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Ser. Math. Inform. Vol. 35, No 2 (2020), 471–483

https://doi.org/10.22190/FUMI2002471S

TAUBERIAN CONDITIONS FOR q-CESÀRO INTEGRABILITY
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Abstract. Given a q-integrable function f on [0,∞), we define s(x) =
∫

x

0
f(t)dqt and

σ(s(x)) = 1

x

∫
x

0
s(t)dqt for x > 0. It is known that if limx→∞ s(x) exists and is equal to

A, then limx→∞ σ(s(x)) = A. But the converse of this implication is not true in gen-
eral. Our goal is to obtain Tauberian conditions imposed on the general control modulo
of s(x) under which the converse implication holds. These conditions generalize some
previously obtained Tauberian conditions.
Keywords: q-integrable function; Tauberian conditions; q-derivative; q-integrals; quan-
tum calculus.

1. Introduction

The first formulae of what we now call quantum calculus or q-calculus were in-
troduced by Euler in the 18th century. Many notable results were obtained in the
19th century. In the early 20th century, Jackson defined the notions of q-derivative
[9] and definite q-integral [10]. Also, he was the first to develop q-calculus in a
systematic way. Following Jackson’s papers, q-calculus has received an increas-
ing attention of many researchers due to its vast applications in mathematics and
physics.

We wiill now give some concepts of the q-calculus necessary for the understand-
ing of this work. We follow the terminology and notations from the book of Kac
and Cheung [11]. In what follows, q is a real number satisfying 0 < q < 1.

The q-derivative Dqf(x) of an arbitrary function f(x) is defined by

Dqf(x) =
f(x)− f(qx)

x− qx
, if x 6= 0,
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where Dqf(0) = f ′(0) provided f ′(0) exists. If f(x) is differentiable, then Dqf(x)
tends to f ′(x) as q tends to 1.
Notice that the q-derivative satisfies the following q-analogue of Leibniz rule

Dq(f(x)g(x)) = f(qx)Dqg(x) + g(x)Dqf(x).

The q-integrals from 0 to a and from 0 to ∞ are given by

∫ a

0

f(x)dqx = (1− q)a

∞
∑

n=0

f(aqn)qn

and
∫

∞

0

f(x)dqx = (1 − q)a

∞
∑

n=−∞

f(qn)qn

provided the sums converge absolutely. On a general interval [a, b], the q-integral is
defined by

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−

∫ a

0

f(x)dqx.

The q-integral and the q-derivative are related by the fundamental theorem of
quantum calculus as follows:

If F (x) is an anti q-derivative of f(x) and F (x) is continuous at x = 0, then

∫ b

a

f(x)dqx = F (b)− F (a), 0 ≤ a < b ≤ ∞.

In addition, we have

Dq





x
∫

0

f(t)dqt



 = f(x).

A function f(x) is said to be q-integrable onR+ := [0,∞) if the series
∑

n∈Z
qnf(qn)

converges absolutely. We denote the set of all functions that are q-integrable on R+

by L1
q(Rq,+), where

Rq,+ = {qn : n ∈ Z}.

One may consult the recent books [2, 1] for further results and several applica-
tions of q-calculus.

Throughout this paper we assume that f(x) is q-integrable on R+ and s(x) =
∫ x

0
f(t)dqt. The symbol s(x) = o(1) means that limx→∞ s(x) = 0. The q-Cesàro

mean of s(x) are defined by

σ(x) = σ(s(x)) =
1

x

∫ x

0

s(t)dqt.
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The integral
∫

∞

0
f(t)dqt is said to be q-Cesàro integrable (or (Cq, 1) integrable) to

a finite A, in symbols: s(x) → A(Cq , 1), if

(1.1) lim
x→∞

σ(x) = A.

If the q-integral

(1.2)

∫

∞

0

f(t)dqt = A

exists, then the limit (1.1) also exists [6]. That is, q-Cesàro integrability method is
regular. The converse is not necessarily true (see [15], Example 1). Adding some
suitable condition to (1.1), which is called a Tauberian condition, may imply (1.2).
Any theorem which states that the convergence of the q-integral follows from its
q-Cesàro integrability and some Tauberian condition is called a Tauberian theorem.

The difference between s(x) and its q-Cesàro mean is given by the identity [6]

(1.3) s(x)− σ(x) = qv(x),

where v(x) = 1

x

∫ x

0
tf(t)dqt. The identity (1.3) will be used in the various steps of

proofs.

For each integer, m ≥ 0, σm(x) and vm(x) are defined by

σm(x) =







1

x

∫ x

0

σm−1(t)dqt ,m ≥ 1

s(x) ,m = 0

and

vm(x) =







1

x

∫ x

0

vm−1(t)dqt ,m ≥ 1

v(x) ,m = 0

The relationship between σm(x) and vm(x) can be easily obtained by (1.3) as follows:

(1.4) σm(x)− σm+1(x) = qvm(x).

The classical control modulo of s(x) =
∫ x

0
f(t)dqt is denoted by

ω0(x) = xDq(s(x)) = xf(x),

and the general control modulo of integer order m ≥ 1 of s(x) is defined by

ωm−1(x) − σ(ωm−1(x)) = qωm(x).

Note that the concepts of classical and general control modulo were first introduced
by Çanak and Totur [3] for the integrals in standard calculus.

A function f(x) is said to satisfy the property (P ) (see [7]), if for all ǫ > 0 there
exists K > 0 such that

|f(x)− f(qx)| < ǫ
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for all x > K.

Recently, Fitouhi and Brahim [7], Çanak et al. [6] and Totur et al. [15] have
determined Tauberian conditions using this property. Moreover, Çanak et al. [6]
showed that if s(x) satisfies the property (P), its q-Cesàro mean σ(x) then also
satisfies the property (P).

Slowly oscillating real-valued functions were introduced by Schmidt [14]. A
function f(x) is said to be slowly oscillating, if for every ε > 0 there exists K > 0
such that |f(x) − f(y)| < ǫ whenever x > y > K and x/y → 1. Slow oscillation
condition were used in a number of Tauberian theorems for the Cesàro integrability
[4, 5], logarithmic integrability [12, 16] and weighted mean integrability [13, 17] in
standard calculus. Consider that, as q tends to 1, the property (P) corresponds to
slow oscillation of a function.

The following theorems are the q-analogues of classical Tauberian theorems due
to the Hardy [8] and Schmidt [14], respectively.

Theorem 1.1. ([7]) If s(x) is q-Cesàro integrable to A and

(1.5) ω0(x) = o(1),

then
∫

∞

0
f(t)dqt = A.

Theorem 1.2. ([6],[7]) If s(x) is q-Cesàro integrable to A and satisfies the prop-

erty (P), then
∫

∞

0
f(t)dqt = A.

The purpose of this study is to generalize the above theorems by imposing
Tauberian conditions on the general control modulo of integer order m ≥ 1.

2. Main Results

In this paper, we shall prove the following Tauberian theorems.

Theorem 2.1. If s(x) is q-Cesàro integrable to A and

(2.1) ωm(x) = o(1)

for some integer m ≥ 0, then
∫

∞

0
f(t)dqt = A.

Remark 2.1. It follows from the definition of the general control modulo that condition
(1.5) implies the condition (2.1).

Theorem 2.2. If s(x) is q-Cesàro integrable to A and σ(ωm(x)) satisfies the prop-
erty (P) for some integer m ≥ 0, then

∫

∞

0
f(t)dqt = A.

Remark 2.2. Let the function s(x) satisfy the property (P), then so does the function
σ(ωm(x)) for any non-negative integer m.

Remark 2.3. For the case m = 0 in Theorem 2.2, we observe that v(x) satisfies the
property (P) which means that it is a Tauberian condition for the q-Cesàro integrability
[6].



Tauberian Conditions for q-Cesàro Integrability 475

3. Auxiliary Results

In this section we state and prove some lemmas which are needed for the brevity
of proofs of our main results.

Lemma 3.1. For every integer m ≥ 1,

(3.1) xDq(σm(x)) = vm−1(x).

Proof. Taking the q-derivative of σm(x) gives

Dq(σm(x)) = Dq





1

x

x
∫

0

σm−1(t)dqt





=
1

qx
σm−1(x)−

1

qx2

x
∫

0

σm−1(t)dqt

=
1

qx
(σm−1(x)− σm(x)) .

Hence, applying the identity (1.3) to σm−1(x), we get Dq(σm(x)) =
vm−1(x)

x
, which

completes the proof.

Lemma 3.2. For every integer m ≥ 1,

(i) xf(x)− v(x) = qxDq(v(x))

(ii) vm−1(x)− vm(x) = qxDq(vm(x)).

Proof. (i) Taking the q-derivative and then multiplying both sides of identity (1.3)
by x, we get

xDq(s(x)) − xDq(σ(x)) = qxDq(v(x)).

It follows from Lemma 3.1 that

xf(x)− v(x) = qxDq(v(x)).

(ii) Taking the q−derivative of both sides of (1.4), we have

(3.2) Dq(σm(x)) −Dq(σm+1(x)) = qDq(vm(x)).

Then, multiplying (3.2) by x yields

xDq(σm(x))− xDq(σm+1(x)) = qxDq(vm(x)).

Using Lemma 3.1, we prove that

vm−1(x) − vm(x) = qxDq(vm(x)).
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Lemma 3.3. For every integer m ≥ 1,

(3.3) σ(xDq(vm−1(x))) = xDq(vm(x)).

Proof. Taking Cesàro means of both sides of the identity in Lemma 3.2 (ii), we find

σ(xDq(vm−1(x))) = q−1[σ(vm−2(x)) − σ(vm−1(x))]

= q−1 (vm−1(x)− vm(x))

= xDq(vm(x)).

For a function f(x), we define

(xDq)m(f(x)) = (xDq)m−1(xDq(f(x))) = xDq((xDq)m−1(f(x))),

where (xDq)0(f(x)) = f(x) and (xDq)1(f(x)) = xDq(f(x)).

Lemma 3.4. For every integer m ≥ 1,

(3.4) ωm(x) = (xDq)m(vm−1(x)).

Proof. We prove the assertion by using mathematical induction. From the definition
of the general control modulo for m = 1 and Lemma 3.2 (i), we get

ω1(x) = q−1(ω0(x)− σ(ω0(x))) = q−1(xf(x) − v(x)) = xDq(v(x)).

Assume the assertion holds for some positive integer m = k. That is, assume that

(3.5) ωk(x) = (xDq)k(vk−1(x)).

We show that the assertion is true for m = k + 1. That is,

ωk+1(x) = (xDq)k+1(vk(x)).

By definition of the general control modulo for m = k + 1, we have

ωk+1(x) = q−1(ωk(x) − σ(ωk(x))).

Considering Lemma 3.2 (ii) and Lemma 3.3 together with (3.5), we obtain

ωk+1(x) = q−1[(xDq)k(vk−1(x))− (xDq)k(vk(x))]

= q−1(xDq)k(vk−1(x)− vk(x))

= (xDq)k+1(vk(x)).

Therefore, we conclude that Lemma 3.4 is true for each integer m ≥ 1.

Lemma 3.5. If s(x) is q-Cesàro integrable to some finite number A, then for each

non-negative integer m, σ(ωm(x)) is q-Cesàro integrable to 0.
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Proof. If s(x) → A(Cq , 1), then it is known that σ(x) → A(Cq , 1). Thus, it follows
from the identity (1.3) that v(x) = σ(ω0(x)) → 0(Cq, 1). Replacing s(x) with v(x)
in (1.3), we write

(3.6) v(x) − v1(x) = qxDq(v1(x)) = qσ(ω1(x)).

Then, (3.6) implies σ(ω1(x)) → 0(Cq, 1). Now, applying (1.3) to xDq(v1(x)), we
get

(3.7) xDq(v1(x))− xDq(v2(x)) = q(xDq)2v2(x) = qσ(ω2(x)).

Hence from (3.7), σ(ω2(x)) → 0(Cq, 1). Continuing in the same manner, we obtain
σ(ωm(x)) → 0(Cq, 1) for each non-negative integer m.

Lemma 3.6. For every non-negative integer m and k,

(3.8) σk(ωm(x)) = ωm(σk(x)).

Proof. Using Lemma 3.4 and Lemma 3.3 respectively, it follows

σk(ωm(x)) = σk((xDq)mvm−1(x))

= (xDq)m+1σm+k(x).(3.9)

On the other hand, taking Lemma 3.4 and Lemma 3.1 into account we find

ωm(σk(x)) = (xDq)mvm−1(σk(x))

= (xDq)m+1(σm+k(x)).(3.10)

Therefore, the proof is completed from the equality of (3.9) and (3.10).

The following lemma shows a different representation of the difference s(x) −
σ(x).

Lemma 3.7. For any function s(x) defined on (0,∞), we have the identity

(3.11) s(x)− σ(x) =
q

1− q
(σ(x) − σ(qx)),

where σ(qx) =
1

qx

∫ qx

0

s(t)dqt.

Proof. By the definition of the q-integral, we may write
∫ qx

0

s(t)dqt = (1− q)qx

∞
∑

n=0

s(xqn+1)qn

= (1− q)x

∞
∑

n=1

s(xqn)qn

= (1− q)x

(

∞
∑

n=0

s(xqn)qn − s(x)

)

=

∫ x

0

s(t)dqt− (1− q)xs(x).
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Dividing the both sides of the last equality by qx, we get

q

1− q
(σ(x) − σ(qx)) = s(x) − σ(x).

It is clear from Lemma 3.7 that, even if σ(x) is convergent, σ(x) and σ(qx) do not
tend to same value when s(x) is not convergent.

4. Proofs

In this section, we give proofs of our main results.

4.1. Proof of Theorem 2.1

From the hypothesis we have

(4.1) ωm(x) = xDqσ(ωm−1(x)) = o(1),

for some integer m ≥ 1. On the other hand, from Lemma 3.5, σ(ωm−1(x)) →
0(Cq, 1). Hence, applying Theorem 1.1 to σ(ωm−1(x)) we obtain

(4.2) σ(ωm−1(x)) = o(1).

Considering (4.1) and (4.2) together with the identity

ωm−1(x) − σ(ωm−1(x)) = qωm(x),

we get

(4.3) ωm−1(x) = xDqσ(ωm−2(x)) = o(1).

By Lemma 3.5, we also have σ(ωm−2(x)) → 0(Cq, 1). Now, applying Theorem 1.1
to σ(ωm−2(x)) we obtain

(4.4) σ(ωm−2(x)) = o(1).

From (4.3), (4.4) and the identity

ωm−2(x)− σ(ωm−2(x)) = qωm−1(x),

we find

(4.5) ωm−2(x) = xDqσ(ωm−3(x)) = o(1).

Taking (4.1), (4.3) and (4.5) into account and proceeding likewise, we observe that
ω0(x) = o(1). Therefore, the proof follows from Theorem 1.1.
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4.2. Proof of Theorem 2.2
Considering Lemma 3.7 we may construct the identity

σ(ωm(x))− σ2(ωm(x)) =
q

1− q
[σ2(ωm(x)) − σ2(ωm(qx))].

Since σ(ωm(x)) satisfies the property (P), its q−Cesàro mean σ2(ωm(x)) also sat-
isfies the property (P). Let ǫ > 0 be given. Then, there exists K > 0 such that

(4.6) −ǫ < σ2(ωm(x)) − σ(ωm(x)) < ǫ

for every x > K. By (4.6), we write

(4.7) σ(ωm(x)) − ǫ < σ2(ωm(x)) < σ(ωm(x)) + ǫ.

Since s(x) → A(Cq , 1), we have by using Lemma 3.5 that lim
x→∞

σ2(ωm(x)) = 0.

Thus, it follows from (4.7)

−ǫ < lim inf
x→∞

σ(ωm(x)) < lim sup
x→∞

σ(ωm(x)) < ǫ,

which is equivalent to

(4.8) lim
x→∞

σ(ωm(x)) = 0.

It yields from the equality

σ(ωm(x)) = σ((xDq)mvm−1(x))

= xDq(xDq)m−1vm(x)

= xDqσ2(ωm−1(x)),

that xDqσ2(ωm−1(x)) = o(1). Also, by Lemma 3.5, σ(ωm−1(x)) → 0(Cq, 1). Fur-
ther, regularity of q-Cesàro integrability implies σ2(ωm−1(x)) → 0(Cq, 1). Then, if
we apply Theorem 1.1 to σ2(ωm−1(x)) we obtain

(4.9) lim
x→∞

σ2(ωm−1(x)) = 0.

From the definition of the general control modulo, it is easy to see

(4.10) σ(ωm−1(x)) − σ2(ωm−1(x)) = qσ(ωm(x)).

Combining (4.8), (4.9) and (4.10), we reach

(4.11) lim
x→∞

σ(ωm−1(x)) = 0.

Now, since

σ(ωm−1(x)) = σ((xDq)m−1vm−2(x))

= xDq(xDq)m−2vm−1(x)

= xDqσ2(ωm−2(x)),
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we find xDqσ2(ωm−2(x)) = o(1). Besides, we have σ2(ωm−2(x)) → 0(Cq, 1) from
Lemma 3.5 and the regularity of q-Cesàro integrability. Now, applying Theorem
1.1 to σ2(ωm−2(x)) we get

(4.12) lim
x→∞

σ2(ωm−2(x)) = 0.

Considering (4.11), (4.12) and the identity

(4.13) σ(ωm−2(x))− σ2(ωm−2(x)) = qσ(ωm−1(x)),

we have

(4.14) lim
x→∞

σ(ωm−2(x)) = 0.

In the light of (4.8), (4.11) and (4.14), continuing in the same fashion we conclude

lim
x→∞

σ(ω0(x)) = lim
x→∞

v(x) = 0.

Therefore, since s(x) → A(Cq, 1), we obtain via (1.3) that lim
x→∞

s(x) = A.

5. Extensions

In this section, we will present the q-Hölder or (Hq, k) integrability method
which is an obvious generalization of the q-Cesàro integrability. Later, we extend
our main results to this method.

If
lim
x→∞

σk(x) = A,

then
∫

∞

0
f(t)dqt is said to be integrable by the q-Hölder method of order k ∈ N0

(shortly, (Hq, k) integrable) to A, and this fact is denoted by s(x) → A(Hq, k). In
particular, the method (Hq, 0) indicates the convergence in the ordinary sense and
the method (Hq, 1) is equivalent to (Cq , 1). The (Hq, k) methods are regular for any
k and are compatible for all k. The power of the method increases with increasing
k: The (Hq, k) integrability implies (Hq, k

′) integrability for any k′ > k.

Theorem 5.1. Let s(x) → A(Hq, k + 1). If

(5.1) ωm(x) = o(1)

for some integer m ≥ 0, then
∫

∞

0
f(t)dqt = A.

Proof. By (5.1) and the regularity of the (Cq, 1) method, we obtain σk(ωm(x)) =
o(1) for each integer k ≥ 0. Then, from Lemma 3.6 it is clear that

(5.2) ωm(σk(x)) = o(1) for each k ∈ N0.



Tauberian Conditions for q-Cesàro Integrability 481

Besides, from the assumption since σk(x) → A(Cq , 1), Theorem 2.1 implies

lim
x→∞

σk(x) = A

which is also equivalent to σk−1(x) → A(Cq, 1). From (5.2), we know that ωm(σk−1(x)) =
o(1). Now, applying Theorem 2.1 to σk−1(x) yields

lim
x→∞

σk−1(x) = A

which is also equivalent to σk−2(x) → A(Cq, 1). Repeating the same steps k-times
we conclude

lim
x→∞

σ0(x) =

∫

∞

0

f(t)dqt = A.

Theorem 5.2. Let s(x) → A(Hq, k + 1). If σ(ωm(x)) satisfies the property (P)
for some integer m ≥ 0, then

∫

∞

0
f(t)dqt = A.

Proof. If σ(ωm(x)) satisfies the property (P), then so does σk(ωm(x)) for every
non-negative integer k. From Lemma 3.6, since

σk(ωm(x)) = ωm(σk(x))

we find that σ(ωm(σk(x))) also satisfies (P) for all k ∈ N0. Considering the hypoth-
esis σk(x) → A(Cq, 1) and Theorem 2.2 we obtain

s(x) → A(Hq , k)

which requires σk−1(x) → A(Cq, 1). Moreover, since σ(ωm(σk−1(x))) satisfies (P),
we get

s(x) → A(Hq, k − 1)

which requires σk−2(x) → A(Cq, 1). Applying the same reasoning k-times we reach
that

s(x) → A(Hq, 0)

which means lim
x→∞

s(x) = A.
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15. Ü. Totur, İ. Çanak and S. A. Sezer: Weighted integrability and its applications in

quantum calculus. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89 (2019), 791–797.
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17. Ü. Totur, M. A. Okur and İ. Çanak: One-sided Tauberian conditions for the (N, p)
summability of integrals. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.
80 (2018), 65–74.

Sefa Anıl Sezer
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