ON LOWER AND UPPER α -IRRESOLUTE INTUITIONISTIC FUZZY MULTIFUNCTIONS

Kush Bohre and Samajh Singh Thakur

Abstract. The aim of this paper is to introduce the concepts of upper and lower intuitionistic fuzzy α -irresolute intuitionistic fuzzy multifunctions and to obtain some of their properties.

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy multifunctions.

1. Introduction

After the introduction of fuzzy sets by Zadeh [32] in 1965 and fuzzy topology by Chang [7] in 1967, research was conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets was introduced by Atanassov [2–4] as a generalization of fuzzy sets. In the last 27 years various concepts of fuzzy mathematics have been extended for intuitionistic fuzzy sets. In 1997 Coker [8] introduced the concept of intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. In 1999, Ozbakir and Coker [25] introduced the concept intuitionistic fuzzy multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity from a topological space to an intuitionistic fuzzy topological space. In the present paper we extend the concepts of lower and upper α -irresolute multifunctions due to Neubrunn [20] to intuitionistic fuzzy multifunctions and obtain some of their characterizations and properties.

2. Preliminaries

Throughout this paper (X,τ) and (Y,Γ) represent a topological space and an intuitionistic fuzzy topological space, respectively.

Received September 26, 2014; Accepted April 28, 2015

²⁰¹⁰ Mathematics Subject Classification. Primary 54A99; Secondary 03E99

Definition 2.1. [14, 21] A subset A of a topological space (X, τ) is called :

(a) Semi-open if $A \subset Cl(Int(A))$.

(b) Semi-closed if its complement is semi-open.

(c) α -open if $A \subset Int(Cl(Int(A)))$.

(d) α -closed if its complement is α -open.

Remark 2.1. [21] Every open (resp. closed) set is α -open (resp. α -closed) and every α -open (resp. α -closed) set is semi-open (resp. semi-closed) but the converses may not be true.

The family of all α -open (resp. α -closed) subsets of topological space (X, τ) is denoted by $\alpha O(X)$ (resp. $\alpha C(X)$). The intersection of all α -closed (resp. semi-closed) sets of X containing a set A of X is called the α -closure [16] (resp. semi-closure) of A. It is denoted by $\alpha Cl(A)$ (resp. sCl(A)). The union of all α -open (resp. semi-open) subsets of A of X is called the α -interior [16] (resp. semi-interior) of A. It is denoted by $\alpha Int(A)$ (resp. sInt(A)). A subset A of X is α -closed (resp. semi-closed) if and only if $A \supset Cl(Int(Cl(A)))$ (resp. $A \supset Int(Cl(A))$). A subset N of a topological space (X, τ) is called a α -neighborhood [15] of a point x of X if there exists a α -open set O of *X* such that $x \in O \subset N$. *A* is an α -open in *X* if and only if it is a α -neighborhood of each of its points. A subset V of X is called an α -neighborhood of a subset A of X if there exists $U \in \alpha O(X)$ such that $A \subset U \subset V$. A mapping f from a topological space (X, τ) to another topological space (X^*, τ^*) is said to be α -continuous [17, 18] (resp. α -irresolute [16]) if the inverse image of every open (resp. α -open) set of X^* is α -open in X. Every continuous (resp. α -irresolute) mapping is α -continuous but the converse may not be true [16, 17]. A multifunction F from a topological space (X, τ) to another topological space (X^*, τ^*) is said to be lower α -irresolute [20] (resp. upper α -irresolute [20]) at a point $x_0 \in X$ if for every α -neighborhood U of x_0 and for any α -open set W of X^* such that $F(x_0) \cap W \neq \phi$ (resp. $F(x_0) \subset W$) there is a α -neighborhood U of x_0 such that $F(x) \cap W \neq \phi$ (resp. $F(x) \subset W$) for every $x \in U$.

Lemma 2.1. [27] The following properties hold for a subset A of a topological space (X, τ) :

- (a) A is α -closed in $X \Leftrightarrow sInt(Cl(A) \subset A;$
- (b) sInt(Cl(A)) = Cl(Int(Cl(A)));

(c) $\alpha Cl(A) = A \cup Cl(Int(Cl(A))).$

Lemma 2.2. [27] The following are equivalent for a subset A of a topological space (X, τ) :

- (a) $A \in \alpha O(X)$,
- (b) $U \subset A \subset Int(Cl(U))$ for some open set U of X.
- (c) $U \subset A \subset sCl(U)$ for some open set U of X.

On Lower and Upper α -Irresolute Intuitionistic Fuzzy Multifunctions

363

(d) $A \subset sCl(Int(A))$.

Definition 2.2. [2–4] Let Y be a nonempty fixed set. An intuitionistic fuzzy set \tilde{A} in Y is an object having the form

$$\tilde{A} = \{ \langle \mathbf{x}, \mu_{\tilde{A}}(\mathbf{y}), \nu_{\tilde{A}}(\mathbf{y}) \rangle : \mathbf{y} \in Y \}$$

where the functions $\mu_{\tilde{A}}(y) : Y \to I$ and $\nu_{\tilde{A}}(y) : Y \to I$ denotes the degree of membership (namely $\mu_{\tilde{A}}(y)$) and the degree of non-membership (namely $\nu_{\tilde{A}}(y)$) of each element $y \in Y$ to the set \tilde{A} , respectively, and $0 \le \mu_{\tilde{A}}(y) + \mu_{\tilde{A}}(y) \le 1$ for each $y \in Y$.

Definition 2.3. [2–4] Let *Y* be a nonempty set and the intuitionistic fuzzy sets \tilde{A} and \tilde{B} be in the form

$$\tilde{A} = \{ \langle x, \mu_{\tilde{A}}(y), \nu_{\tilde{A}}(y) \rangle : y \in Y \}, \quad \tilde{B} = \{ \langle x, \mu_{\tilde{B}}(y), \nu_{\tilde{B}}(y) \rangle : y \in Y \}$$

and let \tilde{B}_{α} : $\alpha \in \Lambda$ be an arbitrary family of intuitionistic fuzzy sets in Y. Then:

(a). $\tilde{A} \subseteq \tilde{B}$ if $\forall y \in Y [\mu_{\tilde{A}}(y) \le \mu_{\tilde{B}}(y) \text{ and } \nu_{\tilde{A}}(y) \ge \nu_{\tilde{B}}(y)]$

- (b). $\tilde{A} = \tilde{B}$ if $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$;
- (c). $\tilde{A}^c = \{ \langle x, v_{\tilde{A}}(y), \mu_{\tilde{A}}(y) \rangle : y \in Y \};$

(d).
$$\tilde{0} = \{ \langle y, 0, 1 \rangle : y \in Y \}$$
 and $\tilde{1} = \{ \langle y, 1, 0 \rangle : y \in Y \}$

(e).
$$\cap \tilde{A}_{\alpha} = \{ \langle \mathbf{x}, \wedge \mu_{\tilde{A}}(\mathbf{y}), \forall \nu_{\tilde{A}}(\mathbf{y}) \rangle : \mathbf{y} \in \mathbf{Y} \}$$

(f). $\cup \tilde{A}_{\alpha} = \{ \langle \mathbf{x}, \vee \mu_{\tilde{A}}(\mathbf{y}), \wedge \nu_{\tilde{A}}(\mathbf{y}) \rangle : \mathbf{y} \in Y \}$

Definition 2.4. [9] Two intuitionistic fuzzy sets \tilde{A} and \tilde{B} of Y are said to be quasicoincident ($\tilde{A}q\tilde{B}$ for short) if $\exists y \in Y$ such that

$$\mu_{\tilde{A}}(\mathbf{y}) > \nu_{\tilde{B}}(\mathbf{y})$$

or

$$\nu_{\tilde{A}}(\mathbf{y}) < \mu_{\tilde{B}}(\mathbf{y}).$$

Lemma 2.3. [9] For any two intuitionistic fuzzy sets \tilde{A} and \tilde{B} of Y,

$$\sim (\tilde{A}q\tilde{B}) \Leftrightarrow \tilde{A} \subset \tilde{B}^c.$$

Definition 2.5. [8] An intuitionistic fuzzy topology on a nonempty set *Y* is a family Γ of intuitionistic fuzzy sets in *Y* which satisfy the following axioms:

 O_1 . $\tilde{0}, \tilde{1} \in \Gamma$,

 O_2 . $\tilde{A}_1 \cap \tilde{A}_2 \in \Gamma$ for any $\tilde{A}_1, \tilde{A}_2 \in \Gamma$,

 O_3 . $\cup \tilde{A}_{\alpha} \in \Gamma$ for arbitrary family $\{\tilde{A}_{\alpha} : \alpha \in \Lambda\} \in \Gamma$.

In this case the pair (Y, Γ) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in Γ , is known as an intuitionistic fuzzy open set in *Y*. The complement \tilde{B}^c of an intuitionistic fuzzy open set \tilde{B} is called an intuitionistic fuzzy closed set in *Y*.

Definition 2.6. [8] Let (Y, Γ) be an intuitionistic fuzzy topological space and \tilde{A} be an intuitionistic fuzzy set in Y. Then the interior and closure of \tilde{A} are defined by

 $cl(\tilde{A}) = \cap \{\tilde{K} : \tilde{K} \text{ is an intuitionistic fuzzy closed set in } Y \text{ and } \{\tilde{A} \subseteq \tilde{K}\},$ $Int(\tilde{A}) = \cup \{\tilde{G} : \tilde{G} \text{ is an intuitionistic fuzzy open set in } Y \text{ and } \{\tilde{G} \subseteq \tilde{A}\}.$

Lemma 2.4. [8] For any intuitionistic fuzzy set \tilde{A} in (Y, Γ) we have:

- (a) \tilde{A} is an intuitionistic fuzzy closed set in $Y \Leftrightarrow Cl(\tilde{A}) = \tilde{A}$
- (b) \tilde{A} is an intuitionistic fuzzy open set in $Y \Leftrightarrow Int(\tilde{A}) = \tilde{A}$
- (c) $Cl(\tilde{A}^c) = (Int(\tilde{A})^c)$
- (d) $Int(\tilde{A}^c) = (Cl(\tilde{A})^c).$

Definition 2.7. [25] Let X and Y are two non empty sets. A function $F : (X, \tau) \to (Y, \Gamma)$ is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy set in $Y, \forall x \in X$.

Definition 2.8. [30] Let $F : (X, \tau) \to (Y, \Gamma)$ is an intuitionistic fuzzy multifunction and A be a subset of X. Then $F(A) = \bigcup_{x \in A} F(x)$.

Lemma 2.5. [30] Let $F:(X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction. Then

- (a) $A \subseteq B \Rightarrow F(A) \subseteq F(B)$ for any subsets A and B of X.
- (b) $F(A \cap B) \subseteq F(A) \cap F(B)$ for any subsets A and B of X.
- (c) $F(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup \{F(A_{\alpha}) : \alpha \in \Lambda\}$ for any family of subsets $\{A_{\alpha} : \alpha \in \Lambda\}$ in *X*.

Definition 2.9. [25] Let $F : (X, \tau) \to (Y, \Gamma)$ is an intuitionistic fuzzy multifunction. Then the upper inverse $F^+(\tilde{A})$ and lower inverse $F^-(\tilde{A})$ of an intuitionistic fuzzy set \tilde{A} in Y are defined as follows:

 $F^{+}(\tilde{A}) = \{x \in X : F(x) \subseteq \tilde{A}\}$ $F^{-}(\tilde{A}) = \{x \in X : F(x)q\tilde{A}\}.$

Lemma 2.6. [30] Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and \tilde{A}, \tilde{B} be intuitionistic fuzzy sets in Y. Then:

- (a) $F^{+}(\tilde{1}) = F^{-}(\tilde{1}) = X$ (b) $F^{+}(\tilde{A}) \subseteq F^{-}(\tilde{A})$ (c) $[F^{-}(\tilde{A})]^{c} = [F^{+}(\tilde{A})^{c}]$ (d) $[F^{+}(\tilde{A})]^{c} = [F^{-}(\tilde{A})^{c}]$
- (e) If $\tilde{A} \subseteq \tilde{B}$, then $F^+(\tilde{A}) \subseteq F^+(\tilde{B})$
- (f) If $\tilde{A} \subseteq \tilde{B}$, then $F^{-}(\tilde{A}) \subseteq F^{-}(\tilde{B})$.

Definition 2.10. [13] A subset \tilde{A} of an intuitionistic fuzzy topological space (Y,Γ) is called:

- (a) intuitionistic fuzzy Semi open if $\tilde{A} \subset Cl(Int(\tilde{A}))$.
- (b) intuitionistic fuzzy Semi closed if its complement is semi open.
- (c) intuitionistic fuzzy α -open if $\tilde{A} \subset Int(Cl(Int(\tilde{A})))$.
- (d) intuitionistic fuzzy α -closed if its complement is α -open.

Definition 2.11. [7] Let (Y, Γ) be an intuitionistic fuzzy topological space and \tilde{A} be an intuitionistic fuzzy set in Y. Then the α -interior and α -closure of \tilde{A} are defined by: $\alpha Cl(\tilde{A}) = \bigcap \{\tilde{K} : \tilde{K} \text{ is an intuitionistic fuzzy } \alpha$ -closed set in Y and $\tilde{A} \subseteq \tilde{K} \}$ $\alpha Int(\tilde{A}) = \bigcup \{\tilde{G} : \tilde{G} \text{ is an intuitionistic fuzzy } \alpha$ -open set in Y and $\tilde{G} \subseteq \tilde{A} \}.$

Definition 2.12. [25] An intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy upper semi-continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0) \subset \tilde{W}$ there exists an open set $U \subset X$ containing x_0 such that $F(U) \subset \tilde{W}$.
- (b) Intuitionistic fuzzy lower semi-continuous at a point $x_0 \in X$, if for any intuitionistic fuzzy open set $\tilde{W} \subset Y$ such that $F(x_0)q\tilde{W}$ there exists an open set $U \subset X$ containing x_0 such that

$$F(x)q\tilde{W}, \forall x \in U.$$

(c) Intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semi-continuous) if it is intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semicontinuous) at each point of X.

3. Lower *α*-Irresolute Intuitionistic Fuzzy Multifunctions

Definition 3.1. An intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

(a) Intuitionistic fuzzy lower α -irresolute at a point $x_0 \in X$, if for any $\tilde{W} \in IF\alpha OY$ such that $F(x_0)q\tilde{W}$ there exists $U \in \alpha OX$ containing x_0 such that

$$F(x)qW, \forall x \in U.$$

(b) Intuitionistic fuzzy lower α -irresolute if it is intuitionistic fuzzy lower α -irresolute at each point of X.

Theorem 3.1. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is intuitionistic fuzzy lower α -irresolute at *x*.
- (b) For each intuitionistic fuzzy α -open set \tilde{B} of Y with $F(x)q\tilde{B}$, implies

$$x \in sCl(Int(F^{-}(B)))$$

(c) For any semi-open set U of X containing x and for any intuitionistic fuzzy α -open set \tilde{B} of Y with $F(x)q\tilde{B}$, there exists a nonempty open set $V \subset U$ such that

$$F(v)q\tilde{B}, \forall v \in V.$$

Proof. (a) \Rightarrow (b). Let $x \in X$ and \tilde{B} be any intuitionistic fuzzy α -open set of Y such that $F(x)q\tilde{B}$. Then by (a) $\exists U \in \alpha O(X)$ such that $x \in U$ and $F(v)q\tilde{B}$, $\forall v \in U$. Thus $x \in U \subset F^{-}(\tilde{B})$. Since $U \in \alpha O(X)$ by Lemma 2.2, $U \subset sCl(Int(U))$. Hence $x \in sCl(IntF^{-}(\tilde{B}))$.

(b) \Rightarrow **(c)**. Let \tilde{B} be any intuitionistic fuzzy α -open set of Y such that $F(x)q\tilde{B}$, then $x \in sCl(IntF^{-}(\tilde{B}))$. Let U be any semi-open set of X containing x. Then $U \cap Int(F^{-}(\tilde{B})) \neq \phi$ and $U \cap Int(F^{-}(\tilde{B}))$ is semi-open in X. Put

$$V = Int(U \cap Int(F^{-}(\tilde{B})),$$

then *V* is an open set of *X*, $V \subset U$, $V \neq \phi$ and $F(v)q\tilde{B}$, $\forall v \in V$.

(c)⇒(a). Let $\{U_x\}$ be the system of the semi–open sets in *X* containing *x*. For any semi–open set *U* of *X* such that $x \in U$ and any intuitionistic fuzzy α -open set \tilde{B} of *Y* such that $F(x)q\tilde{B}$, there exists a nonempty open set $B_U \subset U$ such that $F(v)q\tilde{B}, \forall v \in B_U$. Let $W = \bigcup B_U : U \in \{U_x\}$, then *W* is open in *X*, $x \in sCl(W)$ and $F(v)q\tilde{B}, \forall v \in W$. Put $S = W \cup x$, then $W \subset S \subset sCl(W)$. Thus $S \in \alpha O(X)$, $x \in S$ and $F(v)q\tilde{B}, \forall v \in S$. Hence *F* is intuitionistic fuzzy lower α -irresolute at *x*. □

Definition 3.2. [26] Let X and Y are two nonempty sets. A multifunction $F: X \to Y$ is called fuzzy multifunction if F(x) is a fuzzy set in Y, $\forall x \in X$.

Corollary 3.1. Let *F* be a fuzzy multifunction form a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is fuzzy lower α -irresolute at *x*.
- (b) For each fuzzy α -open set B of Y with F(x)qB, implies

$$x \in sCl(Int(F^{-}B)).$$

(c) For any semi-open set U of X containing x and for any fuzzy α -open set B of Y with F(x)qB, there exists a nonempty open set $V \subset U$ such that

$$F(v)qB, \forall v \in V.$$

Corollary 3.2. For a multifunction $F : X \to Y$ and a point $x \in X$. Then the following statements are equivalent:

- (a) *F* is lower α -irresolute at *x*.
- (b) For each α -open set B of Y with $F(x) \cap B \neq \phi$, implies $x \in sCl(Int(F^{-}B))$.
- (c) For any semi-open set U of X containing x and for any α -open set B of Y with $F(x) \cap B \neq \phi$, there exists a nonempty open set $V \subset U$ such that $F(x) \cap B \neq \phi, \forall v \in V$.

Theorem 3.2. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction. Then the following statements are equivalent:

- (a) *F* is intuitionistic fuzzy lower α -irresolute.
- (b) $F^{-}(\tilde{G}) \in \alpha O(X)$, for every intuitionistic fuzzy α -open set \tilde{G} of Y.
- (c) $F^+(\tilde{V}) \in \alpha C(X)$, for every intuitionistic fuzzy α -closed set \tilde{V} of Y.

(d) $sInt(Cl(F^+(\tilde{B}))) \subset F^+(\alpha Cl(\tilde{B}))$, for each intuitionistic fuzzy set \tilde{B} of Y.

(e) $F(sInt(Cl(A))) \subset \alpha Cl(F(A))$, for each subset A of X.

(f) $F(\alpha Cl(A)) \subset \alpha Cl(F(A))$, for each subset A of X,

(g) $\alpha Cl(F^+(\tilde{B})) \subset F^+(\alpha Cl(\tilde{B}))$, for each intuitionistic fuzzy set \tilde{B} of Y.

(h) $F(Cl(Int(Cl(A)))) \subset \alpha Cl(F(A))$, for each subset A of X.

Proof. (a) \Rightarrow (b). Let \tilde{G} be any intuitionistic fuzzy α -open set of Y and $x \in F^{-}(\tilde{G})$, so $F(x)q\tilde{G}$, since F is Intuitionistic fuzzy lower α -irresolute, by Theorem 3.1 it follows that $x \in sCl(Int(F^{-}(\tilde{G})))$. As x is chosen arbitrarily in $F^{-}(\tilde{G})$, we have $F^{-}(\tilde{G}) \subset sCl(IntF^{-}(\tilde{G}))$ and thus $F^{-}(\tilde{G}) \in \alpha O(X)$.

(b) \Rightarrow **(a)**. Let *x* be arbitrarily chosen in *X* and \tilde{G} be any intuitionistic fuzzy α -open set of *Y* such that $F(x)q\tilde{G}$, so $x \in F^{-}(\tilde{G})$. By hypothesis $F^{-}(\tilde{G}) \in \alpha O(X)$, we have

 $x \in F^{-}(\tilde{G}) \subset sCl(Int(F^{-}(\tilde{G})))$ and thus *F* is intuitionistic fuzzy lower α -irresolute at *x* according to Theorem 3.1. As *x* was arbitrarily chosen, *F* is intuitionistic fuzzy lower α -irresolute.

(b)⇔(c). Obvious.

(c)⇒(d). Let \tilde{B} be any arbitrary intuitionistic fuzzy set of *Y*. Since $\alpha Cl(\tilde{B})$ is intuitionistic fuzzy α -closed set in *Y* by hypothesis, $F^+(Cl(\tilde{B})) \in \alpha C(X)$. Hence by lemma 2.1, we obtain

$$F^+(\alpha Cl(\tilde{B})) \supset sInt(Cl(F^+(Cl(\tilde{B})))) \supset sInt(Cl(F^+(\tilde{B}))).$$

(d)⇒(e). Suppose that (d) holds, and let *A* be an arbitrary subset of *X*. Let us put $\tilde{B} = F(A)$, then $A \subset F^+(\tilde{B})$. Therefore, by hypothesis, we have

$$sInt(Cl(A)) \subset sInt(Cl(F^+(\tilde{B}))) \subset F^+(\alpha Cl(\tilde{B})).$$

Therefore, $F(sInt(Cl(A))) \subset F(F^+(\alpha Cl(\tilde{B}))) \subset \alpha Cl(\tilde{B}) = \alpha Cl(F(A)).$

(e) \Rightarrow (c). Suppose that (e) holds, and let \tilde{B} be any intuitionistic fuzzy α -closed set of Y. Put $A = F^+(\tilde{B})$, then $F(A) \subset \tilde{B}$. Therefore, by hypothesis, we have

$$F(sInt(Cl(A))) \subset \alpha Cl(F(A)) \subset \alpha Cl(\tilde{B}) = \tilde{B}$$

and

$$F^+(F(sInt(Cl(A)))) \subset F^+(B).$$

Since we always have

$$F^+(F(sInt(Cl(A)))) \supset sInt(Cl(A)),$$

one can verify

$$F^+(\tilde{B}) \supset sInt(Cl(F^+(\tilde{B}))).$$

Hence by lemma, 2.1, $F^+(\tilde{B}) \in \alpha C(X)$.

(c)⇒(f). Since $A \subset F^+(F(A))$, we have $A \subset F^+(Cl(F(A)))$. Now $\alpha Cl(F(A))$ is an intuitionistic fuzzy α -closed set in *Y* and so by hypothesis

$$F^+(Cl(F(A))) \in \alpha C(X)$$

Thus

$$\alpha Cl(A) \subset F^+(\alpha Cl(F(A))).$$

Consequently,

$$F(\alpha Cl(A)) \subset F(F^+(\alpha Cl(F(A)))) \subset \alpha Cl(F(A))$$

(**f**)⇒(**c**). Let \tilde{B} be any intuitionistic fuzzy α -closed set of *Y*. Replacing *A* by $F^+(\tilde{B})$ we get by(**f**),

$$F(\alpha Cl(F^+(B))) \subset \alpha Cl(F(F^+(B))) \subset \alpha Cl(B) = B.$$

Consequently, $\alpha Cl(F^+(\tilde{B})) \subset F^+(\tilde{B})$. But $F^+(\tilde{B}) \subset \alpha Cl(F^+(\tilde{B}))$. And so, $\alpha Cl(F^+(\tilde{B})) = F^+(\tilde{B})$. Thus $F^+(\tilde{B}) \in \alpha C(X)$.

(**f**)⇒(**g**). Let \tilde{B} be any intuitionistic fuzzy set of *Y*. Replacing *A* by *F*⁺(\tilde{B}) we get by (**f**),

$$F(\alpha Cl(F^{+}(\tilde{B}))) \subset \alpha Cl(F(F^{+}(\tilde{B}))) \subset \alpha Cl(\tilde{B})$$

Thus $\alpha Cl(F^+(\tilde{B})) \subset F^+(\alpha Cl(\tilde{B})).$

(g)⇒(f). Replacing \tilde{B} by *F*(*A*), where *A* is a subset of *X*, we get by (g),

$$\alpha Cl(A) \subset \alpha Cl(F^+(F(A))) = \alpha Cl(F^+(B)) = F^+(\alpha Cl(B)) = F^+(\alpha Cl(F(A)))$$

Thus

$$F(\alpha Cl(A)) \subset F(F^+(\alpha Cl(F(A))) \subset \alpha Cl(F(A)).$$

(e) \Rightarrow (h). Follows from by Lemma 2.6.

(h)⇒(a). Let $x \in X$ and \tilde{V} be any intuitionistic fuzzy α -open set in Y such that $F(x)q\tilde{V}$. Then $x \in F^{-}(\tilde{V})$. We shall show that $F^{-}(\tilde{V}) \in \alpha O(X)$. By the hypothesis, we have

$$F(Cl(Int(Cl(F^+(\tilde{V}^c))))) \subset \alpha Cl(F(F^+(\tilde{V}^c))) \subset (\tilde{V}^c),$$

which implies

$$Cl(Int(Cl(F^+(\tilde{V}^c))))) \subset F^+(\tilde{V}^c) \subset (F^-(\tilde{V}))^c.$$

Therefore, we obtain $F^{-}(\tilde{V}) \subset Int(Cl(Int(F^{-}(\tilde{V}))))$. Hence $F^{-}(\tilde{V}) \in \alpha O(X)$. Put $U = F^{-}(\tilde{V})$. Then $x \in U \in \alpha O(X)$ and $F(u)q\tilde{V}$ for every $u \in U$ thus F is intuitionistic fuzzy lower α -irresolute. \Box

Corollary 3.3. Let *F* be a fuzzy multifunction form a topological space (X, \neg) into a fuzzy topological space (Y, σ) . Then the following statements are equivalent:

- (a) *F* is fuzzy lower α -irresolute.
- (b) $F^{-}(G) \in \alpha O(X)$, for every fuzzy α -open set G of Y.
- (c) $F^+(V) \in \alpha C(X)$, for every fuzzy α -closed set V of Y.

(d) $sInt(Cl(F^+(B))) \subset F^+(\alpha Cl(B))$, for each fuzzy set B of Y.

(e) $F(sInt(Cl(A))) \subset \alpha Cl(F(A))$, for each subset A of X.

(f) $F(\alpha Cl(A)) \subset \alpha Cl(F(A))$, for each subset A of X,

(g) $\alpha Cl(F^+(B)) \subset F^+(\alpha Cl(B))$, for each fuzzy set B of Y.

(h) $F(Cl(Int(Cl(A)))) \subset \alpha Cl(F(A))$, for each subset A of X.

Corollary 3.4. Let *F* be a multifunction from a topological space (X, \neg) into another topological space (Y, ζ) . Then the following statements are equivalent:

- (a) *F* is lower α -irresolute.
- (b) $F^{-}(G) \in \alpha O(X)$, for every α -open set G of Y.

(c) $F^+(V) \in \alpha C(X)$, for every α -closed set V of Y.

(d) $sInt(Cl(F^+(B))) \subset F^+(\alpha Cl(B))$, for each set B of Y.

(e) $F(sInt(Cl(A))) \subset \alpha Cl(F(A))$, for each subset A of X.

(f) $F(\alpha Cl(A)) \subset \alpha Cl(F(A))$, for each subset A of X,

(g) $\alpha Cl(F^+(B)) \subset F^+(\alpha Cl(B))$, for each set B of Y.

(h) $F(Cl(Int(Cl(A)))) \subset \alpha Cl(F(A))$, for each subset A of X.

4. Upper *α*-Irresolute Intuitionistic Fuzzy Multifunctions

Definition 4.1. An intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ is said to be:

- (a) Intuitionistic fuzzy upper α -irresolute at a point $x_0 \in X$, if for any intuitionistic fuzzy α -open set \tilde{W} of Y, such that $F(x_0) \subset \tilde{W}$ there exists $U \in \alpha OX$ containing x_0 such that $F(U) \subset \tilde{W}$.
- (b) Intuitionistic fuzzy upper α -irresolute if it has this property at each point of X.

Theorem 4.1. Let $F : (X, \tau) \to (Y, \Gamma)$ be an intuitionistic fuzzy multifunction and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is intuitionistic fuzzy Upper α -irresolute at *x*.
- (b) For each intuitionistic fuzzy α -open set \tilde{G} of Y with $F(x) \subset \tilde{G}$, there result the relation $x \in sCl(Int(F^{-}(\tilde{G}))).$
- (c) For any semi-open set U of X containing x and for any intuitionistic fuzzy α -open set \tilde{G} of Y with $F(x) \subset \tilde{G}$, there exists a nonempty open set $V \subset U$ such that $F(V) \subset \tilde{G}$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and \tilde{G} be any intuitionistic fuzzy α -open set of Y such that $F(x) \subset \tilde{G}$, there is a $U \in \alpha O(X)$ such that $x \in U$ and $F(v) \subset \tilde{G}$, $\forall v \in U$. Thus $x \in U \subset F^+(\tilde{G})$. Since

$$U \in \alpha O(X), U \subset sCl(Int(U)) \subset sCl(Int(F^+(G))).$$

Hence, $x \in sCl(Int(F^+(\tilde{G})))$.

(b) \Rightarrow **(c)**. Let \tilde{G} be any intuitionistic fuzzy α -open set of Y such that $F(x) \subset \tilde{G}$, then $x \in sCl(Int(F^+(\tilde{G})))$. Let $U \subset X$ be any semi-open set such that $x \in U$, then $U \cap Int(F^+(\tilde{G})) \neq \phi$. Put $V = Int(U \cap Int(F^+(\tilde{G})))$, then V is an open set in $X, V \subset U$, $V \neq \phi$ and $F(V) \subset \tilde{G}$.

(c) \Rightarrow (a). Let { U_x } be the system of the semi-open sets in *X* containing *x*. For any semi-open set $U \subset X$ such that $x \in U$ and \tilde{G} be any intuitionistic fuzzy α -open set of

Y such that $F(x) \subset \tilde{G}$, there exists a nonempty open set $G_U \subset U$ such that $F(G_U) \subset \tilde{G}$. Let $W = \bigcup G_U: \bigcup \{ U_x \}$. Then *W* is open, $x \in sCl(W)$ and $F(w) \subset \tilde{G}$, $\forall w \in W$. Put $S = W \cup x$, then $W \subset S \subset sCl(W)$. Thus $S \in \alpha O(X)$, $x \in S$ and $F(w) \subset \tilde{G}$, $\forall w \in S$. Hence F is intuitionistic fuzzy upper α -irresolute at *x*. \Box

Corollary 4.1. Let *F* be a fuzzy multifunction form a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is fuzzy upper α -irresolute at *x*.
- (b) For each fuzzy α -open set G of Y with $F(x) \subset G$, there exists the relation $x \in sCl(Int(F^{-}(G)))$.
- (c) For any semi-open set U of X containing x and for any fuzzy α -open set G of Y with $F(x) \subset G$, there exists a nonempty open set $V \subset U$ such that $F(V) \subset G$.

Corollary 4.2. Let *F* be a multifunction from a topological space (X, \neg) into another topological space (Y, ζ) and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is Upper α -irresolute at *x*.
- (b) For each α -open set G of Y with $F(x) \subset G$, there exists the relation $x \in sCl(Int(F^{-}(G)))$.
- (c) For any semi-open set U of X containing x and for any α -open set G of Y with $F(x) \subset G$, there exists a nonempty open set $V \subset U$ such that $F(V) \subset G$.

Definition 4.2. Let \tilde{A} be an intuitionistic fuzzy set of an intuitionistic fuzzy topological space (Y, Γ) . Then \tilde{V} is said to be an α -neighbourhood of \tilde{A} in Y if there exists an intuitionistic fuzzy α -open set $\tilde{U} \subset Y$ such that $\tilde{A} \subset \tilde{U} \subset \tilde{V}$.

Theorem 4.2. For an intuitionistic fuzzy multifunction $F : (X, \tau) \to (Y, \Gamma)$ the following statements are equivalent:

- (a) *F* is intuitionistic fuzzy upper α -irresolute.
- (b) $F^+(\tilde{G}) \in \alpha O(X)$, for every intuitionistic fuzzy α -open set \tilde{G} of Y.
- (c) $F^{-}(\tilde{B}) \in \alpha C(X)$, for each intuitionistic fuzzy α -closed set \tilde{B} of Y.
- (d) For each point $x \in X$ and for each α -neighborhood \tilde{V} of F(x) in Y, $F^+(\tilde{V})$ is an α -neighborhood of x.
- (e) For each point $x \in X$ and for each α -neighborhood \tilde{V} of F(x) in Y, there is an α -neighborhood U of x such that $F(U) \subset \tilde{V}$.

(f) $\alpha Cl(F^{-}(\tilde{B})) \subset F^{-}(\alpha Cl(\tilde{B}))$ for each intuitionistic fuzzy set \tilde{B} of Y.

(g) $sInt(Cl(F^{-}(\tilde{B}))) \subset F^{-}(\alpha Cl(\tilde{B}))$ for any intuitionistic fuzzy set \tilde{B} of Y.

Proof. (a) \Rightarrow (b). Let \tilde{V} be any intuitionistic fuzzy α -open set of Y and $x \in F^+(\tilde{V})$. By Theorem4.1, $x \in sCl(IntF^+(\tilde{B}))$. Therefore, we obtain

$$F^+(\tilde{V}) \subset sCl(IntF^+(\tilde{B}))$$

Hence by Lemma 2.2, $F^+(\tilde{V}) \in \alpha O(X)$.

(b) \Rightarrow **(a)**. Let *x* be arbitrarily chosen in *X* and \tilde{G} be any intuitionistic fuzzy α -open set of *Y* such that $F(x) \subset \tilde{G}$, so $x \in F^+(\tilde{G})$. By hypothesis $F^+(\tilde{G}) \in \alpha O(X)$, we have

$$x \in F^+(\tilde{G}) \subset sCl(Int(F^+(\tilde{G})))$$

and thus *F* is intuitionistic fuzzy upper α -irresolute at *x* according to Theorem 4.1. As *x* was arbitrarily chosen, *F* is intuitionistic fuzzy upper α -irresolute.

(b) \Rightarrow **(c)**. This follows from Lemma 2.6 that $[F^{-}(\tilde{A})]^{c} = [F^{+}(\tilde{A})^{c}]$.

(c) \Rightarrow (f). Let \tilde{B} be any intuitionistic fuzzy α -open set of Y. Then by (c), $F^{-}(\alpha Cl(\tilde{B}))$ is an α -closed set in X. Thus by Lemma 2.1 we have

$$F^{-}(\alpha Cl(B)) \supset sInt(Cl(F^{-}(Cl(B)))) \supset sInt(Cl(F^{-}(B)))$$

$$\supset F^{-}(\tilde{B}) \cup sInt(Cl(F^{-}(\tilde{B}))) \supset \alpha Cl(F^{-}(\tilde{B})).$$

(**f**)⇒(**g**). Let \tilde{B} be any intuitionistic fuzzy α -open set of *Y*. By Lemma 2.1, we have

$$\alpha Cl(F^{-}(\ddot{B})) = F^{-}(\ddot{B}) \cup sInt(Cl(F^{-}(\ddot{B}))) \subset F^{-}(\alpha Cl(\ddot{B})).$$

(g)⇒(c). Let \tilde{B} be any intuitionistic fuzzy α -closed set of Y. Then by (g) we have,

$$sInt(Cl(F^{-}(B))) \subset F^{-}(B) \cup sInt(Cl(F^{-}(B))) \subset F^{-}(\alpha Cl(B)) = F^{-}(B).$$

Hence By Lemma 2.1, $F^{-}(\tilde{B}) \in \alpha C(X)$.

(b) \Rightarrow **(d)**. Let $x \in X$ and \tilde{V} be an α -neighborhood of F(x) in Y. Then there is an intuitionistic fuzzy α -open set \tilde{G} of Y such that $F(x) \subset \tilde{G} \subset \tilde{V}$. Hence, $x \in F^+(\tilde{G}) \subset F^+(\tilde{V})$. Now by hypothesis $F^+(\tilde{G}) \in \alpha O(X)$, and thus $F^+(\tilde{V})$ is an α -neighborhood of x.

(d)⇒(e). Let *x* ∈ *X* and \tilde{V} be an *α*-neighborhood of *F*(*x*) in *Y*. Put *U* = *F*⁺(\tilde{V}). Then *U* is an *α*-neighborhood of *x* and *F*(*U*) ⊂ \tilde{V} .

(e)⇒(a). Let $x \in X$ and \tilde{V} be an intuitionistic fuzzy set in Y such that $F(x) \subset \tilde{V}$. \tilde{V} , being an intuitionistic fuzzy α -open set in Y, is an α -neighborhood of F(x) and according to the hypothesis there is an α -neighborhood U of x such that $F(U) \subset \tilde{V}$. Therefore there is $A \in \alpha O(X)$ such that $x \in A \subset U$ and hence $F(A) \subset F(U) \subset \tilde{V}$. Hence F is intuitionistic fuzzy upper α -irresolute at x. \Box

Corollary 4.3. Let *F* be a fuzzy multifunction from a topological space (X, \neg) into a fuzzy topological space (Y, σ) and let $x \in X$. Then the following statements are equivalent:

(a) *F* is fuzzy upper α -irresolute.

- (b) $F^+(G) \in \alpha O(X)$, for every fuzzy α -open set G of Y.
- (c) $F^{-}(B) \in \alpha C(X)$, for each fuzzy α -closed set B of Y.
- (d) For each point $x \in X$ and for each α -neighborhood V of F(x) in Y, $F^+(V)$ is an α -neighborhood of x.
- (e) For each point $x \in X$ and for each α -neighborhood V of F(x) in Y, there is an α -neighborhood U of x such that $F(U) \subset V$.
- (f) $\alpha Cl(F^{-}(B)) \subset F^{-}(\alpha Cl(B))$ for each fuzzy set B of Y.
- (g) $sInt(Cl(F^{-}(B))) \subset F^{-}(\alpha Cl(B))$ for any fuzzy set B of Y.

Corollary 4.4. : Let *F* be a multifunction form a topological space (X, \neg) into another topological space (Y, ζ) and let $x \in X$. Then the following statements are equivalent:

- (a) *F* is upper α -irresolute.
- (b) $F^+(G) \in \alpha O(X)$, for every α -open set G of Y.
- (c) $F^{-}(B) \in \alpha C(X)$, for each α -closed set B of Y.
- (d) For each point $x \in X$ and for each α -neighborhood V of F(x) in Y, $F^+(V)$ is an α -neighborhood of x.
- (e) For each point $x \in X$ and for each α -neighborhood V of F(x) in Y, there is an α -neighborhood U of x such that $F(U) \subset V$.
- (f) $\alpha Cl(F^{-}(B)) \subset F^{-}(\alpha Cl(B))$ for each set B of Y.

(g) $sInt(Cl(F^{-}(B))) \subset F^{-}(\alpha Cl(B))$ for any set B of Y.

REFERENCES

- 1. D. ANDRIJEVIC: Some Propreties of the Topology of α -sets, Mat. Vesnik 36(1984), 1-10.
- 2. K. ATANASSOV: *Intuitionistic Fuzzy Sets*, In VII ITKR's Session, (V. Sgurev, Ed.) Sofia, Bulgaria, (1983)
- 3. K. ATANASSOV AND S. STOEVA: *Intuitionistic Fuzzy Sets*, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, (1983), 23-26
- 4. K. ATANASSOV: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20 (1986), 87-96.
- 5. C. Berge: Espaces topologiques. Fonctions multivoques, Dunod. Paris. 1959.
- 6. J. CAO AND I. L. REILLY: *α-Continuous and α-Irresolute Multifunctions*, Mathematica Bohemica, 121(1996), No. 4, 415-424.
- 7. C. L. CHANG: Fuzzy Topological Spaces, J. Math. Anal. Appl. 24(1968), 182-190.
- 8. D. COKER: An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, 88(1997), 81-89.

Kush Bohre and S. S. Thakur

- 9. D. COKER AND M. DEMIRCI: On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets, 2(1)(1995), 78-83.
- 10. S.G. CROSSLEY AND S.K. HILDEBRAND: Semi-closure, texas J. Sci. 22 (1971), 99-112.
- 11. J. EVERT: Fuzzy Valued Maps. Math. Nachr. 137(1988) 79-87.
- 12. H. GURCAY, D. COKER AND A. ES. HAYDER: On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces The Journal of Fuzzy Mathematics 5(2)(1997),365-378.
- J. K. JEON, Y.B. JUN AND J. H. PARK: Intuitionistic Fuzzy alpha-Continuity and intuitionistic fuzzy pre-continuity Internat. Jour. Math. Math. Sci., 19 (2005) 3091-3101.
- 14. N. LEVINE: textit semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 15. S. N. MAHESHWARI, S. S. THAKUR: On α-Compact spaces, Bull. Int. Math. Acad. Sinica 13(1985), 341-347.
- S. N. MAHESHWARI, S. S. THAKUR: On α-irresolute mappings, Tamkang Jour. Math. 11(2)(1980)209-214.
- 17. S. N. Maheshwari, S. S. Thakur: On α -Continuous Mappings J. Indian. Acad. Math., 7(1)(1985)46-50.
- 18. A. S. Mashhour, I. A. Hasanein, S. N. El- Deeb: α -Continuous and α -open Mapping, Acta Math. Hungar. 41 (1983), 213-218.
- 19. A. NEUBRUNNOV: On certain generalizations of the notions of continuity. MATHEMATIKI CASOPIS 23(4)(1973),374-80.
- 20. T. NEUBRUNN: Strongly quasi-continuous multivalued mapping. In General Topology and its Relations to Modern Analysis and Algebra VI Proc. of Symposium Prague 1986, Heldermann, Berlin, (1988), pp. 351-359.
- 21. O. NJASTAD: On some classes of nearly open sets, PECIFIC J. MATH. 15(1965), 961-970.
- 22. T. NOIRI: A function which preserves connected spaces, CASOPIS PEST. MATH. 107 (1982), 393-396.
- 23. Τ. NOIRI: On α-Continuous functions, CASOPIS PEST. MATH. 109 (1984), 118-126.
- 24. T. NOIRI AND G. DI MAIO: *Properties of alpha-compact Spaces* IN: THIRD NATIONAL CONFERENCE ON TOPOLOGY (TRIESTE, 1986), (ITALIAN), REND. CIRC. MAT. PALERMO(2) SUPPL. 18(1988), 359-369.
- 25. O. OZBAKIR AND D. COKER: FUZZY Multifunction's in Intuitionistic Fuzzy Topological Spaces, Notes on Intuitionistic Fuzzy Sets , 5(3)(1999), 1-5
- 26. N. S. PAPAGEORGIOU: Fuzzy Topology and Fuzzy multifunctions, JOUR. MATH. ANAL. Appl., 109(2)(1985),397-425
- 27. V. POPA AND T. NOIRI: On Upper and Lower α -Continuous Multifunctions, MATH. SLOVACA, 43(4)(1993), 477-491.
- 28. R. PRASAD, S. S. THAKUR AND R. K. SARAF : Fuzzy α -irresolute Mappings. J. Fuzzy Math 2(2)(1994), 335-339.
- 29. S. Saxena: *Extension of set valued mappings in fuzzy Topololgy*. Ph.D. Dissertation , Rani Durgavati Vishwavidhyalaya Jabalpur (2008).
- 30. S. S. Thakur and Kush Bohre: *On intuitionistic fuzzy multifunctions*, International Journal of Fuzzy Systems and Rough Systems.4(1)(2011),31-37.
- 31. KUSH BOHRE: Some Properties of Upper and Lower α-Irresolute Intuitionistic Fuzzy Multifunctions, Advances in Fuzzy Mathematics, (8) (2), (2013), 89-97

32. L. A. ZADEH: Fuzzy Sets, Information and Control, 18(1965), 338-353.

Kush Bohre Department of Applied Mathematics Jabalpur Engineering College , Jabalpur (M. P.) 482011, INDIA kushbohre@yahoo.co.in

S S Thakur Professor and Head Department of Applied Mathematics Jabalpur Engineering College , Jabalpur (M. P.) 482011, INDIA samajh_singh@rediffmail.com