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Abstract. This paper has triple main objectives. The first objective is an analysis of
some auxiliary results on closedness and boundedness of linear relations. The second
objective is to provide some new characterization results on semiclosed linear relations.
Here it is shown that the class of semiclosed linear relations is invariant under finite and
countable sums, products, and limits. We have obtained fundamental new results as
well as a Kato Rellich Theorem for semiclosed linear relations and essentially interesting
generalizations. The last objective deals with semiclosed linear relation with closed
range, where we have particularly established new characterizations of closable linear
relation.
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1. Introduction

Let H be a complex Hilbert space with its scalar product and associated hilber-
tian norm denoted by 〈.; .〉 and ‖.‖, respectively. A linear relation or multivalued
linear operator T is a linear mapping with linear domain D(T ) ⊆ H, that as-
signs to each x ∈ D(T ) a nonempty set Tx = {y : (x, y) ∈ G(T )} ⊂ H. If Tx
never contains more then one element, then T is (single-valued) linear operator
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on H. Note that G(T ) is the graph of T and it is a subset of H × H defined by
G(T ) = {(x, y) ∈ H ×H : x ∈ D(T ), y ∈ Tx}. The range R(T ) of T is defined as
the union of all Tx, x ∈ D(T ). The null space N (T ) and the multivalued part T (0)
of the linear relation T are respectively defined by

N (T ) = {x ∈ H : (x, 0) ∈ G(T )} and T (0) = {y ∈ H : (0, y) ∈ G(T )}.

If N (T ) = {0} (resp. R(T ) = H), we say that T is injective (resp. surjective). If
T is injective and surjective, we say that it is a bijection. Let LR(H) denotes the
space of all linear relations on H.

Proposition 1.1. [3],[11] Let T ∈ LR(H). Then:

N (T )× {0} = G(T ) ∩ (H × {0});
{0} × T (0) = G(T ) ∩ ({0} ×H);

H ×R(T ) = G(T ) + (H × {0});
D(T )×H = G(T ) + ({0} ×H).

For every T ∈ LR(H), there exists a relation T−1 ∈ LR(H) called the formal inverse
of T defined by G(T−1) = {(y, x) : (x, y) ∈ G(T )}. Obviously,

D(T−1) = R(T ), R(T−1) = D(T ), N (T−1) = T (0) and T−1(0) = N (T ).

The adjoint T ∗ of T is defined by

G(T ∗) = {(y, x) : 〈v, y〉 = 〈u, x〉 for some (u, v) ∈ G(T )}.

If S and T are two relations in LR(H), then the sum S + T and the product ST
are also relations in LR(H) and they are respectively defined by:

G(S + T ) = {(x, u+ v) : (x, u) ∈ G(S) and (x, v) ∈ G(T )}
G(ST ) = {(x, y) : (x, v) ∈ G(T ) and (v, y) ∈ G(S) for some v ∈ H}.

The identity relation defined on a nonempty subset M of H will be denoted by IM .

For all T ∈ LR(H), let QT denote the natural quotient map from H onto
H/T (0) where T (0) is the closure of T (0). Note that the quotient map QT is used
to extend the definition of the operator norm to the linear relations class. Clearly
Ts = QTT is a linear operator with D(Ts) = D(T ). Ts is called a linear operator
part (or a single valued part) of T . For x ∈ D(T ), ‖Tx‖ = ‖Tsx‖ and the norm of
T is defined by ‖T‖ = ‖Ts‖. A relation T is said to be continuous if ‖T‖ <∞. If T
is continuous with D(T ) = H, then we say that T is bounded. Given two relations
S, T ∈ LR(H), we say that T is an extension of S if

T|D(S) = S.

Clearly, if T is an extension of S, then G(S) ⊂ G(T ). However, the converse is not
true in general only if T (0) = S(0).
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One main reason why linear relations are more convenient than operators is
that one can define the inverse, the closure, the conjugates and the completion for
a linear relation without any additional condition on the relation. See for example
[3] and [1] for interesting works on linear relations.

We investigate in this paper the notion of semiclosed linear relations on Hilbert
and Banach spaces, also called paracomplete linear relations by Alvarez and Wilcox
in [2]. Paracomplete subspaces in Banach spaces were studied in the papers [4],
[5], [10] and others. The notion of a semiclosed, or almost closed or quotient,
operator introduced in [6], [7], [8] and [12] can be naturally generalized to linear
relations. The class of semiclosed linear relations is closed under addition, product,
inversion, restriction, and limits. We give some interesting new characterizations
of these relations and we obtain certain interesting generalizations of results on the
closedness, boundedness, product and some of semiclosed linear relations. Finally
we establish a certain number of results concerning the closedness of R(T ) where
T is a semiclosed linear relation by using Neubauer’s Lemma. The structure of
this work is as follows. Throughout Section 2, we give some auxiliary results on
linear relations, sometimes purely algebraic and topological, which are required in
the sequel. In section 3, we define and obtain several properties of semiclosed linear
relations via the concept of selection or single valued part of a linear relation in
Hilbert spaces. A linear relation with semiclosed multivalued part is semiclosed if
and only if it has a semiclosed selection. We considered the case where a semiclosed
linear relation is closed, closable or bounded. Restriction, inverse, adjoint, finite
sum, product and iteration of semiclosed linear relations are also studied as well as
a Kato Rellich Theorem for semiclosed linear relations. Finally, in Section 4, we
investigate semiclosed linear relations with closed range which gives in particular a
new characterization of closable linear relations.

2. Some auxiliary results on linear relations

We commence with a recollection of some preliminary properties required in the
sequel.

A relation T ∈ LR(H) is said to be closed if its graph is closed in H ×H. The
closure of T is the relation T ∈ LR(H) defined by G(T ) = G(T ). Hence, T is closed
if T = T .

Lemma 2.1. [3] Let T ∈ LR(H). Then, T is closed if and only if Ts is closed
linear operator and T (0) is a closed subspace of H.

Let HT denote the vector space D(T ) endowed with the graph inner product 〈., .〉T
of T defined by

〈x, y〉T = 〈x, y〉H + 〈Tx, Ty〉H for x, y ∈ D(T ).

Clearly, HT = HTs , also HT is norm isomorphic to G(T ) when T is a linear operator.
Thus, we have:
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Proposition 2.1. Let T be a densely defined linear relation on H with T (0) is
closed, then T is closed if and only if HT is complete.

Proof. One only has to see that HT = HTs which is norm isomorphic to the closed
graph G(Ts) in H ×H/T (0).

Proposition 2.2. If T is a closed relation. Then T is assimilable to a continuous
relation from HT into H.

Indeed, let i : HT ↪→ H be a linear operator defined by:

D(i) = HT and i(x) = x for all x ∈ HT .

(i is an injection mapping from HT onto H). Now we need to show that the relation
Ti is of a finite norm:

‖Ti‖ = sup
x∈HT

‖(Ti)x‖
‖x‖T

= sup
x∈D(T )

‖Tx‖
‖x‖+ ‖Tx‖

=


‖T‖

1 + ‖T‖
if ‖T‖ < +∞

1 if ‖T‖ = +∞

Corollary 2.1. If T is continuous such that D(T ) and T (0) are closed, then T is
closed.

A linear relation T is said to be closable if T is an extension of T .

Lemma 2.2. [3] Let T ∈ LR(H). The following properties are equivalent:

1. T is closable;

2. T (0) = T (0);

3. Ts is closable and T (0) is closed.

Proposition 2.3. If T is closable linear relation, then D(T ) = D(T ) and T is
continuous on D(T ).

Proof.
D(T ) = D(Ts) = D(Ts) = D((T )s) = D(T ).

Hence D(T ) is closed and using the closed graph theorem for linear relations ([3]
Theorem III.4.2) we obtain that T is continuous.

3. Main results on semiclosed linear relations

3.1. Characterization of semiclosed linear relation
A linear subspace M of a Hilbert space H is called semiclosed if there exists a
norm ‖.‖M such that (M, ‖.‖M ) is complete and continuously embedded in H, i.e,
‖x‖ ≤ λ‖x‖M for any x ∈M .

In the two following theorems, we collect some well known characterizations and
properties of semiclosed linear subspaces in a Hilbert space H.



New Results On Semiclosed Linear Relations 465

Theorem 3.1. [9] Let M be a linear subspace of H. The following statements are
equivalent:

1. M is semiclosed subspace of H.

2. M is the range of a bounded operator on H.

3. M is the range of a closed operator on H.

4. M is the domain of a closed operator on H.

Theorem 3.2. [11] Let M,N be two linear subspaces of H. Then:

1. M and N are semiclosed subspaces of H if and only if M ×N is a semiclosed
subspace of H ×H.

2. If M and N are semiclosed subspaces of H, then M +N and M ∩N are also
semiclosed subspaces of H.

3. Neubauer’s Lemma: If M,N are semiclosed subspaces and both of M +N
and M ∩N are closed, then M and N are closed in H.

A semiclosed linear relation can also be characterized by means of semiclosed
subspaces.

Definition 3.1. A linear relation T ∈ LR(H) is said to be semiclosed on H if its
graph G(T ) is semiclosed in H ×H.

Let SC(H) denote the set of all semiclosed linear relations on H.

Corollary 3.1. Let T ∈ SC(H). Then, D(T ), N(T ),R(T ) and T (0) are semi-
closed sets in H.

Proof. The proof follows immediately from the proposition 1.1 and the theorem
3.2.

A linear operator A is called a selection (or single valued part) of T if

T = A+ T − T and D(A) = D(T ).

In particular, a linear operator is a selection of itself. The singlevalued part Ts of a
linear relation T is a natural selection of T , nevertheless, T admits other selections.

Proposition 3.1. [3] Let A be a selection of T . Then

1. R(T ) = R(A) + T (0). However, this sum may not always be direct.

2. G(A) ∩ ({0} × T (0)) = {0} × {0}.
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3. G(T ) = G(A) + ({0} × T (0)).

One of the basic results of this paper is the following:

Theorem 3.3. Let T be a linear relation with T (0) semiclosed in H. Then, T is
semiclosed linear relation if and only if T has a semiclosed selection.

Proof. Let T be a semiclosed linear relation, then T (0) is semiclosed in H. Let P
be the linear projection defined on R(T ) such that N (P ) = T (0). Then we have in
one hand,

PT (0) = {0}, i.e PT is a linear operator satisfying R(PT ) ∩ T (0) = {0}.

In the other hand, we have for all y ∈ Tx:

Tx = y + T (0) = Py + (I − P )y + T (0) = PTx+ T (0).

Hence, T = PT +T −T and G(T ) = G(PT ) + ({0}×T (0)). Thus T = PT ⊕T (0),
therefore PT is a semiclosed selection of T .

Conversely, let A be a semiclosed selection of T . Then T = A + T − T , where
T − T is a linear relation defined by:

G(T − T ) = {0} × T (0).

Since G(T ) = G(A) + ({0} × T (0)) we obtain, G(T ) is semiclosed in H ×H, hence
T is semiclosed linear relation.

The Proposition 1.8 of [2] is now an immediate consequence of the Theorem 3.3,
where the authors supposed that T (0) is closed. Indeed, it is shown in [2] that
if T ∈ LR(H) with T (0) closed, then T is semiclosed if and only if Ts = QTT
is semiclosed. The theorem 3.3 generalizes this situation where T (0) is considered
only semiclosed.
So, since HTs = HT , combining the definition 2 in [12] and Proposition 1.8 of [2], we
deduce the following characterization result which is in fact, a natural generalization
of Theorem 4.2 of [13].

Proposition 3.2. Let T ∈ LR(H) with T (0) closed. Then T is semiclosed if and
only if there exists a inner product (., .) such that HT = (D(T ), (., .)) is complete,
HT ↪→ H and T is continuous from HT to H. HT is called the auxiliary Hilbert
space of T .

Similarly, if T is a linear relation on a Banach space E with closed multivalued part,
then we say that T is semiclosed on E if and only if there exists a norm ‖.‖T on
D(T ) such that ET = (D(T ), ‖.‖T ) is a Banach space continuously embedded in E
and T is continuous from ET to E.

Some essential characterizations on semiclosedness of linear relations are given
below.
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Proposition 3.3. Let T ∈ SC(H) such that both of D(T ) and T (0) are closed,
then T is bounded.

Proof. We have from the theorem 3.3, that Ts is semiclosed linear operator with
D(Ts) = D(T ). Thus, there exists an inner product (., .) on D(T ) such that the
Hilbert space HTs = HT = (D(T ), (., .)) is continuously embedded in H and Ts
is bounded from HTs to H. Since D(T ) = D(Ts) is closed, we obtain D(T ) = H
and Ts is bounded on H. Hence, T is bounded linear relation with T (0) closed.
Consequently, T is bounded closed linear relation.

Obviously, every closed linear relation is semiclosed. Nevertheless, there exists
semiclosed linear relations which are not closed. Indeed, the fact that T is semiclosed
linear relation prove that T (0) is a semiclosed subset in H, however T (0) is not
necessarily closed. Consequently, T is not necessarily closed.

The following proposition gives an important case of semiclosed linear relations
which are not closed on H, especially when D(T ) andR(T ) are semiclosed subspaces
but non closed.

Proposition 3.4. Let T ∈ SC(H), then T−1T and TT−1 are also semiclosed
relations on H.

Proof. The result follows immediately from the facts, TT−1 = IR(T ) + T (0) and
T−1T = ID(T ) + T−1(0).

It may be very important to note that there exists some closable linear relations
which are not semiclosed and there exists some semiclosed linear relations which are
not closable. Hence, one can confirm that there is no relation in terms of inclusion
between the set of semiclosed linear relations and the set of closable linear relations.
To clarify this situation, let us consider the two following original examples:

Example 3.1. The space E = C ([a, b]) of continuous complex valued functions on [a, b] ,
equipped with the norm ‖x‖∞ = sup

t∈[a,b]
|x(t)| , x ∈ E, is a Banach space. Consider:

Tx =

∫
x(t)dt, x(t) ∈ E

with the polynomials P as its domain. T is a linear relation on E,

T (0) = {y ∈ E : (0, y) ∈ G(T )} = C

where G(T ) = {(x, y) ∈ E × E : x ∈ D(T ) = P, y ∈ Tx} is the graph of T. In particular,
T (0) is closed in E since on the complex constant polynomials the norm ‖.‖∞ and the
absolute value are equivalent. Furthermore,

T = Ts + T (0)

where the operator linear part Ts of T is given by:

Tsx(t) =

∫ t

a

x(t)dt



468 A. Gherbi, B. Messirdi and S. Messirdi

with domain D(Ts) = D(T ) = P, Tsx is the primitive function of x which vanishes at the
point t = a.
T is a closable linear relation on E since T (0) is closed in E and Ts is closable on E.
Indeed, let (xn)n∈N be a sequence in D(T ) such that (xn)n∈N and (Txn)n∈N are uniformly
convergent to 0 and y respectively, then necessarily y = 0.

In fact, T is closable but not semiclosed linear relation on E, since Ts is a non-semiclosed
linear operator on E.
Assume that Ts is semiclosed, then there exists a Banach space Es such that the graph

G(Ts) = {(x, Tsx) : x ∈ P, Tsx ∈ P0} , P0 = {y ∈ P : y(a) = 0}

of Ts is closed in Es ×E. Thus, G(Ts) is a complete metric space. However, G(Ts) is also
the union of countably many finite-dimensional subspaces and is thus of first category. By
Baire’s theorem, complete metric spaces are of second category, which is a contradiction.
Thus, the operator Ts with domain P is not semiclosed.

Example 3.2. Consider over the space C([0, 1]) of all continuous functions on [0, 1]

equipped with its usual norm, the linear operators T and S defined by: T =
d

dx
with

domain D(T ) = C1([0, 1]) and Sf(x) = f(0)g(x) domain D(S) = C([0, 1]) where g 6= 0 is
arbitrarily fixed in C([0, 1]). Since T is closed and S is bounded, the product ST defined by

STf =
df

dx
(0)g(x) with domain D(ST ) = D(T ) is a semiclosed linear operator on C([0, 1]).

Indeed, it is shown in [12] that the sum and the product of two semiclosed linear operators

is also semiclosed. Now let fn(x) = −e−n

n
. Then, for all n ∈ N∗, fn ∈ D(ST ), for all

x ∈ [0, 1], |fn(x)|2 =
e−2n

n2
→ 0 and |fn(x)|2 ≤ 1 with 1 ∈ L1([0, 1]). Using the Lebesgue’s

dominated convergence theorem, we obtain

lim
n→+∞

∫ 1

0

|fn(x)|2dx =

∫ 1

0

lim
n→+∞

|fn(x)|2dx = 0.

Hence, (fn)n converge to 0 in C([0, 1]). In other hand we have STfn =
dfn
dx

(0)g = g 6= 0.

Or, (0, g) can not be in the graph of any linear operator, so ST is not closable.

3.2. Restriction, inverse and adjoint of semiclosed linear relations

Theorem 3.4. Let T ∈ SC(H). Then for all semiclosed subspace M of D(T ), the
restriction T|M of T to M is a semiclosed linear relation on H.

Proof. Let T ∈ SC(H), then T (0) is semiclosed set in H and there exists a semi-
closed selection A of T such that T = A+ T − T .
Then we have: T|M = TIM , T|M (0) = T (0) and for all x ∈M , T|Mx = A|Mx+T (0)
where A|M is the restriction of A to M . Hence, G(T|M ) = G(A|M ) + ({0} × T (0))
is semiclosed subspace of H ×H because A|M is semiclosed linear operator on H.
This complete the proof.

Proposition 3.5. T ∈ SC(H)⇔ T−1 ∈ SC(H).
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Proof. Assume that T ∈ SC(H) and let J =

(
0 1
1 0

)
be a linear operator defined

on H×H. Then J is a semiclosed operator on H×H. Clearly, J(G(T )) = G(T−1).
Since T is supposed semiclosed, we obtain J|G(T ) is semiclosed operator. Hence,
R(J|G(T )) = G(T−1) is a semiclosed subspace of H ×H.

Corollary 3.2. Let T ∈ SC(H). The range and inverse range of any semiclosed
subspace of H by T is semiclosed in H.

Proposition 3.6. Let T ∈ SC(H), then T ∗ ∈ SC(H).

Proof. It follows immediately from the fact that G(T ∗) = [J (G(T ))]
⊥

where J =(
0 −i
i 0

)
.

3.3. Finite sum, product and iteration of semiclosed linear relations

Theorem 3.5. Let S, T be two semiclosed linear relations and α ∈ C∗. Then:
S + T, ST and αT are semiclosed linear relations on H.

Proof. Let A and B be two semiclosed selections of S and T respectively. Since
(S+T )(0) = S(0)+T (0) is semiclosed subset of H, it will be sufficient to show that
S + T has a semiclosed selection in order to prove that S + T is semiclosed linear
relation. Recall that the domain D+ of S + T is D+ = D(T ) ∩ D(S) and let S|D+

and T|D+
be respectively the restrictions of S and T to D+. Then we have, from

the above proposition, for all x ∈ D+:

(S + T )x = S|D+
x+ T|D+

x = A|D+
x+ S(0) +B|D+

x+ T (0)
= (A|D+

+B|D+
)x+ (S + T )(0).

This implies that:

S + T = [A|D+
+B|D+

] + [(S + T )− (S + T )].

Thus, A|D+
+ B|D+

is a semiclosed selection of S + T . Hence, S + T is semiclosed
linear relation.

Let us denote by D× the domain of ST . Then, D× = T−1(D(S)) and for all
x ∈ D× we have:

STx = S(Tx) = ABx+ ST (0).

Hence, AB is a semiclosed selection of ST because both of A and B are semiclosed
operators. On the other hand, we have ST (0) = S(T (0)) is a semiclosed subset of
H. Therefore, ST ∈ SC(H).
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This theorem provides the affirmative answer to the question formulated in [2] about
the semiclosedness of product of two semiclosed linear relations and generalizes
largely the Propositions 1.10 and 1.11 of [2].

Corollary 3.3.

1. If S, T are closed relations, then T +S and TS are semiclosed linear relations.

2. If T is a semiclosed relation such that R(T ) ⊂ D(T ) and n ∈ N∗, then Tn is
also semiclosed relation.

3. The set of semiclosed linear relations is the smallest class closed under sum
and product.

3.4. Kato Rellich Theorem for semiclosed linear relations

In this paragraph, we give a new result about semiclosed linear relations which is
a consequence of the Kato-Rellich theorem about relatively bounded (respectively
relatively compact) linear operators. Before stating the theorem we shall make some
definitions.

Definition 3.2. [3] Let S, T ∈ LR(H). Then, S is said to be T−bounded if
D(T ) ⊂ D(S) and there exists a constant c ≥ 0 such that

‖S(x)‖ ≤ c (‖x‖+ ‖T (x)‖) for all x ∈ D(T ).

If S is T−bounded, then the inf of all numbers b ≥ 0 for which a constant a ≥ 0
exists such that

‖S(x)‖ ≤ a‖x‖+ b‖T (x)‖, x ∈ D(T ),

is called the T−bound of S.

Theorem 3.6. Let S, T ∈ LR(H) such that S(0) ⊂ T (0). If T (0) is closed and S
is T−bounded with T−bound less than 1, then

S + T ∈ SC(H)⇔ T ∈ SC(H).

Proof. We just have to note that S(0) ⊂ T (0) implies that (S + T )(0) = T (0) and
then the theorem follows immediately from the Theorem 7 of [12] and the Theorem
3.6 of [13].

3.5. Limit and infinite sum of semiclosed linear relations

Let Tε and Sn be two indexed collections of semiclosed linear relations on a Hilbert
space H, with ε > 0 and n ∈ N. Suppose that Tε and Sn have the same multivalued
part T (0) which is assumed to be closed and independent of ε and n and let Hε and
Gn be respectively the auxiliary Hilbert spaces of Tε and Sn. Assume that there



New Results On Semiclosed Linear Relations 471

exists two Hilbert spaces K1 and K2 continuously embedded in Eε and En for all
ε > 0, n ∈ N, respectively such that for all x ∈ K1, sup

ε>0
‖Tεx‖ < +∞ and for all

x ∈ K2, sup
N
‖

N∑
n=0

Snx‖ < +∞ for every N ∈ N. Then the following result holds.

Theorem 3.7. If all of the above assumptions are satisfied, then:

1. the linear relation T defined by Tx = lim
ε→0

Tεx with the domain

D(T ) =

{
x ∈

(⋂
ε>0

D(Tε)

)
∩K1 : lim

ε→0
Tεx exists in H

}
is semiclosed on H,

2. the linear relation S defined by Sx =

+∞∑
n=0

Snx with the domain

D(S) =

{
x ∈

(⋂
n∈N
D(Sn)

)
∩K2 :

∞∑
n=0

Snx exists in H

}
is semiclosed on H.

Proof. 1. First note that T (0) = T (0) is closed and let us define on D(T ) the
following inner product:

(x, y) = 〈x, y〉K1
+ lim

ε→0
〈Tεx, Tεy〉H

= 〈x, y〉K1
+ 〈Tx, Ty〉H

and let HT = (D(T ), (., .)). Since K1, H and Hε are Hilbert spaces and Tε
is semiclosed for all ε > 0, then HT is complete. In fact, let (xn)n be a
Cauchy sequence in HT , then (xn)n converges to x in K1, H and Hε, hence

x ∈

(⋂
ε>0

D(Tε)

)
∩ K1 and from the semiclosedness of Tε we obtain: Tεxn

converges to Tεx for all ε > 0. Since (xn)n is a Cauchy sequence, there exists
λ > 0 such that:

‖xn‖HT
= (xn, xn)1/2 < λ

and

‖x‖2HT
= lim

n→+∞
‖xn‖2K1

+ lim
ε→0

lim
n→+∞

‖Tεxn‖2H < 2λ2.

Hence, x ∈ HT .

Let α > 0. Then, by the assumption sup
ε>0
‖Tεx‖H < +∞ on K1 and the

uniform boundedness principle, there exists j ∈ N such that for all n,m ≥ j
and ε > 0,

‖xn − xm‖HT
≤ α

2
and ‖Tεxn − Tεxm‖HT

≤ λα
2
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Moreover, we have

‖xn − x‖HT
=

[
lim

m→+∞
‖xn − xm‖2K1

+ lim
ε→0

lim
m→+∞

‖Tεxn − Tεxm‖2H
]1/2

≤ α

2
(1 + λ2)1/2.

Consequently, HT is a Hilbert space, continuously embedded in H and T
is continuous from HT onto H. Thus, we have from Corollary 3.2, T is
semiclosed.

2. Let Sx =

+∞∑
n=0

Snx with domain

D(S) =

{
x ∈

(⋂
n∈N
D(Sn)

)
∩K2 :

∞∑
n=0

Snx exists in H

}
.

Define SN =

N∑
n=0

Sn with domain D(SN ) =

(
N⋂

n=0

D(Sn)

)
∩K2. Then, SN is

semiclosed linear relation with closed multivalued part and auxiliary Hilbert
space HSN

= (D(SN ), (., .)SN
) where

(x, y)SN
= 〈x, y〉K2

+ 〈SNx, SNy〉 for all x, y ∈ D(SN ).

Obviously, Sx =

+∞∑
n=0

Snx = lim
N→+∞

SNx and

D(S) =

{
x ∈

( ⋂
N∈N
D(SN )

)
∩K2 : lim

N→+∞
SNx exists in H

}
.

Hence, we have from the first assertion and the fact that S(0) = T (0), S is
semiclosed linear relation on H.

4. Semiclosed linear relation with closed range

There are many important applications of the closedness of the range in the spectral
study of differential operators and also in the context of perturbation theory, we
have investigated in this section semiclosed linear relations with closed range.

Theorem 4.1. Let T ∈ SC(H). Then R(T ) is closed if and only if R(T )⊕N is
closed for some semiclosed subspace N in H.

Proof. If R(T ) is closed in H, it is then sufficient to choose N = {0} to have the
stated result.

Conversely, suppose that there exists an semiclosed subspace N of H such that
R(T ) ⊕ N is closed in H. Since T ∈ SC(H), then by virtue of the Corollary 3.1,
R(T ) is always a semiclosed subspace of H. Therefore, by the assertion 3 of the
Theorem 3.2 R(T ) is closed in H.
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In fact, semiclosed linear relations with closed null space and closed range in H
are closed linear relations on H.

Theorem 4.2. Let T ∈ SC(H) such that N (T ) and R(T ) are closed in H, then
T is a closed linear relation.

Proof. Like T ∈ SC(H), then the graph G(T ) of T is semiclosed in H×H. Moreover,
we have:

(H × {0}) +G(T ) = H × {0}+ {0} ×R(T ),

(H × {0}) ∩G(T ) = N (T )× {0} .

These two subspaces are closed in H × H. Using the assertion 3 of Theorem
3.2, we deduce that G(T ) is closed in H ×H and consequently T is a closed linear
relation on H.

Theorem 4.3. Let T ∈ SC(H) such that R(T ) is closed in H. Then:

G(T ) = G(T ) +
(
N (T )× {0}

)
.

Proof. G(T ) is semiclosed, H × {0} and H × {0}+G(T ) = H × {0}+ {0} ×R(T )
are closed subspaces of H ×H. Let’s put

H0 = G(T ) +G(T ) ∩ (H × {0}) = G(T ) +N(T )× {0}
= G(T ) +N(T )× {0} .

H0 is semiclosed in H ×H and

H0 +H × {0} ⊆ H × {0}+G(T ) = H × {0}+ {0} ×R(T ) ⊆ H0 +H × {0} .

Thus, H0 + H × {0} is closed and by virtue of Neubauer’s lemma we find that
H0 is in fact a closed subspace of H ×H. On the other hand,

G(T ) ⊆ H0 ⊆ G(T ),

so what H0 = G(T ).

In the following, we will exploit the above result to give a new characterization of
closable linear relations. Recall that a linear relation T is said to be closable if and
only if T (0) is closed and Ts is closable. Hence, if T is supposed semiclosed on H
with T (0) closed, then Ts is also semiclosed in H, in addition, if we assume that
R(Ts) is closed we obtain from the above theorem:

G(Ts) = G(Ts) +
(
N (Ts)× {0}

)
.
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Theorem 4.4. Let T ∈ SC(H) such that T (0) and R(Ts) are closed in H. Then,
T is closable if and only if N (T ) ∩ D(T ) = N (T ).

Proof. Firstly, note that if T (0) is closed, then N (T ) = N (Ts). Let T be closable
(i.e Ts is closable) and x ∈ N (T ) ∩ D(T ) = N (Ts) ∩ D(Ts), then there exists
a sequence (xn)n∈N in N (Ts) that converges to x in H. So, (x− xn) → 0 and
Ts (x− xn) = Tsx→ Tsx, from where Tsx = 0 and x ∈ N (Ts) = N (T ).

Conversely, let (0, y) ∈ G(Ts) = G(Ts) +
(
N (Ts)× {0}

)
. Then there is x ∈

D(Ts) and t ∈ N (Ts) such that x + t = 0 and Tsx = y. Therefore, x = −t ∈
N (Ts)∩D(Ts) = N (Ts) and y = Tsx = 0. Which means that G(Ts) is the graph of
a linear operator, ie Ts is closable on H. Hence T is closable linear relation
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