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SOLVING THE FUZZY INITIAL VALUE PROBLEM WITH
NEGATIVE COEFFICIENT BY USING FUZZY LAPLACE

TRANSFORM
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Abstract. In this paper, the fuzzy initial value problem with negative coefficient is
solved by using fuzzy Laplace transform and generalized differentiability. The solutions
are found and the comparison results are given.
Keywords: fuzzy initial value problem, generalized differentiability, fuzzy Laplace
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1. Introduction

Fuzzy differential equations have been studied by many researchers. Fuzzy
differential equations can be solved by several types. Hukuhara differentiability
[10, 17, 23], generalized differentiability [7, 8, 9, 12], extension principle [10, 11],
the concept of differential inclusion [16] and the fuzzy problem to be a set of crips
problem [14]. Another types are numeric methods [1, 2, 3, 4, 15] and the fuzzy
Laplace transform [5, 21, 22, 24].

This paper is about the solutions of the fuzzy initial value problem with negative
coefficient by fuzzy Laplace transform. The aim of this study is to investigate
solutions of problem using the properties fuzzy Laplace transform and generalized
differentiability.

The paper is organized as follows: Section 2 delas with preliminaries, Section 3
focuses on findings and the main results, and Section 4 refers to conclusions.

2. Preliminaries

Definition 2.1. [20] A fuzzy number is a mapping u : R → [0, 1] satisfying the
following properties:

u is normal: ∃x0 ∈ R for which u (x0) = 1,
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u is convex fuzzy set: u (λx+ (1− λ) y) > min {u (x) , u (y)} for all x, y ∈ R, λ ∈
[0, 1] ,

u is upper semi-continuous on R,

cl {x ∈ R | u (x) > 0} is compact, where cl denotes the closure of a subset.

Let RF denote the set of all fuzzy numbers.

Definition 2.2. [18] Let u ∈ RF . The α-level set of u, denoted , [u]
α

, 0 < α ≤ 1,

is [u]
α

= {x ∈ R | u (x) ≥ α} . If α = 0, [u]
0

= cl {x ∈ R | u (x) > 0} . The notation,
[u]

α
= [uα, uα] denotes explicitly the α-level set of u, where uα and uα denote the

left-hand endpoint and the right-hand endpoint of [u]
α

, respectively.

The following remark shows when [uα, uα] is a valid α-level set.

Remark 2.1. [13, 18] The sufficient and necessary conditions for [uα, uα] to define the
parametric form of a fuzzy number as follows:

uα is bounded monotonic increasing (nondecreasing) left-continuous function on (0, 1]
and right-continuous for α = 0 ,

uα is bounded monotonic decreasing (nonincreasing) left-continuous function on (0, 1]
and right-continuous for α = 0,

uα ≤ uα, 0 ≤ α ≤ 1.

Definition 2.3. [20] If A is a symmetric triangular fuzzy number with support

[a, a], the α−level set of A is [A]
α

=
[
Aα, Aα

]
=
[
a+

(
a−a
2

)
α, a−

(
a−a
2

)
α
]
,

(A1 = A1, A1 −Aα = Aα −A1).

Definition 2.4. [15, 18, 23] Let u, v ∈ RF . If there exists w ∈ RF such that
u = v+w, then w is called the Hukuhara difference of fuzzy numbers u and v, and
it is denoted by w = u	 v.

Definition 2.5. [6, 15, 18] Let f : [a, b] → RF and t0 ∈ [a, b] . We say that f is
Hukuhara differentiable at t0, if there exists an element f

′
(t0) ∈ RF such that for

all h > 0 sufficiently small, ∃f (t0 + h) 	 f (t0) , f (t0) 	 f (t0 − h) and the limits
hold

lim
h→0

f (t0 + h)	 f (t0)

h
= lim
h→0

f (t0)	 f (t0 − h)

h
= f

′
(t0) .

Definition 2.6. [18] Let f : [a, b] → RF and t0 ∈ [a, b] . We say that f is (1)-
differentiable at t0, if there exists an element f

′
(t0) ∈ RF such that for all h > 0

sufficiently small near to 0, exist f (t0 + h)	f (t0) , f (t0)	f (t0 − h) and the limits

lim
h→0

f (t0 + h)	 f (t0)

h
= lim
h→0

f (t0)	 f (t0 − h)

h
= f

′
(t0) ,
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and f is (2)-differentiable if for all h > 0 sufficiently small near to 0, exist
f (t0)	 f (t0 + h) , f (t0 − h)	 f (t0) and the limits

lim
h→0

f (t0)	 f (t0 + h)

−h
= lim
h→0

f (t0 − h)	 f (t0)

−h
= f

′
(t0) .

Theorem 2.1. [19] Let f : [a, b] → RF be fuzzy function, where [f (t)]
α

=[
f
α

(t) , fα (t)
]
, for each α ∈ [0, 1] .

(i) If f is (1)-differentiable, then f
α

and fα are differentiable functions and[
f

′
(t)
]α

=
[
f

′

α
(t) , f

′

α (t)
]
,

(ii) If f is (2)-differentiable, then f
α

and fα are differentiable functions and[
f

′
(t)
]α

=
[
f

′

α (t) , f
′

α
(t)
]
.

Theorem 2.2. [19] Let f
′

: [a, b] → RF be fuzzy function, where [f (t)]
α

=[
f
α

(t) , fα (t)
]
, for each α ∈ [0, 1] , f is (1)-differentiable or (2)-differentiable.

(i) If f and f
′

are (1)-differentiable, then f
′

α
and f

′

α are differentiable functions

and
[
f

′′
(t)
]α

=
[
f

′′

α
(t) , f

′′

α (t)
]
,

(ii) If f is (1)-differentiable and f
′

is (2)-differentiable, then f
′

α
and f

′

α are

differentiable functions and
[
f

′′

(t)
]α

=

[
f

′′

α (t) , f
′′

α
(t)

]
,

(iii) If f is (2)-differentiable and f
′

is (1)-differentiable, then f
′

α
and f

′

α are

differentiable functions and
[
f

′′

(t)
]α

=

[
f

′′

α (t) , f
′′

α
(t)

]
,

(iv) If f and f
′

are (2)-differentiable, then f
′

α
and f

′

α are differentiable functions

and
[
f

′′
(t)
]α

=
[
f

′′

α
(t) , f

′′

α (t)
]
.

Definition 2.7. [22, 24] The fuzzy Laplace transform of fuzzy-valued function f
is defined as follows:

F (s) = L (f (t)) =

∞∫
0

e−stf (t) dt = lim
τ→∞

τ∫
0

e−stf (t) dt,

F (s) = L (f (t)) =

 lim
τ→∞

τ∫
0

e−stf (t) dt, lim
τ→∞

τ∫
0

e−stf (t) dt

 .
F (s, α) = L (f (t, α)) =

[
L
(
f (t, α)

)
, L
(
f (t, α)

)]
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where,

L
(
f (t, α)

)
=

∞∫
0

e−stf (t, α) dt = lim
τ→∞

τ∫
0

e−stf (t, α) dt,

L
(
f (t, α)

)
=

∞∫
0

e−stf (t, α) dt = lim
τ→∞

τ∫
0

e−stf (t, α) dt.

Theorem 2.3. [5, 22, 24] Suppose that f is continuous fuzzy-valued function on
[0,∞) and exponential order α and that f

′
is piecewise continuous fuzzy-valued

function on [0,∞) , then

L
(
f

′
(t)
)

= sL (f (t))	 f (0) ,

if f is (1) differentiable,

L
(
f

′
(t)
)

= (−f (0))	 (−sL (f (t))) ,

if f is (2) differentiable.

Theorem 2.4. [22, 24] Suppose that f and f
′

are continuous fuzzy-valued func-
tions on [0,∞) and of exponential order α and that f

′′
is piecewise continuous

fuzzy-valued function on [0,∞) , then

L
(
f

′′
(t)
)

= s2L (f (t))	 sf (0)	 f
′
(0) ,

if f and f
′

are (1) differentiable,

L
(
f

′′

(t)
)

= −f
′
(0)	

(
−s2

)
L (f (t))− sf (0) ,

if f is (1) differentiable and f
′

is (2) differentiable,

L
(
f

′′

(t)
)

= −sf (0)	
(
−s2

)
L (f (t))	 f

′
(0) ,

if f is (2) differentiable and f
′

is (1) differentiable,

L
(
f

′′
(t)
)

= s2L (f (t))	 sf (0)− f
′
(0) ,

if f and f
′

are (2) differentiable.

Theorem 2.5. [5, 22] Let f (x), g (x) be continuous fuzzy-valued functions sup-
pose that c1 and c2 are constant, then

L (c1f (x) + c2g (x)) = (c1L (f (x))) + (c2L (g (x))) .

Theorem 2.6. [5] Let f (x) be continuous fuzzy-valued function on [0,∞) and
λ ≥ 0, then

L (λf (x)) = λ (L (f (x))) .
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3. Findings and Main Results

In this section, we consider solutions of the fuzzy initial value problem

y′′(t) = −λy(t), t > 0,(3.1)

y(0) = [A]
α
, y

′
(0) = [B]

α
,(3.2)

by Laplace transform, where λ > 0, A and B are symmetric triangular fuzzy num-
bers with supports [a, a] and [b, b], respectively,

[A]
α

=
[
Aα, Aα

]
=

[
a+

(
a− a

2

)
α, a−

(
a− a

2

)
α

]
,

[B]
α

=
[
Bα, Bα

]
=

[
b+

(
b− b

2

)
α, b−

(
b− b

2

)
α

]
,

(i,j) solution means that y is (i) differentiable, y
′

is (j) differentiable.

Case 1) If y and y
′

are (1) differentiable, since

s2L (y (t, α))	 sy (0, α)	 y
′
(0, α) = −λL (y (t, α)) ,

we have the equations

s2L
(
y (t, α)

)
− sy (0, α)− y

′
(0, α) = −λy (t, α) ,

s2L (y (t, α))− sy (0, α)− y
′
(0, α) = −λy (t, α) .

Using the initial values and taking the necessary operations,

L
(
y (t, α)

)
=

s2

s4 − λ2
Bα +

s3

s4 − λ2
Aα −

λs

s4 − λ2
Aα −

λ

s4 − λ2
Bα,

L (y (t, α)) =
s2

s4 − λ2
Bα +

s3

s4 − λ2
Aα −

λs

s4 − λ2
Aα −

λ

s4 − λ2
Bα.

From here,

y (t, α) = L−1
(

s2

s4 − λ2

)
Bα + L−1

(
s3

s4 − λ2

)
Aα

−L−1
(

λs

s4 − λ2

)
Aα − L−1

(
λ

s4 − λ2

)
Bα,
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y (t, α) = L−1
(

s2

s4 − λ2

)
Bα + L−1

(
s3

s4 − λ2

)
Aα

−L−1
(

λs

s4 − λ2

)
Aα − L−1

(
λ

s4 − λ2

)
Bα.

Thus, the lower solution and the upper solution are obtained as

y (t, α) =
e
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)
+
e−
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)

+
sin
(√

λt
)

2
√
λ

(
Bα +Bα

)
+

cos
(√

λt
)

2

(
Aα +Aα

)
,

y (t, α) =
e
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)
+
e−
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)

+
sin
(√

λt
)

2
√
λ

(
Bα +Bα

)
+

cos
(√

λt
)

2

(
Aα +Aα

)
.

Case 2) If y is (1) differentiable and y
′

is (2) differentiable, since

−y
′
(0, α)	

(
−s2

)
L (y (t, α))− sy (0, α) = −λL (y (t, α)) ,

we have the equations

−y
′
(0, α)−

(
−s2L (y (t, α))

)
− sy (0, α) = −λL (y (t, α)) ,

−y
′
(0, α)−

(
−s2L

(
y (t, α)

))
− sy (0, α) = −λL

(
y (t, α)

)
.

Using the initial values, we get

L
(
y (t, α)

)
=

1

s2 + λ
Bα +

s

s2 + λ
Aα.

L (y (t, α)) =
1

s2 + λ
Bα +

s

s2 + λ
Aα.

Taking inverse Laplace transforms of the equations, we have

y (t, α) = L−1
(

1

s2 + λ

)
Bα + L−1

(
s

s2 + λ

)
Aα,
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y (t, α) = L−1
(

1

s2 + λ

)
Bα + L−1

(
s

s2 + λ

)
Aα.

From this, the lower and the upper solutions are obtained as

y (t, α) =
1√
λ

sin
(√

λt
)
Bα + cos

(√
λt
)
Aα,

y (t, α) =
1√
λ

sin
(√

λt
)
Bα + cos

(√
λt
)
Aα.

Case 3) If y is (2) differentiable and y
′

is (1) differentiable, since

−sy (0, α)	
(
−s2

)
L (y (t, α))	 y

′
(0, α) = −λL (y (t, α))

we have the equations

−sy (0, α)−
(
−s2L (y (t, α))

)
− y

′
(0, α) = −λL (y (t, α))

−sy (0, α)−
(
−s2L

(
y (t, α)

))
− y

′
(0, α) = −λL

(
y (t, α)

)
.

Using the initial values and taking inverse Laplace transforms of the equations, we
have

y (t, α) =
1√
λ

sin
(√

λt
)
Bα + cos

(√
λt
)
Aα.

y (t, α) =
1√
λ

sin
(√

λt
)
Bα + cos

(√
λt
)
Aα.

Case 4) If y is (2) differentiable and y
′

is (2) differentiable, since

s2L (y (t, α))	 sy (0, α)− y
′
(0, α) = −λL (y (t, α))

we have the equations

s2L
(
y (t, α)

)
− sy (0, α)− y

′
(0, α) = −λL (y (t, α))

s2L (y (t, α))− sy (0, α)− y
′
(0, α) = −λL

(
y (t, α)

)
Using the initial values and taking the necessary operations,

L
(
y (t, α)

)
=

s3

s4 − λ2
Aα +

s2

s4 − λ2
Bα −

λs

s4 − λ2
Aα −

λ

s4 − λ2
Bα,
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L (y (t, α)) =
s3

s4 − λ2
Aα +

s2

s4 − λ2
Bα −

λs

s4 − λ2
Aα −

λ

s4 − λ2
Bα.

Taking inverse Laplace transforms of the equations, the lower and the upper solu-
tions are obtained as

y (t, α) =
e
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)
+
e−
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)

+
sin
(√

λt
)

2
√
λ

(
Bα +Bα

)
+

cos
(√

λt
)

2

(
Aα +Aα

)
,

y (t, α) =
e
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)
+
e−
√
λt

4

(
Bα −Bα√

λ
+Aα −Aα

)

+
sin
(√

λt
)

2
√
λ

(
Bα +Bα

)
+

cos
(√

λt
)

2

(
Aα +Aα

)
.

Theorem 3.1. (1,1) solution of the initial value problem (3.1)-(3.2) is a valid
α−level set for t > 0 satisfying the inequality

e2
√
λt ≥

((
b− b

)
−
√
λ (a− a)(

b− b
)

+
√
λ (a− a)

)
.

Proof. If

∂y (t, α)

∂α
≥ 0,

∂y (t, α)

∂α
≤ 0, y (t, α) ≤ y (t, α)

(1,1) solution of the initial value problem (3.1)-(3.2) is valid α−level set. Thus, it
must be

e
√
λt

(
b− b√
λ

+ a− a
)
− e−

√
λt

(
b− b√
λ
− a− a

)
≥ 0.

Since (
b− b

)
+
√
λ (a− a) ≥ 0,

we have

e
√
λt ≥ e−

√
λt

((
b− b

)
−
√
λ (a− a)(

b− b
)

+
√
λ (a− a)

)
.
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Consequently, (1,1) solution of the initial value problem (3.1)-(3.2) is a valid α−level
set for t > 0 satisfying the inequality

e2
√
λt ≥

((
b− b

)
−
√
λ (a− a)(

b− b
)

+
√
λ (a− a)

)
.

Theorem 3.2. (1,2) solution of the initial value problem (3.1)-(3.2) is valid α−level

set, for t ∈
(

0, π
2
√
λ

)
satisfying the inequality

t ≥ 1√
λ

tan−1
(
−
√
λ

(
a− a
b− b

))
.

Proof. If

1√
λ

sin
(√

λt
) (
b− b

)
+ cos

(√
λt
)

(a− a) ≥ 0,

(1,2) solution of the initial value problem (3.1)-(3.2) is valid α−level set. For
√
λt ∈(

0, π2
)
⇒ t ∈

(
0, π

2
√
λ

)
, we have

tan
(√

λt
)
≥ −
√
λ

(
a− a
b− b

)
⇒ t ≥ 1√

λ
tan−1

(
−
√
λ

(
a− a
b− b

))
.

This completes the proof.

Theorem 3.3. (2,1) solution of the initial value problem (3.1)-(3.2) is a valid

α−level set for t ∈
(

0, π
2
√
λ

)
satisfying the inequality

t ≤ 1√
λ

tan−1
(√

λ

(
a− a
b− b

))
.

Proof. The proof is similar.

Theorem 3.4. (2,2) solution of the initial value problem (3.1)-(3.2) is a valid
α−level set for t > 0 satisfying the inequality

e−2
√
λt ≥

((
b− b

)
−
√
λ (a− a)(

b− b
)

+
√
λ (a− a)

)
.

Proof. The proof is similar.

Theorem 3.5. All of the solutions are symmetric triangular fuzzy numbers for
any t > 0.
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Proof. For (1,1) solution, since

y (t, 1) =
sin
(√

λt
)

2
√
λ

(
b+ b

)
+

cos
(√

λt
)

2
(a+ a) = y (t, 1) ,

and

y (t, 1)− y (t, α) =
e
√
λt

4
(1− α)

(
b− b√
λ

+ (a− a)

)
e−
√
λt

4
(α− 1)

(
b− b√
λ
− (a− a)

)
= y (t, α)− y (t, 1) ,

(1,1) solution of the initial value problem (3.1)-(3.2) is a symmetric triangular fuzzy
number for any t > 0. For (1,2) solution, since

y (t, 1) =
1√
λ

sin
(√

λt
)(b+ b

2

)
+ cos

(√
λt
)(a+ a

2

)
= y (t, 1) ,

and

y (t, 1)− y (t, α) = (1− α)

(
1√
λ

sin
(√

λt
)(b− b

2

)
+ cos

(√
λt
)(a− a

2

))
= y (t, α)− y (t, 1) ,

(1,2) solution of the initial value problem (3.1)-(3.2) is a symmetric triangular fuzzy
number for any t > 0. For (1,2) and (2,2) solutions, the proof is similar.

Example 3.1. Consider the solutions of the fuzzy initial value problem

y′′(t) = −y(t), y(0) = [1]α , y
′
(0) = [2]α(3.3)

by fuzzy Laplace transform, where [1]α = [α, 2− α] , [2]α = [1 + α, 3− α] with supports
[0, 2] and [1, 3], respectively.
For (1,1) solution, the lower and the upper solutions are

y (t, α) = et (α− 1) + 2 sin t+ cos t,

y (t, α) = et (1− α) + 2 sin t+ cos t.

For (1,2) solution, the lower and the upper solutions are

y (t, α) = (1 + α) sin (t) + α cos (t) ,

y (t, α) = (3− α) sin (t) + (2− α) cos (t) .

For (2,1) solution, the lower and the upper solutions are

y (t, α) = (3− α) sin (t) + α cos (t) ,



Fuzzy Initial Value Problem 211

y (t, α) = (1 + α) sin (t) + (2− α) cos (t) .

For (2,2) solution, the lower and the upper solutions are

y (t, α) = e−t (α− 1) + 2 sin t+ cos t,

y (t, α) = e−t (1− α) + 2 sin t+ cos t.

(1,1) solution is a valid α−level set since et > 0. (1,2) solution is a valid α−level set since
t− tan−1 (−1) > 0 for t ∈

(
0, π

2

)
according to figure 3.1. (2,1) solution is a valid α−level

set since t − tan−1 (1) ≤ 0 for t ∈ (0, 0.785398] on
(
0, π

2

)
according to figure 3.2. (2,2)

solution is a valid α−level set since e−t > 0. All of the solutions are symmetric triangular
fuzzy numbers. Also, we can see graphics of solutions for α = 0.2 in figure 3.3-figure 3.6.

Figure 3.1. Graphic of the function t− tan−1 (−1)

Figure 3.2. Graphic of the function t− tan−1 (1)



212 Hülya Gültekin Çitil

Figure 3.3. Graphic of (1,1) solution for α = 0.2

Figure 3.4. Graphic of (1,2) solution for α = 0.2

Figure 3.5. Graphic of (2,1) solution for α = 0.2
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Figure 3.6. Graphic of (2,2) solution for α = 0.2

Red → y
α

(t), Blue → yα (t), Green → y
1

(t) = y1 (t)

4. Conclusions

In this paper, fuzzy initial value problem with negative coefficient is studied by
fuzzy Laplace transform and generalized differentiability. Solutions are found and
comparison results are given. It has been proved that the solutions are valid fuzzy
functions, which has been shown on an example. It has also been found that when
(1,1), (2,1) and (2,2) solutions are valid α− level sets, (1,2) solution is a valid
α− level set for t ∈ (0, 0.785398]. However, we can see that (1,1) solution behaves
differently from the crips solution in figure 3.3. It means that (1,1) solution becomes
fuzzier as time goes by.
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7. B. Bede and S. G. Gal: Almost periodic fuzzy-number-valued functions. Fuzzy Sets
and Systems 147:3 (2004), 385–403.

8. B. Bede and S. G. Gal: Generalizations of the differentiability of fuzzy-number-valued
functions with applications to fuzzy differential equations. Fuzzy Sets and Systems
151:3 (2005), 581–599.

9. B. Bede, I. J. Rudas and A. L. Bencsik: First order linear fuzzy differential equa-
tions under generalized differentiability. Information Sciences 177:7 (2007), 1648–1662.

10. J. J. Buckley and T. Feuring: Fuzzy differential equations. Fuzzy Sets and Systems
110:1 (2000), 43–54.

11. J. J. Buckley and T. Feuring: Fuzzy initial value problem for Nth-order linear
differential equations. Fuzzy Sets and Systems 121:2 (2001), 247–255.

12. Y. Chalco-Cano and H. Roman-Flores: On new solutions of fuzzy differential
equations. Chaos, Solitons and Fractals 38:1 (2008), 112–119.

13. D. Dubois and H. Prade: Operations on fuzzy numbers. International Journal of
Systems Science 9:6 (1978), 613–626.

14. N. Gasilov, S. E. Amrahov and A. G. Fatullayev: A geometric approach to solve
fuzzy linear systems of differential equations. Applied Mathematics and Information
Sciences 5:3 (2011), 484–499.

15. X. Guo, D. Shang and X. Lu: Fuzzy approximate solutions of second-order fuzzy
linear boundary value problems. Boundary Value Problems 2013:212 (2013), 1–17.
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