈ D} = D is equivalent to a strongly regular
Cayley graph, such a PDS is called regular. The study of partial difference sets is
closely related to partial geometries, Schur rings, strongly regular Cayley graphs
and two-weight codes. Asurvey of Ma [15] contains very detailed descriptions of
these connections.
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Theorem 3.1. Let G = HK ≤ Sym(n) be a Frobenius group with kernel K. The
derangement set of G is a (n|H |, n− 1, n− 2, 0)-PDS.

Proof. We know that |K| = n. Every non-identity element of kernel G is a derange-
ment of G and D ∪ {1} is a subgroup. This implies that the derangement set of G
is a (n|H |, n− 1, n− 2, 0)-PDS.

Theorem 3.2. Consider the dihedral group D2n with derangement set D. If n is
odd, then D is a PDS and if n is even, then D is not a PDS.

Proof. Consider the dihedral group D2n = 〈a, b|an = b2 = 1, aba−1 = a−1〉.
If n is odd, then D2n is a Frobenius group and by Theorem 3.1 the derange-
ment set is a PDS. Now, let n be even. Suppose that a = (1, 2, 3, . . . , n) and
b = (1, 2)(3, n) . . . (n2 + 1, n

2 + 2) is permutation presentation of generators of D2n.
The derangement set of D2n is

D = {a, a2, . . . , an−1, b, a2b, a4b, . . . , an−2b}.

If aia−j = a2, then i− j ≡ 2(mod n) and {(3, 1), (4, 2), . . . , (n− 1, n− 3)} are n− 3
solutions for (i, j). On the other hand, if (aib)(ajb)−1 = a2(i, j are even), then
aia−j = a2 and so i − j ≡ 2(mod n). Thus {(4, 2), (6, 4), . . . , (n − 2, n − 4)} are
n/2 − 2 solutions for (i, j). One can see that a(an−1)−1 = a2, b(an−2b)−1 = a2

and (a2b)b−1 = a2. Let (aib)a−j = a2, by using the relation of group, we have
ai−jb = a2 and this is impossible. The equation ai(ajb)−1 = a2 is impossible, too.
So if di, dj ∈ D, then did

−1
j = a2 has (3n/2) − 2 solutions. If aia−j = a, then

i − j ≡ 1(mod n) and {(2, 1), (3, 2), . . . , (n − 1, n − 2)} are the solutions for (i, j).
By the relation of D2n, there is no other solutions for did

−1
j = a. So in this case

there are n− 2 solutions. Then we conclude that the derangement set of dihedral
group in this case is not a PDS.

Consider the dicyclic group T4n, U6n and V8n by the following presentations:

T4n = 〈a, b|a2n = e, an = b2, b−1ab = a−1〉,

U6n = 〈a, b|a2n = b3 = e, an = b2, a−1ba = b−1〉,

V8n = 〈a, b|a2n = b4 = e, aba = b−1, ab−1a = b−1〉.

Theorem 3.3. The derangement set of dicyclic group T4n is a (4n, 4n − 1, 4n−
2, 0)-PDS.

Proof. In [7] Darafsheh proved that two elements a = (1, 2, 3, . . . , 2n)(2n+ 1, 2n+
2, 2n + 3, . . . , 4n) and b = (1, 2n + 1, n + 1, 3n + 1)(2, 4n, n + 2, 3n)(3, 4n − 1n +
3, 3n− 1), . . . , (n− 1, 3n+3, 2n− 1, 2n+3)(n, 3n+2, 2n, 2n+2) are the generators
of T4n. All elements of T4n have no fixed point. Then D = T4n − {e} which is a
(4n, 4n− 1, 4n− 2, 0)-PDS.
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Theorem 3.4. The derangement set of U6n(n ≥ 4) is not a PDS set.

Proof. Let a = (1, 2, 3, . . . , 2n)(2n+1, 2n+2) and b = (2n+1, 2n+2, 2n+3) be the
permutation peresentations of generators of U6n [7]. One can see that the derange-
ment set of U6n is D = {aib, aib2|2 ≤ i ≤ 2n− 2 and i is even}. Let aibj , arbs ∈ D
and (aibj)(arbs)−1 = b. Then we have aibj−sa−r = b and so a−ibar = bj−s. Thus
ar−ia−rbar = bj−s and by using the relation of U6n, we have ar−ib(−1)r = bj−s.
This yields that

{

r ≡ i (mod 2n)
j − s = 1

.

Hence the relation (aibj)(arbs)−1 = b has n − 1 solutions. On the other hand
(aibj)(arbs)−1 = a has no solution and thus D is not a PDS set.

Theorem 3.5. The derangement set of V8n (n ≥ 3) is not a PDS set.

Proof. For group V8n we can consider two following cases:

• Case 1. Suppose n is an odd number. Let a = (1, 2, 3, . . . , 2n)(2n + 1, 2n +
2, . . . , 4n) and b = (1, 2, 2n + 1, 2n + 2)(3, 2n, 2n + 3, 4n)(4, 4n − 1, 2n + 4, 2n −
1) . . . (n+ 1, 3n+ 2, 3n+ 1, n+ 2) be the permutation peresentations of generators
of V8n [7]. One can see that the derangement set of V8n is

D = {a, a2, . . . , a2n−1, b, b2, b3, aib, aib2, aib3, arb2},

where 2 ≤ i ≤ 2n− 2 (i is even) and 1 ≤ r ≤ 2n− 1 (r is odd).

We are going to show that the number of elements of A = {di, dj ∈ D|did
−1
j = a}

and B = {di, dj ∈ D|di, d
−1
j = a2} are not equal. By considering i − j ≡

1 (mod 2n), the equation ai(aj)−1 = a has 2n − 2 solutions. Similarly, the
equation (aib2)(ajb2)−1 = a has 2n − 2 solutions. On the other hand, we have
b2(a2n−1b2)−1 = a and (ab2)(b2)−1 = a. So the set A has 4n − 2 elements. Now,
we compute the elements of the set B. By considering i − j ≡ 2 (mod 2n), the
equation ai(aj)−1 = a2 has 2n− 3 solutions. Also, (aib2)(ajb2)−1 = a2 has 2n− 3
solutions. Suppose that 4 ≤ i ≤ 2n − 2 (i is even) and j ≡ i − 2 (mod 2n), then
we have (aib)(ajb)−1 = a2 and (aib3)(ajb3)−1 = a2. This means that each of this
equations has n − 2 solutions. On can see that bi(a2n−2bi)−1 = a2 for i = 1, 2, 3.
On the other hand, we have (a2bi)(b−i) = a2(i = 1, 2, 3), (ab2)(a2n−1b2) = a2 and
a(a2n−1)−1 = a2. Then the set B has 6n− 2 elements and the derangement set of
V8n(n is odd) is not a PDS set.

• Case 2. Suppose n is even number. Let a = (1, 2, 3, . . . , 2n)(2n + 1, 2n +
2, . . . , 4n) and b = (1, 2, 2n + 1, 2n + 2)(3, 2n, 2n + 3, 4n)(4, 4n − 1, 2n + 4, 2n −
1) . . . (n, 3n+3, 3n, n+3)(n+1, n+2, 3n+1, 3n+2) be the permutation peresentations
of generators of V8n [7]. One can see that the derangement set of V8n is

D = {a, a2, . . . , a2n−1, b, b2, b3, aib, aib2, aib3, arb, arb2, asb2, asb3},
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where 2 ≤ i ≤ 2n−2 (i is even), r ∈ {1, 5, 9, . . . , 2n−3} and s ∈ {3, 7, 11, . . . , 2n−1}.

Now, we show that the number of elements of E = {di, dj ∈ D|did
−1
j = a} and

F = {di, dj ∈ D|did
−1
j = a4} are not equal. By regarding i − j ≡ 1 (mod 2n),

the equation ai(aj)−1 = a has 2n − 2 solutions. If j ≡ i − 1 (mod n) and i ∈
{2, 5, 6, 9, 10, . . . , 2n − 2}, then the equation (aibs)(ajbs)−1 = a, where s ∈ {1, 2}
has n− 1 solutions. If j ≡ i− 1 (mod n) and i ∈ {3, 4, 7, 8, 11, . . . , 2n− 1}, then the
equation (aibs)(ajbs)−1 = a, where s ∈ {2, 3} has n− 1 solutions. One can see that
(abt)(bt)−1 = a, where t ∈ {1, 2} and bt(a2n−1bt)−1 = a, where t ∈ {2, 3}. Then
the set E has 6n − 2 elements. Now, we compute the elements of the set F . By
considering i − j ≡ 4 (mod 2n) the equation ai(aj)−1 = a4 has 2n − 5 solutions.
It is clear that a1(a2n−3)−1 = a2(a2n−2)−1 = a3(a2n−1)−1 = a4. One can see that
if t ∈ {1, 2, 3} then (a4bt)(bt)−1 = a4, and bt(a2n−4bt)−1 = a4. Let i, j be even,
i − j ≡ 4 (mod 2n) and r ∈ {1, 2, 3}. Then (aibr)(ajbr)−1 = a4 yields 3(n − 1)
solutions. Let i be odd, i− j ≡ 4 (mod 2n) and r ∈ {5, 9, 13, . . . , 2n− 3}. Then by
using (aibr)(ajbr)−1 = a4 we get n − 2 solutions for this equation. Let i be odd,
i− j ≡ 4 (mod 2n) and r ∈ {7, 11, 15, . . . , 2n− 1}. Again by (aibr)(ajbr)−1 = a4 we
acheive n− 2 solutions. If i ∈ {1, 2} then (abi)(a2n−3bi)−1 = a4. If i ∈ {2, 3} then
(a3bi)(a2n−1bi)−1 = a4 and if i ∈ {1, 2, 3} then (a2bi)(a2n−2bi)−1 = a4. So the set
F has 7n − 2 elements. Then the derangement set of V8n(n is odd) is not a PDS
set.
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