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αβ−STATISTICAL CONVERGENCE ON TIME SCALES

Bayram Sozbir and Selma Altundag

Abstract. In this paper, we introduce the concepts of αβ−statistical convergence and
strong αβ−Cesàro summability of delta measurable functions on an arbitrary time scale.
Then some inclusion relations and results about these new concepts are presented. We
will also investigate the relationship between statistical convergence and αβ−statistical
convergence on a time scale.
Keywords: statistical convergence, time scale, delta measurable functions, Cesàro
summable.

1. Introduction

The idea of statistical convergence for sequences of real and complex numbers
was introduced by Fast [14] and Steinhaus [15] independently in the same year
(1951) as follows. LetK ⊆ N, the set of natural numbers andKn = {k 6 n : k ∈ K}.
Then the natural density of K is defined by δ (K) = limnn

−1 |Kn| if the limit ex-
ists, where |Kn| denotes the cardinality of Kn. A sequence x = (xk) is said to be
statistically convergent to L if for every ε > 0, the set Kε := {k ∈ N : |xk − L| > ε}
has natural density zero, i.e., for each ε > 0,

lim
n

1

n
|{k 6 n : |xk − L| > ε}| = 0.

In this case, we write st− limx = L. It is known that every convergent sequence is
statistically convergent, but not conversely. For example, suppose that the sequence
x = (xk) defined by xk =

√
k if k is square and xk = 0 otherwise. It is clear that

the sequence x = (xk) is statistically convergent to 0 but it is not convergent. Over
the years, generalizations and applications of this notion have been investigated by
various researchers [2, 8, 10, 11, 13, 16, 17, 18, 19, 20, 21, 24, 26, 29].

Aktuglu [13] introduced αβ−statistical convergence as follows. Let α (n) and
β (n) be two sequences of positive numbers satisfying the following conditions:
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P1 : α and β are both non− decreasing,
P2 : β (n) > α (n) ,
P3 : β (n)− α (n)→∞ as n→∞.

Let Λ denote the set of pairs (α, β) satisfying P1, P2 and P3.

For each pair (α, β) ∈ Λ, 0 < γ 6 1 and K ⊂ N, we define

δα,β (K, γ) = lim
n→∞

∣∣K ∩ Pα,βn

∣∣
(β (n)− α (n) + 1)

γ

where Pα,βn is the closed interval [α (n) , β (n)] and |S| represents the cardinality of
S.

Definition 1.1. [13] A sequence x = (xn) is said to be αβ−statistically convergent
of order γ to L, if for every ε > 0

δα,β ({k : |xk − L| > ε} , γ) = lim
n→∞

∣∣{k ∈ Pα,βn : |xk − L| > ε
}∣∣

(β (n)− α (n) + 1)
γ = 0,

which is denoted by stγαβ− limxn = L. For γ = 1, we say that x is αβ−statistically
convergent to L, and this is denoted by stαβ − limxn = L.

The purpose of our study is to introduce the concept of αβ−statistical conver-
gence on an arbitrary time scale.

A time scale T is an arbitrary non-empty closed subset of the real numbers R
with the subspace topology inherited from the standard topology of R. The theory
of time scales was introduced by Hilger in his Ph. D. thesis supervised by Auldbach
in 1988 (see [3, 27]), in order to unify continuous and discrete analysis. Since
this theory is applicable to any field in which dynamic processes can be described
with discrete or continuous models and is also effective in modeling some real life
problems, it has a tremendous potential for applications and has recently received
much attention, see [1, 12, 22, 23, 28]. In addition, statistical convergence is applied
to time scales by various researchers in literature. For instance, Seyyidoglu and
Tan [25] defined some new notions such as ∆−convergence and ∆−Cauchy, by
using ∆−density. Turan and Duman introduced the concepts of density, statistical
convergence and lacunary statistical convergence of delta measurable real-valued
functions defined on time scales in [5] and [6], respectively. Also, in [7], they obtained
a Tauberian condition for statistical convergence, and established a relationship
between statistical convergence and lacunary statistical convergence on time scales.
Altin, Koyunbakan and Yilmaz [30] gave the notions of m− and (λ,m)−uniform
density of a set and m− and (λ,m)−uniform statistical convergence on an arbitrary
time scales. Furthermore, λ−statistical convergence on time scales was defined by
Yilmaz, Altin and Koyunbakan [9]. Recently, Sozbir and Altundag [4] introduced
the concepts of weighted statistical convergence and

[
N̄ , p

]
T−summability of delta

measurable functions on time scales, and investigated their relations. We here recall
some concepts and notations about the theory of time scales.
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The forward jump operator σ : T→ T can be defined by

σ(t) = inf{s ∈ T : s > t}

for t ∈ T. And the graininess function µ : T → [0,∞) can be defined by µ(t) =
σ(t)− t. In this definition we put inf Ø = supT , where Ø is an empty set. A closed
interval in a time scale T is given by [a, b]T = {t ∈ T : a 6 t 6 b}. Open intervals or
half-open intervals are defined accordingly.

Let F1 denote the family of all left closed and right open intervals of T of the
form [a, b)T = {t ∈ T : a 6 t < b} with a, b ∈ T and a 6 b. The interval [a, a) is
understood as the empty set. F1 is a semiring of subsets of T. Let m1 : F1 → [0,∞)
be a set function on F1 such that m1 ([a, b)T) = b − a. Then, it is known that m1

is a countably additive measure on F1. Now, the Caratheodory extension of the set
function m1 associated with family F1 is said to be the Lebesgue ∆−measure on T
is denoted by µ∆. In this case, it is known that if a ∈ T\ {maxT}, then the single
point set {a} is ∆−measurable and µ∆ ({a}) = σ (a)−a. If a, b ∈ T and a 6 b, then
µ∆ ([a, b)T) = b − a and µ∆ ((a, b)T) = b − σ (a). If a, b ∈ T\ {maxT} and a 6 b,
then µ∆ ((a, b]T) = σ (b)− σ (a) and µ∆ ([a, b]T) = σ (b)− a (see [12]).

We should note that throughout the paper, we consider that T is a time scale
satisfying inf T = t0 > 0 and supT = ∞. Turan and Duman [5] introduced the
concepts of density, statistical convergence and strong p−Cesàro summability of
measurable real valued functions defined on time scales in the following way.

Definition 1.2. [5] Let Ω be a ∆−measurable subset of T. Then, for t ∈ T, we
define the set Ω (t) by

Ω (t) = {s ∈ [t0, t]T : s ∈ Ω} .

In this case, we define the density of Ω on T, denoted by δT (Ω), as follows:

δT (Ω) = lim
t→∞

µ∆ (Ω (t))

µ∆ ([t0, t]T)

provided that the above limit exists.

Definition 1.3. [5] Let f : T → R be a ∆−measurable function. We say that f
is statistically convergent on T to a number L, if for every ε > 0

δT ({t ∈ T : |f (t)− L| > ε}) = 0

holds, i.e., for every ε > 0,

lim
t→∞

µ∆ ({s ∈ [t0, t]T : |f (s)− L| > ε})
µ∆ ([t0, t]T)

= 0,

which is denoted by stT − lim
t→∞

f (t) = L.
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Definition 1.4. [5] Let f : T → R be a ∆−measurable function and 0 < p < ∞.
We say that f is strongly p−Cesàro summable on the time scale T to a number L,
if there exists some L ∈ R such that

lim
t→∞

1

µ∆ ([t0, t]T)

∫
[t0,t]T

|f (s)− L|p∆s = 0.

2. Main Results

In this section, we will begin by introducing the new concepts of αβ−statistical
convergence and strong αβ−Cesàro summability on an arbitrary time scale, which
are our main definitions, and we establish some relations about these notions. We
also examine the relationship between statistical convergence and αβ−statistical
convergence on a time scale.

Now let α, β : T→ R+ be two functions satisfying the following conditions:

T1 : α and β are both non− decreasing,
T2 : σ (β (t)) > α (t) > t0 for all t ∈ T,
T3 : σ (β (t))− α (t)→∞ as t→∞.

And let ΛT denote the set of pairs (α, β) satisfying T1, T2 and T3.

Definition 2.1. Let f : T → R be a ∆−measurable function and (α, β) ∈ ΛT.
Then, f is said to be αβ−statistically convergent to L ∈ R on a time scale T, if for
every ε > 0

lim
t→∞

µ∆ ({s ∈ [α (t) , β (t)]T : |f (s)− L| > ε})
µ∆ ([α (t) , β (t)]T)

= 0,

which is denoted by stT−αβ − lim f (t) = L.

This definition includes the following special cases:

i) If we take α (t) = t0 and β (t) = t for all t ∈ T, then αβ−statistical conver-
gence is reduced to statistical convergence on a time scale introduced in [5].

ii) Let λ = (λn) be a non-decreasing sequence of positive real numbers tending to
∞ such that λn+1 6 λn+1 and λ1 = 1. For T = N, if we choose α (t) = t−λt+t0 and
β (t) = t, then αβ−statistical convergence on a time scale is reduced to λ−statistical
convergence introduced in [24].

Remark 2.1. Let θ = (kr) be an increasing sequence of non-negative integers with
k0 = 0 and σ (kr)− σ (kr−1)→∞ as r →∞, which means that θ is a lacunary sequence
with respect to T. If we take T = N, α (t) = kt−1 + 1 and β (t) = kt, then αβ−statistical
convergence on T gives us the concept of lacunary statistical convergence introduced in
[19]. However, for an arbitrary time scale T, this is not clear, and we leave it as an open
problem.

Proposition 2.1. If f : T → R is αβ−statistically convergent, then its limit is
unique.
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Proposition 2.2. If f, g : T → R with stT−αβ − lim f (t) = L1 and stT−αβ −
lim g (t) = L2, then we have the following:

i) stT−αβ − lim (f (t) + g (t)) = L1 + L2,

ii) stT−αβ − lim (cf (t)) = cL1 for any c ∈ R.

Definition 2.2. Let f : T → R be a ∆−measurable function and (α, β) ∈ ΛT.
Then, one says f is said to be strongly αβ−Cesàro summable on a time scale T, if
there exists some L ∈ R such that

lim
t→∞

1

µ∆ ([α (t) , β (t)]T)

∫
[α(t),β(t)]T

|f (s)− L|∆s = 0.

Theorem 2.1. Let f : T → R be ∆−measurable function and L ∈ R. Then we
have the following:

i) If f is strongly αβ−Cesàro summable to L, then stT−αβ − lim f (t) = L, but
not conversely.

ii) If stT−αβ − lim f (t) = L and f is a bounded function, then f is strongly
αβ−Cesàro summable to L.

Proof. i) Let f is strongly αβ−Cesàro summable to L. Then, for every ε > 0, we
can write that∫

[α(t),β(t)]T

|f (s)− L|∆s >
∫

[α(t),β(t)]T:|f(s)−L|>ε
|f (s)− L|∆s

> εµ∆ ({s ∈ [α (t) , β (t)]T : |f (s)− L| > ε}) ,

which implies that stT−αβ − lim f (t) = L.

To prove the converse, define a function f in each intervals [α (t) , β (t)]T by

f (s) =



1, if s ∈ [α (t) , α (t) + 1)T,
2, if s ∈ [α (t) + 1, α (t) + 2)T,
...[∣∣√ut∣∣] , if s ∈

[
α (t) +

[∣∣√ut∣∣]− 1, α (t) +
[∣∣√ut∣∣])T,

0, otherwise,

where u (t) = σ (β (t))− α (t).

Then, for every ε > 0, we observe that

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
µ∆([α(t),β(t)]T)

=
µ∆([α(t),α(t)+[|√ut|])T)

µ∆([α(t),β(t)]T)

=
[|√ut|]
ut
→ 0 (as t→∞).

Thus, stT−αβ − lim
t→∞

f (t) = 0.
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On the other hand,

1

µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T

|f (s)|∆s

= 1
σ(β(t))−α(t)

[|√ut|]∑
m=1

mµ∆ ([α (t) +m− 1, α (t) +m)T)

= 1
ut

[|√ut|]∑
m=1

m

=
1+2+...+[|√ut|]

ut

=
[|√ut|]([|

√
ut|]+1)/2

ut
→ 1

2 6= 0 (as t→∞).

Hence, we obtain that f is not strongly αβ−Cesàro summable to 0. This completes
the proof.

ii) Let f be bounded and stT−αβ − lim f (t) = L. Then, there exists a positive
number M such that |f (t)| 6M for all t ∈ T, and for a given ε > 0, we also have

lim
t→∞

µ∆ ({s ∈ [α (t) , β (t)]T : |f (s)− L| > ε})
µ∆ ([α (t) , β (t)]T)

= 0.

Then, we can easily see that

1

µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T

|f (s)− L|∆s

= 1

µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T:|f(s)−L|>ε

|f (s)− L|∆s

+ 1

µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T:|f(s)−L|<ε

|f (s)− L|∆s

6 M+|L|
µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T:|f(s)−L|>ε

∆s+ ε

µ∆([α(t),β(t)]T)

∫
[α(t),β(t)]T

∆s

= (M + |L|) µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
µ∆([α(t),β(t)]T)

+ ε.

Letting t → ∞ on the both sides of the last inequality, since ε > 0 is arbitrary, we
have

lim
t→∞

1

µ∆ ([α (t) , β (t)]T)

∫
[α(t),β(t)]T

|f (s)− L|∆s = 0.

So, the proof is completed.
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Theorem 2.2. If lim inf
t→∞

σ(β(t))
α(t) > 1, then stT − lim f (t) = L implies stT−αβ −

lim f (t) = L.

Proof. Suppose that lim inf
t→∞

σ(β(t))
α(t) > 1. Then, for sufficiently large t, there exists

δ > 0 such that σ(β(t))
α(t) > 1 + δ, and hence σ(β(t))−α(t)

σ(β(t)) > δ
1+δ . For a given ε > 0,

we have

µ∆({s∈[t0,β(t)]T:|f(s)−L|>ε})
µ∆([t0,β(t)]T)

>
µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})

σ(β(t))−t0

> σ(β(t))−α(t)
σ(β(t))

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
σ(β(t))−α(t)

> δ
1+δ

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
σ(β(t))−α(t) .

Letting t → ∞ on the both sides of the last inequality and also using the stT −
lim f (t) = L, we get

lim
t→∞

µ∆ ({s ∈ [α (t) , β (t)]T : |f (s)− L| > ε})
µ∆ ([α (t) , β (t)]T)

= 0.

This completes the proof of the theorem.

Theorem 2.3. If lim
t→∞

α(t)−t0
σ(β(t))−t0 = 0, then stT−αβ − lim f (t) = L implies stT −

lim f (t) = L.

Proof. Assume that stT−αβ − lim f (t) = L. Then, for every ε > 0, we may write

µ∆({s∈[t0,β(t)]T:|f(s)−L|>ε})
µ∆([t0,β(t)]T)

=
µ∆({s∈[t0,α(t))T:|f(s)−L|>ε})

µ∆([t0,β(t)]T)
+

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
µ∆([t0,β(t)]T)

=
µ∆({s∈[t0,α(t))T:|f(s)−L|>ε})

σ(β(t))−t0 +
µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})

σ(β(t))−t0

6 α(t)−t0
σ(β(t))−t0 +

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
σ(β(t))−α(t) .

.

Taking limit as t → ∞ on the both sides of last inequality and using the condition

of lim
t→∞

α(t)−t0
σ(β(t))−t0 = 0, we have

lim
t→∞

µ∆ ({s ∈ [t0, β (t)]T : |f (s)− L| > ε})
µ∆ ([t0, β (t)]T)

= 0,
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which completes the proof.

Now, let (α, β) ∈ ΛT and (α′, β′) ∈ ΛT. In the following theorem αβ−statistical
convergence and α′β′−statistical convergence are compared under the restriction

α (t) 6 α′ (t) < β′ (t) 6 β (t)

for all t ∈ T. Under these conditions above,we have the following theorem:

Theorem 2.4. If lim
t→∞

σ(β′(t))−α′(t)

σ(β(t))−α(t) > 0, then stT−αβ − lim f (t) = L implies

stT−α′β′ − lim f (t) = L.

Proof. Suppose that lim
t→∞

σ(β′(t))−α′(t)

σ(β(t))−α(t) > 0 and stT−αβ− lim f (t) = L. We have the

inclusion

{s ∈ [α′ (t) , β′ (t)]T : |f (s)− L| > ε} ⊆ {s ∈ [α (t) , β (t)]T : |f (s)− L| > ε}

for every ε > 0, and hence

µ∆ ({s ∈ [α′ (t) , β′ (t)]T : |f (s)− L| > ε})

6 µ∆ ({s ∈ [α (t) , β (t)]T : |f (s)− L| > ε}) .

So, we may write that

µ∆({s∈[α(t),β(t)]T:|f(s)−L|>ε})
µ∆([α(t),β(t)]T)

>
µ∆({s∈[α′(t),β′(t)]T:|f(s)−L|>ε})

µ∆([α(t),β(t)]T)

=
σ(β′(t))−α′(t)

σ(β(t))−α(t)

µ∆({s∈[α′(t),β′(t)]T:|f(s)−L|>ε})
σ(β′(t))−α′(t) .

Since stT−αβ − lim f (t) = L, taking limit as t → ∞ on the both sides of last
inequality, we get

lim
t→∞

µ∆ ({s ∈ [α′ (t) , β′ (t)]T : |f (s)− L| > ε})
σ (β′ (t))− α′ (t)

= 0,

which means stT−α′β′ − lim f (t) = L. Hence, the proof is completed.
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