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Abstract. In this study, we have expressed the notion of k-type slant helix in 4-
symplectic space. Also, we have generated some differential equations for k-type slant
helix of symplectic regular curves.
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1. Introduction

The helix concept is an important area for differential geometers due to its
numerous applications in many areas from physics to engineering. So, many authors
are interested in helices to study in Euclidean 3-space and Euclidean 4-space. In
[7, 6, 9], the authors gave new characterizations for an helix. The notion of a slant
helix belongs to Izumiya and Takeuchi [4]. They consider the principle normal
vector field of the curve instead of tangent vector field and they defined a new kind
of helix which is called slant helix. Recently, some studies have been done to extend
the definitions of helix and slant helix to Minkowski space (see [1, 2, 3] ) and other
frames [8].

2. Preliminaries

Let us give a brief related to symplectic space. One can found a brief account
of the symplectic space in [10, 5]. The symplectic space Sim = (R4,Ω) is the vector
space R4 endowed with the standard symplectic form Ω, given in global Darboux

coordinates by Ω =
2∑

i=1

dxi ∧ dyi. Each tangent space is endowed with symplectic

inner product defined in canonical basis by

〈u, v〉 = Ω(u, v)

= x1η1 + x2η2 − y1ξ1 − y2ξ2
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where u = (x1, x2, y1, y2) and v = (ξ1, ξ2, η1, η2).

A symplectic frame is a smooth section of the bundle of linear frames over R4

which assigns to every point z ∈ R4 an ordered basis of tangent vectors a1, a2, a3, a4with
the property that

〈ai, aj〉 = 〈a2+i, a2+j〉 = 0, 1 ≤ i, j ≤ 2,(2.1)

〈ai, a2+j〉 = 0, 1 ≤ i 6= j ≤ 2,(2.2)

〈ai, a2+i〉 = 1, 1 ≤ i ≤ 2.

Let z(t) : R → R4 denotes a local parametrized curve. In our notation, we allow
z to be defined on an open interval of R. As it is customary in classical mechanics,
we use the notation ż to denote differentiation with respect to the parameter t

ż =
dz

dt
.

Definition 2.1. A curve z (t) is said to be symplectic regular if it satisfies the
following non-degeneracy condition

〈ż , z̈〉 6= 0 , for all t ∈ R.(2.3)

Definition 2.2. Let t0 ∈ R, then the symplectic arc length s of a symplectic
regular curve starting at t0 is defined by

s (t) =

t∫
t0

〈ż , z̈〉1/3dt, for t > t0.(2.4)

Taking the extrerior differential of (2.4) we obtain the symplectic arc length
element as

ds = 〈ż , z̈〉1/3 dt.
Dually, the arc length derivative operator is

D =
d

ds
= 〈ż , z̈〉−1/3 d

dt
.(2.5)

In the following, primes are used to denote differentiation with respect to the sym-
plectic arc length derivative operator (2.5)

z
′

=
dz

ds
.

Definition 2.3. A symplectic regular curve is parametrized by symplectic arc
length if

〈ż, z̈〉 = 1, for all t ∈ R.
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Let z(s) be a symplectic regular curve in Sim = (R4,Ω). In this case there
exist only one Frenet frame {a1(s), a2(s), a3(s), a4(s)} for which z(s) is a symplectic
regular curve with Frenet equations

a
′

1(s) = a3(s), a
′

2(s) = H2(s)a4(s),(2.6)

a
′

3(s) = k1(s)a1(s) + a2(s), a
′

3(s) = a1(s) + k2(s)a2(s),

where H2(s) = constant(6= 0) [10].

In [2], the authors introduced the k-type slant helix in Minkowski 4-dimensional
space E4

1 . Now, we extend the concept of slant helix for symplectic regular curve as
follows:

Definition 2.4. Let z be a symplectic regular curve with the Frenet frame
{a1(s), a2(s), a3(s), a4(s)} . We say that z is a k-type slant helix if there exists a
(non-zero) constant vector field U ∈ R4 such that

〈ak+1(s), U〉 = const.

for 0 ≤ k ≤ 3 where U is an axis of the curve.

In particular, 0-type slant helices are general helices and 1-type slant helices are
slant helices.

3. k-Type Slant Helices

Theorem 3.1. Let z be a symplectic regular curve in Sim = (R4,Ω). Then z is
0-type slant helix(or general helix) if and only if

k1(s)

k2(s)
= const.(3.1)

Morever, z is also a k-type slant helix, for k ∈ {1, 2, 3}.

Proof. Assume that z is a 0-type slant helix. Then for a constant vector field U,
we have 〈a1(s), U〉 = c is constant. Differentiating this equation and using Frenet
equations, we obtain 〈a3(s), U〉 = 0. So U is orthogonal to a3(s) and we can
decompose U as differentiating (3.1) and using Frenet equations, one arrives to

ck1(s) + U4(s) = 0,

U ′4(s) = 0,(3.2)

c+ U4k2(s) = 0.

Thus U4 is constant. By (3.1) and (3.2) can easily obtained. Converse of proof is
obvious.



644 E. Çiçek Çetin and M. Bektaş

Theorem 3.2. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)}, where k1(s) 6= const(6= 0), k2(s) 6= const(6= 0)
and H2(s) = const = c0. If z is a 0-slant helix, then

k
′′

1 (s)− c0k1(s)k2(s) + c0 = 0.(3.3)

Proof. Assume that z is a 0-type slant helix. Then for a constant vector field U,
we have

〈a1(s), U〉 = c.(3.4)

Differentiating this equation and using Frenet equations, we obtain

〈a3(s), U〉 = 0.(3.5)

Taking the derivative of equation (3.5) with respect to s, we have

〈a2(s), U〉 = −ck1(s).(3.6)

Now, if we differentiate (3.6) and use the Frenet frame, we get

〈a4(s), U〉 =
−c

H2(s)
k′1(s).(3.7)

Hence, we differentiate (3.7) for the last time. Taking into account of hypotesis of
the Theorem and the Frenet frame, we obtain (3.3).

Corollary 3.1. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} . If z is a 0-type slant helix, then we have following
diffrential equation

k
′′

2 (s)− c0k22(s)− 1 = 0,(3.8)

where c0 = H2(s) = const(6= 0) and k1(s) 6= const(6= 0) and k2(s) 6= const( 6= 0).

Proof. From (3.3) and (3.1) we obtain (3.8).

Corollary 3.2. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} . a) If z is a 0-type slant helix with k1(s) = const(6=
0), then we have

k2(s) =
1

k1(s)
,(3.9)

b) If z is a 0-type slant helix with k2(s) = const( 6= 0), then we have

H2(s) = − 1

k22(s)
.(3.10)

Similarly, we can give the following conclusions:
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Theorem 3.3. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} with k1(s) 6= const( 6= 0), k2(s) 6= const(6= 0) and
H2(s) = const( 6= 0). If z is a 1-type slant helix, then

k
′′

2 (s)− k1(s)k2(s) + 1 = 0.(3.11)

Corollary 3.3. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} with non-zero constant k1(s), k2(s), H2(s). If z is
a 1-type slant helix, then

k1(s) =
1

k2(s)
.(3.12)

Morever z is also a k-type slant helix, for k ∈ {2, 3}. In this case, we have the
following:

Theorem 3.4. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} with k1(s) 6= const( 6= 0), k2(s) 6= const(6= 0) and
H2(s) = const( 6= 0). If z is a 2-type slant helix, then we get

(k
′′

1 (s) +H2(s)−H2(s)k1(s)k2(s) 〈a1(s), U〉 = −2k′1(s)c,(3.13)

where c is a constant.

Theorem 3.5. Let z be a symplectic regular curve in Sim = (R4,Ω) with Frenet
frame {a1(s), a2(s), a3(s), a4(s)} with k1(s) 6= const( 6= 0), k2(s) 6= const(6= 0) and
H2(s) = const( 6= 0). If z is a 3-type slant helix, then we have

(k
′′

2 (s)− k1(s)k2(s) + 1) 〈a2(s), U〉 = −2ck′2(s)H2(s),(3.14)

where c is a constant.
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