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Abstract. In this paper, we introduce fixed point theorem for a general contractive
condition in complex valued metric spaces. Also, some important corollaries under this
contractive condition are obtained. As an application, we find a unique solution for
Urysohn integral equations and some illustrative examples are given to support our
obtaining results. Our results extend and generalize the results of Azam et al. [2] and
some other known results in the literature.
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1. Introduction

A number of articles have been dedicated to the improvement and generalization
of Banach contraction mapping principle. There exists various generalizations of
the contraction principle, roughly obtained by weakening the contractive proper-
ties of the mapping and possibly, by simultaneously giving the space a sufficiently
rich structure, in order to compensate the relaxation of the contractiveness, or by
extending the structure of the space.
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Also, several fixed point theorems are obtained by combining the two ways
previously described or by adding supplementary conditions (see, for example, [1,
4, 8, 10, 14, 17, 22]).

The complex valued metric spaces is more general than ordinary metric spaces.
According to this concept, a number of articles related to fixed point theory and
it’s application are presented (see, for example, [3, 5, 6, 7, 9, 11, 12, 13, 15, 16, 18,
19, 20, 21, 23]).

In this paper, we prove some fixed point theorem in complex valued metric
spaces under contractive condition for single-valued mappings. Moreover, we give
a result of existence and uniqueness for solutions of a nonlinear system of integral
equations. Finally, we will give some explained examples to strengthen our results.

2. Preliminaries

In this section, we recall some known notations and definitions that will be used
in the sequel.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on
C as follows:z1z2 if and only if Re (z1) ≤ Re (z2) and Im (z1) ≤ Im (z2). It follows
that z1 - z2 if one of the following conditions is satisfied:

(C1) Re (z1) = Re (z2) and Im (z1) < Im (z2),

(C2) Re (z1) < Re (z2) and Im (z1) = Im (z2),

(C3) Re (z1) < Re (z2) and Im (z1) < Im (z2),

(C4) Re (z1) = Re (z2) and Im (z1) = Im (z2),

In particular, we write z1 � z2 if z1 6= z2 and one of (C1), (C2) and (C3) is satisfied
and we write z1 ≺ z2 if only (C3) is satisfied.

Definition 2.1. [2] Let X be a nonempty set. A mapping d : X×X → C is called
a complex valued metric on X if the following conditions holds for all x, y, z ∈ X,

(CM1) 0 - d(x, y) and d(x, y) = 0 if and only if x = y,

(CM2) d(x, y) = d(y, x),

(CM3) d(x, y) - d(x, z) + d(z, y).
Then d is called a complex valued metric on X and (X, d) is called a complex valued
metric space.

For some examples of complex valued metric spaces (see [2, 5, 12, 18]).

Definition 2.2. [2] Let (X, d) be a complex valued metric space. Then

(i) A sequence {xn} in X is said to be converged to x ∈ X if for every 0 ≺ ε ∈ C
there exists N ∈ N such that d(xn, x) ≺ ε ∀n > N. We denote this by limn→∞ xn =
x or xn → x as n→∞.
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(ii) If for every 0 ≺ ε ∈ C there exists N ∈ N such that d(xn, xn+m) ≺ ε for all
n > N, m ∈ N, Then {xn} is called a Cauchy sequence in (X, d).

(iii) If every Cauchy sequence in X is convergent in X then (X, d) is called a
complete complex valued metric space.

Lemma 2.1. [2] Let (X, d) be a complex valued metric space and {xn} be a se-
quence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 2.2. [2] Let (X, d) be a complex valued metric space. Then a sequence
{xn} in X is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n→∞, where
m ∈ N.

3. Main result

We state and prove our first result.

Theorem 3.1. Let (X, d) be a complete complex valued metric space and S, T :
X → X such that

d(Sx, Ty) - αM(x, y),(3.1)

for all x, y ∈ X, where 0 < α < 1 and

M(x, y) = max

{
d(x, y),

d(x, Sx)d(y, Ty)

1 + d(x, y)
,
d(x, Ty)d(y, Sx)

1 + d(x, y)

}
.

Then there exists a unique common fixed point of the pair mappings (S, T ).

Proof. Let x0 be arbitrary point in X and define a sequence {xn} as follows:

x2n+1 = Sx2n and x2n+2 = Tx2n+1, n = 0, 1, 2, ..(3.2)

Then, by (3.1) and (3.2), we get

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

- αmax

{
d(x2n, x2n+1),

d(x2n, Sx2n)d(x2n+1, Tx2n+1)

1 + d(x2n, x2n+1)
,

d(x2n, Tx2n+1)d(x2n+1, Sx2n)

1 + d(x2n, x2n+1)

}
- αmax

{
d(x2n, x2n+1),

d(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n, x2n+1)
,

d(x2n, x2n+2)d(x2n+1, x2n+1)

1 + d(x2n, x2n+1)

}
- αmax {d(x2n, x2n+1), d(x2n+1, x2n+2)} .

If max {d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2), then

d(x2n+1, x2n+2) - αd(x2n+1, x2n+2),
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This leads to, α ≥ 1, a contradiction. Therefore

d(x2n+1, x2n+2) - αd(x2n, x2n+1).(3.3)

Similarly, we can obtain that

d(x2n+2, x2n+3) - αd(x2n+1, x2n+2).(3.4)

From (3.3) and (3.4) for all n = 0, 1, 2, .. , we can write

d(xn+1, xn+2) - αd(xn, xn+1) - ... - αn+1d(x◦, x1).

So for m > n,

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

-
(
αn + αn+1 + ...+ αm−1) d(x◦, x1)

-

(
αn

1− α

)
d(x◦, x1).

So,

|d(xn, xm)| -
(

αn

1− α

)
|d(x◦, x1)| → 0.

As n → ∞, therefore {xn} is a Cauchy sequence in X. Since X is complete, then
there exists u ∈ X such that xn → u. If S and T are not continuous, it follows that
u = Su, otherwise d(u, Su) = z > 0 and we would then have

z - d(u, x2k+2) + d(Su, x2k+2)

- d(u, x2k+2) + d(Su, Tx2k+1)

- d(u, x2k+2) + αmax

{
d(u, x2k+1),

d(u, Su)d(x2k+1, Tx2k+1)

1 + d(u, x2k+1)
,

d(u, Tx2k+1)d(x2k+1, Su)

1 + d(u, x2k+1)

}
- d(u, x2k+2) + αmax {d(u, x2k+1),

d(u, Su)d(x2k+1, x2k+2)

1 + d(u, x2k+1)
,
d(u, x2k+2)d(x2k+1, Su)

1 + d(u, x2k+1)

}
- d(u, x2k+2) + αmax {0, 0, z}
- d(u, x2k+2) + αz.

This yields,

|z| ≤ |d(u, x2k+2)|+ α |z| .

That is α ≥ 1, a contradiction again and hence, u = Su. It follows similarly that
u = Tu.
If S and T are continuous, i.e., the continuity of S, yields

u = lim
n→∞

x2n+2 = lim
n→∞

Sx2n+1 = S lim
n→∞

x2n+1 = Su.
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Similarly, u = Tu. Hence the pair (S, T ) has a common fixed point.

For the uniqueness, assume that v ∈ X is a second common fixed point of S and
T . Then

d(u, v) = d(Su, Tv)

- αmax

{
d(u, v),

d(u, Su)d(v, Tv)

1 + d(u, v)
,
d(u, Tv)d(v, Su)

1 + d(u, v)

}
- αd(u, v).

This implies that u = v, this completes the proof.

If we take S = T in the above theorem we have we have the following immediate
consequences.

Corollary 3.1. (X, d) be a complete complex valued metric space and S : X → X
satisfy

d(Sx, Sy) - αM(x, y),

for all x, y ∈ X, where 0 < α < 1 and

M(x, y) = max

{
d(x, y),

d(x, Sx)d(y, Sy)

1 + d(x, y)
,
d(x, Sy)d(y, Sx)

1 + d(x, y)

}
.

Then S has a unique fixed point on X.

Corollary 3.2. Let (X, d) be a complete complex valued metric space and S : X →
X satisfy

d(Snx, Sny) - αM(x, y)

for all x, y ∈ X, where 0 < α < 1 and

M(x, y) = max

{
d(x, y),

d(x, Snx)d(y, Sny)

1 + d(x, y)
,
d(x, Sny)d(y, Snx)

1 + d(x, y)

}
.

Then S has a unique fixed point.

Proof. By Corollary 3.1, we obtain v ∈ X such that

Snv = v.

From the fact

d(Sv, v) = d(SSnv, Snv) = d(SnSv, Snv)

- αmax

{
d(Sv, v),

d(Sv, SnSv)d(v, Snv)

1 + d(Sv, v)
,
d(Sv, Snv)d(v, SnSv)

1 + d(Sv, v)

}
- αmax

{
d(Sv, v),

d(Sv, SSnv)d(v, Snv)

1 + d(Sv, v)
,
d(Sv, Snv)d(v, SSnv)

1 + d(Sv, v)

}
= αd(Sv, v).

The result is follows.
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4. An application to Urysohn integral type equations

In this section, we apply Theorem 3.1 to prove the existence of a unique solution
to the following Urysohn integral type equations:{

x(t) = h(t) +
∫ b

a
K1(t, s, x(s))ds

y(t) = h(t) +
∫ b

a
K2(t, s, y(s))ds

.(4.1)

where,

(i) x(t) and y(t) are unknown variables for each t ∈ [a, b], a > 0,

(ii) h(t) is the deterministic free term defined for t ∈ [a, b],

(iii) K1(t, s) and k2(t, s) are deterministic kernels defined for t, s ∈ [a, b].
Let X = (C[a, b],Rn), a > 0 and d : X ×X → Rn defined by

d(x, y) = sup
t∈[a,b]

‖x(t)− y(t)‖∞
3
√

1 + b3ei cot
−1 b,

for all x, y ∈ X, i =
√
−1 ∈ C.

It’s obvious that (C[a, b],Rn, ‖.‖∞) is a complete complex valued metric space.

Next, we consider a system (4.1) under the following conditions:

(H1) h(t) ∈ X,
(H2) K1,K2 : [a, b]× [a, b]× Rn → Rn are continuous functions satisfying

|K1(t, s, u(s))−K1(t, s, v(s))| - 1

(b− a)eab
M(u, v),

where,

M(u, v) = max

{
d(u, v),

d(u, Su)d(v, Tv)

1 + d(u, v)
,
d(u, Tv)d(v, Su)

1 + d(u, v)

}
.

Next, we state and prove the following theorem:

Theorem 4.1. (C[a, b],Rn, ‖.‖∞) be a complete complex valued metric space, then
the system (4.1) under the conditions (H1) and (H2) has a unique common solution.

Proof. For x, y ∈ (C[a, b],Rn) and t ∈ [a, b], we define the continuous mappings
S, T : X → X by

Sx(t) = h(t) +
∫ b

a
K1(t, s, x(s))ds,

Ty(t) = h(t) +
∫ b

a
K2(t, s, y(s))ds.

By this, we have

|Sx(t)− Ty(t)| =

∫ b

a

|K1(t, s, x(s))−K2(t, s, y(s))| ds
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-
∫ b

a

1

(b− a)eab
|M(x, y)| ds

=
1

(b− a)eab

∫ b

a

e−i cot
−1 b

3
√

1 + b3
|M(x, y)| 3

√
1 + b3ei cot

−1 bds

-
1

(b− a)eab
e−i cot

−1 b

3
√

1 + b3
‖M(x, y)‖∞

∫ b

a

ds

=
1

eab
e−i cot

−1 b

3
√

1 + b3
‖M(x, y)‖∞ .

This gives,

3
√

1 + b3 |Sx(t)− Ty(t)| e−i cot
−1 b -

1

eab
‖M(x, y)‖∞ ,

or, equivalently

‖Sx(t)− Ty(t)‖∞ -
1

eab
‖M(x, y)‖∞ ,

or,

d(Sx, Ty) - αM(x, y).

So, the condition (3.1) of Theorem 3.1 is satisfied with 0 < α = 1
eab < 1, Therefore

the system (4.1) has a unique common solution on X.

5. Examples

In this section we present some important examples to support our obtained
results.

Example 5.1. Let X = C be a set of complex number. Define d
′

: C× C→ C, by

d
′
(z1, z2) = d(x1, x2) + id(y1, y2),

for all z1, z2 ∈ C, where z1 = x1 + iy1 = (x1, y1) and z2 = x2 + iy2 = (x2, y2). If (X, d) is

a complex valued metric space, Then (X, d
′
) is too.

Example 5.2. Let X = C be a set of complex number. Define d : C× C→ C, by

d (z1, z2) =
√

(x1 − x2)2 + i(y1 − y2)2,

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric space.

Example 5.3. Let X = [0,∞) define the distance d : X ×X → C by

d(x, y) = i |x− y| .
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It’s clearly (X, d) is a complete complex valued metric space. We define the two self-
mappings S and T as

Sx = 2x2 − 1, Tx = (2− x)2.

Then the contractive condition (3.1) is satisfied, indeed for x = 1
3

and y = 3, we can write
by the simple calculations,

d(Sx, Ty) =
16

9
i.

and

M(x, y) = max

{
8

3
i,
−40

3 + 8i
,
−68

9(3 + 8i)

}
=

8

3
i.

So,

16i

9
- α

8i

3
.

Therefore, the conditions of Theorem 3.1 are verified with α = 2
3
< 1 and 1 ∈ X is a

unique common fixed point of S and T .

Example 5.4. Let X = [0,∞) and d : X ×X → C be a mapping defined by

d(x, y) = |x− y|+ i |x− y| .

Clearly (X, d) is a complete complex valued metric space. Define a self-mapping S by

Sx =
2

π
sin−1 x.

To verify the contractive condition of Corollary 3.1, we take x = 1
2

and y =
√
3
2
, one can

write by the simple calculations,

d(Sx, Sy) ' 0.1667(1 + i).

and

M(x, y) ' max {0.3660(1 + i), 0.0483i, 0.1301i} ' 0.3660(1 + i).

So,

0.1667(1 + i) - α 0.3660(1 + i).

Therefore, all conditions of corollary 3.1 are satisfied with α ' 0.4555 < 1 and 1 ∈ X is a
unique fixed point of S.

Example 5.5. Let X = C([0, 2],R), b > 0 and for every x, y ∈ X let

Nxy = max
t∈[0,2]

|x(t)− y(t)| ,

d(x, y) = Nxy
3
√

1 + b3ei cot
−1 b.
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Define S : X → X by

Sx(t) = 1 + 3

t∫
0

u2x(u)du, t ∈ [0, 2].

For every x, y ∈ X, we have

d(Sx, Sy) = NSxSy
3
√

1 + b3ei cot
−1 b = max

t∈[0,2]
|Sx(t)− Sy(t)| 3

√
1 + b3ei cot

−1 b

- 3

2∫
0

max
t∈[0,2]

|x(u)− y(u)|u2 3
√

1 + b3ei cot
−1 bdu

- 8d(x, y).

Similarly,

d(Snx, Sny) -
8n

n!
d(x, y) -

8n

n!
M(x, y),

where,

8n

n!
'


295.894 If n = 10
26.906 If n = 15
1.185 If n = 19
0.474 If n = 20

Thus for α ' 0.474 < 1, n = 20, all conditions of Corollary 3.2 are satisfied and so S has
a unique fixed point, which is the unique solution of the integral equation:

x(t) = 1 + 3

t∫
0

u2x(u)du, t ∈ [0, 2],

or the differential equation (initial value problem):

x
′
(t)− 3x2t = 0, t ∈ [0, 2], t(0) = 1.

Example 5.6. Let X = C([a, b],R) and the following nonlinear integral equation as the
form: 

x(t) = e4it +
∫ b

a

(
e
− 1

4

4(t+ is
1+is

+x(s))

)
ds

y(t) = e4it +
∫ b

a

(
e
− 1

4

4(t+ is
1+is

+y(s))

)
ds

.(5.1)

System (5.1) is a particular case of system (4.1), where h(t) = e4it and

Kj(t, s, uj(s)) =

 e−
1
4

4
(
t+ is

1+is
+ uj(s)

)
 , j = 1, 2.
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It’s obvious that (H1) is satisfied, for (H2), we get

|K1(t, s, x(s))−K2(t, s, y(s))| =
1

4
e−

1
4

∣∣∣∣∣∣ x(s)− y(s)(
t+ is

1+is
+ x(s)

)(
t+ is

1+is
+ y(s)

)
∣∣∣∣∣∣

-
1

4
e−

1
4 |x(s)− y(s)| .

Therefore, (H2) is hold with α = 1
4
e−

1
4 < 1 and M(x, y) = |x(s)− y(s)| . By Theorem 4.1,

the system (5.1) has a unique solution.

REFERENCES

1. I. Arandjelović, Z. Kadelburg and S. Radenović, Boyd-Wong-type common fixed
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